
Adaptive Control of an Inductive Power Transfer 
Coupling for Servomechanical Systems 

Deron K. Jackson Steven 

Abstruct- This paper presents adaptive-control 
schemes that estimate load-model parameters and 
adaptively “tune” a digital controller for an 
inductively-coupled power delivery circuit. Esti- 
mation algorithms are presented that utilize spe- 
cific recursive formulations, which provide ade- 
quate noise immunity in a power-electronic envi- 
ronment. The techniques are demonstrated using 
a servomechanical system and a 1.5-kW prototype 
power electronic drive. 

I. INTRODUCTION 

N contrast to controllers for typical regulation ap- I plications, servomechanical systems generally re- 
quire a controller whose transient performance is ver- 
ifiably guaranteed over a wide range of operating con- 
ditions. Also, for adequate tracking performance, the 
controller may need to respond relatively swiftly to 
command changes or load disturbances. An array 
of servomechanical control problems exist where slow 
variations (compared to control bandwidth) in me- 
chanical properties, loading, or external disturbances 
lead to changes in the load model parameters. Such 
changes can adversely affect even relatively robust 
control designs. 

Adaptive or “self-tuning” controls adjust automati- 
cally in response to system changes. Adaptive control 
systems have been widely studied [l], [2]. The name 
generally refers to a two step process of system param- 
eter estimation and control adaptation. Both tasks 
must be accomplished on-line to permit the controller 
to track time-varying system parameters. This im- 
poses certain limits on implementations. In addition, 
the adaptation algorithm must be suitable for digital 
implementation and