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Abstract—Coordination of decentralized energy resources, con-
dition based maintenance, and energy conservation all benefit
from visibility of itemized energy demand throughout the power
distribution network. Nonintrusive load monitoring (NILM) can
provide itemized power demand for an installation but sharing
this information without sacrificing privacy is a challenging
and unsolved problem. This work presents NILM-Net, a gossip
protocol for aggregating itemized load events into an anonymous
central database. Unlike traditional gossip protocols, NILM-
Net provides monetary incentive for participation and malicious
nodes can be efficiently detected.

Index Terms—Smart grid, nonintrusive load monitoring, pri-
vacy, decentralized networks, Internet of Things

I. INTRODUCTION

High-quality power monitoring can improve the efficiency,
health, and resiliency of the smart grid. By understanding
how energy is consumed, producers can schedule generation
more efficiently, users can track the maintenance condition of
their appliances, and spikes in demand can be predicted and
mitigated to avoid reduced power quality or outages.

Distributed energy resources (DERs) have disrupted the
traditionally unidirectional power grid [1], [2]. With DERs,
microgrids can supplement or replace the centralized utility
for a local set of users [3], [4]. These participants in the
microgrid’s energy market need to accurately forecast demand
to maximize revenue. However, this information is typically
held by the utility, which may be unwilling or unable to make
data available. Even if it were available, the time series of
aggregate power consumption is of little use to local microgrid
communities. Instead, an energy database can be queried in
near real-time to provide historical demand information.

Condition-based maintenance (CBM) promises reduced cost
of ownership and decreases the likelihood of unexpected com-
ponent failure. However, CBM requires real-time knowledge
of equipment condition through sensing. Current research
focuses on the development of digital twins [5], [6]. Unfortu-
nately, this requires significant modeling and simulation that
are not feasible for the majority of residential and commercial
appliances. Instead, cohort analysis provides benchmarks on
healthy operation at a much lower cost. However, there must
be an established method to query load operation in the cohort,
which requires some type of centralized energy database.

Finally, itemized power monitoring can improve the re-
siliency of the grid through energy reduction and more efficient

Fig. 1. NILM-Net allows grid participants to dynamically query electricity us-
age patterns enabling a variety of smart grid applications. Privacy protections
as well as monetary incentives encourage data sharing by energy consumers.

consumption profiles. Comparison metrics between consumers
have been shown to be effective in motivating energy re-
duction [7]. Directly sharing this data between consumers,
or more typically with a commercial third party, exposes
sensitive information unrelated to the objective of comparative
consumption such as patterns of life and even indications
of occupant behavior [8], [9]. A database that only holds
anonymized load events provides the same value without the
corresponding privacy concerns of handling the raw data.

In all of these situations a shared database of itemized
load operation provides value. Nonintrusive load monitoring
(NILM) can generate this data at the site level, but integrating
NILM systems at scale to provide grid-wide visibility of
demand while maintaining users’ privacy has remained an
open problem. To address this gap, we present NILM-Net,
a protocol to anonymize and consolidate itemized power
consumption data into a centralized system that can be queried
on demand by grid participants (Figure 1). A monetary com-
pensation scheme encourages data sharing, and a robust fraud
detection mechanism identifies invalid or modified data and the
malicious node(s) that produced it. The result is an efficient
and scalable system that can deliver on the promises of the
smart grid to the energy producer and consumer.

II. BACKGROUND

The current state of the art in commercially deployed power
monitoring is Advanced Metering Infrastructure (AMI) [10].
However, AMI produces too much data with too little informa-



Fig. 2. Active and reactive power turn-on transients for a toaster (left) and a
microwave (right). The two loads clearly present different signatures.

tion. Sampling intervals on the order of minutes are sufficient
to track real-time demand, but is of limited use because the
source of the demand is unexplained. For example, cycling
systems (e.g. HVAC), appliances with flexible scheduling (e.g.
electric vehicle chargers), and appliances with time-sensitive
demand (e.g. kitchen appliances) imply very different power
requirements but with such a low sampling rate, they are
indistinguishable from one another except by their average
wattage which is often quite similar. Unlike AMI, NILM can
itemize power consumption by appliance. This opens up an
entire new field of power system optimization.

NILM exploits Kirchoff’s current law by taking aggregate
current measurements at the utility service point and then uses
disaggregation techniques to itemize power consumption by
load [11]. Sufficiently high sampling rates enable recognizable
“fingerprint” events in the aggregate power stream. Figure 2
shows an example of such fingerprints for a toaster and
a microwave. The toaster, a resistive load, consumes only
real power, whereas the microwave consumes both real and
reactive power and contains harmonic distortions in the current
signal. A NILM system can measure these differences and
determine which loads are operational in a particular building
or residence. To make the most use out of this information,
users need to share the information with one another.

Existing research in anonymized data sharing impose sig-
nificant computational and/or bandwidth requirements making
them difficult to deploy in practical scenarios. In particular
[12] proposes an anonymous, gossip-like protocol meant for
aggregating data from smart devices. This support for gener-
ality in data queries is advantageous, but the protocol requires
several rounds of inter-node communications and heavy use of
encryption to protect against fraudulent transactions. NILM-
Net, specifically designed for electric load data, leverages the
physical constraints of the power grid to detect and eliminate
fraud with minimal network communication and encryption.

III. NILM-NET

NILM-Net collects load event data produced by indepen-
dently operated power monitors and creates an anonymized

Fig. 3. The NILM-Net packet structure. Aggregate power consumption
(top left) is divided into discrete transients corresponding to the operation
of individual loads (middle left). Data associated with these transients are
composed into packets (bottom left) containing the fields shown on the right.

energy database for use by grid participants. Each power
monitor measures a single building such as a home or business
and identifies load events in the aggregate power waveform
using NILM techniques discussed previously. Each event is
encapsulated in a packet with a timestamp, power information,
and unique identifier (UUID) as shown in Figure 3. The
UUID is a 128-bit value randomly generated by the node [13].
Since there is no central coordination, the very large bit-width
ensures nodes do not coincidentally generate the same value.
The metadata is an optional field that provides additional
information such as load type, time sensitivity (critical, flexible
schedule, periodic, etc.). Metadata improves the utility of the
data but does so at the expense of user privacy. A monetary
compensation scheme discussed in Section III-B enables nodes
to capture this additional value and therefore decide their own
balance of this privacy trade-off. Finally, the duplication factor
and salt field ensure the fair operation of the network and are
discussed in detail later in this section.

A. Privacy

Nodes anonymize their power usage by swapping data
packets before submitting them to the central server in a
process called gossip (Figure 4). Packets must be submitted to
the server within 24 hours. Until then they may be exchanged
asynchronously and arbitrarily between nodes. There is no
limit to the number of packets in an exchange or the number
of times an individual packet may be exchanged. The data
remains anonymous to both the nodes and the server as long
as there are at least two exchanges. Under this assumption, a
node receiving transients from a peer is unable to distinguish
between packets originating from that peer and packets for-
warded by that peer from an earlier exchange. When the server
ultimately receives the data it too is unsure of the data source
which guarantees the anonymity of the database records.

Gossip protects user privacy but introduces new problems by
relying on intermediaries to forward information. In particular,
packets may not reach the destination if an intermediate
node goes offline before submitting it to the server. To avoid
dropped packets nodes may duplicate information by sending



Fig. 4. The NILM-Net gossip protocol. Nodes itemize power transients into
data packets. Any time before a packet expires nodes may choose to swap it
with a peer (top) or submit it to the server (bottom). Swapped packets may
be original or received from an earlier exchange, and may also be duplicated.
The server can verify received transients are physically plausible based on
aggregate utility measurements.

the same packet to multiple peers. The unique packet ID
ensures the server only stores a single copy of each load event
in the database even if multiple copies are submitted.

B. Compensation

To encourage participation, NILM-Net incorporates a mon-
etary compensation mechanism to reward users that submit
useful data. Database queries are charged a variable rate de-
pending on the quantity and granularity of the data requested.
Queries which request metadata fields such as load type are
charged higher rates than those which only request power
data. Query funds are distributed evenly among the nodes
that submitted the records used in the response. When a node
duplicates a packet it multiplies the df field by the number of
new packets. For example a node that wants to send the same
load event to two different peers would set df=2. If one of
these nodes then sends the data to three peers, it exchanges
packets with df=6. The server uses the reciprocal of df to
determine the probability a node is awarded ownership of
that data. Therefore packets with a higher df have a lower
relative value since they are less likely to provide credit to the
submitter. To deter nodes from manipulating df in hopes of
securing more valuable packets in a gossip exchange the server
verifies that the sum of the reciprocal df values is ≤ 1. If this
constraint is violated the server conducts a fraud investigation
to determine the culprit node(s), a process discussed in detail
in Section IV. As long as the cost function used by the server
is well known and the df values are accurate every node
should agree on the value of packets exchanged in gossip
and profit-maximizing participants will therefore choose to
only exchange similarly valued sets of packets. As long as
packet exchanges are equitable, nodes will receive an average
compensation proportional to the value of data they produce
even though they never receive credit for their own data.

C. Fraud Detection

Gossip networks of any practical size and especially ones
with monetary incentives must expect some level of misbehav-
ior by nodes seeking to disrupt the proper flow of information
for personal gain or simply to exploit the system. NILM-Net
provides strong protections against such data fraud. When
malicious data modification occurs participants can collab-
oratively reverse the gossip sequence to reveal the identity
of the culprit node(s) without sacrificing the anonymity of
the data source. The fraud detection mechanics are shown
in Figure 5. The Hash Registry is a trusted authority that
stores timestamped hashes submitted by nodes. In addition
to the Hash Registry, NILM-Net also maintains a Public
Key Infrastructure (PKI) which allows nodes to digitally sign
messages. When a node forwards a packet during gossip it
provides a signed receipt and an index to the hash of this
receipt in the Registry. The sender (TX) produces the receipt
by signing the packet concatenated with the recipient (RX)
node’s ID (such as nodeXX.nilm.net) as shown below:

receipt= SIGTX(packet||IDRX) (1)

The recipient can verify the contents of the receipt using the
sender’s public key and can also check that the correct hash is
available in the Registry. If the packet happens to be fraudulent
the recipient can use the receipt to absolve itself and blame
the sender. It is important to note that the Registry stores the
hash of the receipt and not the receipt itself. Hashes uniquely
identify data but do not provide any information about the
data itself. This makes registry entries a type of cryptographic
commitment, allowing nodes to selectively reveal portions of
the gossip sequence.

Every 24 hours the server publishes a list containing the
hashes and IDs of all packets it has received over this period.
This allows the data author as well as any intermediate nodes
in the gossip sequence to verify whether a packet was received
correctly. If the published hash does not match a node’s
local version of that packet (based on the ID) it indicates
the data was fraudulently changed in transit. While hashes
are irreversible it may be possible for a motivated attacker
to construct potential data packets and test whether the hash
is in the published list. This is possible because the space of
valid packets is relatively small. To prevent this type of reverse
lookup, every packet has an additional salt field (Figure 3).
This random data greatly increases the space of the input and
makes it computationally infeasible for an attacker to infer
any packet data from the published hashes. If a node finds an
incorrect hash, it submits a fraud claim to the server. A fraud
claim consists of three parts: the correct packet, a receipt of
this packet, and a Hash Registry index to this receipt. The
server uses this information to conduct a fraud investigation
as discussed in the next section.

IV. THREAT SCENARIOS

In order to provide reliable value to the smart grid, NILM-
Net must detect malicious actors trying to circumvent the
protocol. This section explains the fraud detection mechanisms



that ensure the fair operation of the system. When fraud does
occur, these mechanisms can accurately attribute blame while
maintaining user privacy. Several threat scenarios are discussed
which, while not exhaustive, serve to illustrate the operation
of the network under attack. For simplicity, scenarios have the
minimum number of nodes needed to demonstrate the attack
but these fraud controls are believed to be sufficient to protect
against arbitrarily complex data manipulation schemes.

There are two general types of fraudulent behavior on the
network: data injection and data manipulation. Data injection
attacks are spurious packets that do not correspond to actual
power events, and data manipulation attacks are modifications
made to transients during the gossip exchange. Data injection
threats are limited by the fact that the power grid is a closed
system. Nodes which inject false transients can be detected
by comparing their submitted transients to the output of the
power producers over the same time period. If a majority
of consumers in a grid participate in NILM-Net, the power
produced should roughly match the sum of the itemized
transients submitted to the server. In large grids where NILM-
Net participation may be low, injection attacks can still be
detected by comparison with AMI data. Care must be taken
to properly anonymize the AMI data such as implementing an
oracle as shown in Figure 4 rather than providing direct access
to the meter data.

A. Fraudulent Modification

Data modification attacks, such as altering packet metadata,
are a more sophisticated threat vector. Malicious nodes may
modify data to increase the apparent value of a packet in an
exchange (by adding additional or highly specific metadata)
or to tamper with the accuracy of the load event database.
Modification attacks are possible because transient data is sent
as plain text between nodes. Plain text allows nodes to estimate
the value of packets received in a swap and reduces the
computational overhead of the protocol. If the server is alerted
to a fraudulent packet, either because it is not physically
plausible or because a participant has flagged it as corrupt by
finding a discrepancy in the published packet hashes, the server
determines which node to blame. This is inherently a complex
problem. The node that delivered the data will insist (whether
true or false) that it simply received the corrupted data from
someone else – indeed the entire protocol is designed to make
it difficult to identify the data producer. Figure 5 illustrates the
network operation when a node maliciously modifies a packet
in transit. Data is generated by Node A which exchanges the
packet and associated receipt with Node B. Node B chooses to
continue the gossip sequence by forwarding the packet to C but
modifies the data in some way first. In order for C to accept the
packet, B must produce a valid receipt for the modified packet
and also submit the matching hash to the Registry. This will
eventually implicate B when the fraud is discovered.

The fraud is revealed when the server publishes the hash list
and A realizes its packet was altered. The fraud investigation
sequence is shown in the lower half of Figure 5. Node A
initiates the process by submitting a fraud claim consisting

Fig. 5. Detecting fraudulent data modification. Node B illegally modifies
data received from A (top). Sometime later, Node A alerts the server to the
discrepancy (1). The server first accuses Node C (2) which provides receipt
II to prove its innocence (3). The server then accuses B which cannot provide
a satisfactory response and is correctly charged with fraud.

Fig. 6. Detecting fraudulent accusations. Node B correctly forwards the packet
from A (top) but later fabricates a fraud claim hoping to implicate C (bottom,
1). The claim is handled in the same manner as Figure 5 with the server
charging C (2) and C responding with exonerating evidence (3). Registry
entry II conflicts with III correctly implicating Node B as the culprit.

of the original packet, the receipt showing transmission to B
and the Registry index of this receipt. The server verifies the
claim by confirming the receipt matches the packet contents
and the corresponding Registry entry occurs earlier than than
the submission of the packet from Node C. Since packet IDs
are unique this proves that some intermediate node modified
the packet between Node A and the server. The server assumes
the submitter, Node C, is guilty until proven innocent. Node
C exonerates itself by revealing the receipt from B and the
corresponding Registry entry, II, which occurs after I but
before the submission of the packet to the server. The server
then charges node B who cannot produce a similar set of
exonerating data and is therefore guilty of fraud. In this
scenario A is both the data producer and the fraud claimant
but any node in a gossip sequence can submit a fraud claim
if its local version of the packet does not match the published
hash. Thus, A’s identity is still protected because the server
cannot distinguish between a claim made by the data author
or an intermediate node in a longer gossip sequence.

B. Fraudulent Accusation

Rather than directly modifying packets, an attacker may
sow distrust among participants by generating spurious fraud



Fig. 7. Fraudulent duplication occurs when a node replicates packets without
updating the duplication factor. The server can detect this attack by computing
the sum of the reciprocal df values and determine the fraudulent node by
examining the gossip receipts.

claims hoping to implicate innocent nodes. This type of attack
is shown in Figure 6. Here Node B correctly forwards the
packet from A and the unmodified data arrives at the server.
Later B submits a fraud claim by creating a modified packet
and submitting the corresponding hashed receipt to the Reg-
istry. From the server’s perspective this claim looks identical
to the claim in Figure 5. Initially C looks guilty because as
before the claim documents are valid: The packet IDs match
with different content and the receipt is registered with a
timestamp prior to the packet submission (entry III). However
C can reveal receipt II proving it received the unmodified data
from B. Node B is therefore exposed as the culprit because it
registered two receipts for the same packet with different data
(the relative time ordering of II and III is not important).

C. Fraudulent Duplication

When the server receives multiple copies of the same packet
from different nodes it randomly assigns the query reward to
only one node based on the duplication factor. To maximize
expected revenue a malicious node may covertly duplicate
a packet without modifying df, as shown in Figure 7. The
server can detect this type of attack and identify the malicious
node(s) in a similar manner to the data modification attack
discussed previously. The server is initially alerted to the attack
by computing an invalid sum of duplication factors. At this
point the server accuses all of the submitters of fraud but E,
F, and D are all exonerated by revealing receipts (IV, V, and III
respectively) which show that they are accurately forwarding
data received from other nodes. This implicates both B and C.
Node B reveals receipt I which has a lower df than any copies
of the packet it has forwarded (at this point only III has been
revealed). With both III and V revealed, Node C must reveal
an inbound receipt with df=1 which it cannot since receipt II
is for a packet with df=2.

V. CONCLUSION

A practical implementation of NILM-Net will include many
challenges. Although NILM has made great strides in load
identification transients may be unidentifiable or misclassified.
A practical system needs to be robust to these errors, when
collating the data, issuing monetary rewards, and penalizing

nodes. In addition, a practical implementation would require
protocol specifications for node entry and exit from the energy
network. Users may want to create a “blacklist” of power
transients blocked from being sent to the central server to keep
certain activities private.

These challenges represent exciting areas of future research.
NILM is a promising technology but without a framework
for data sharing, its utility is limited. A centralized energy
database can provide value across the smart grid. NILM
technology makes this possible with a minimal amount of
additional infrastructure. However, a energy database must
respect user privacy. Load event data is a valuable commodity
and energy consumers should be compensated for sharing
this information. Not only is this ethically preferable, it also
incentives participation making it more likely such as system
while gain wide adoption. NILM-Net provides a solution that
scales, gives users control over sharing their data, and rewards
them for doing so.
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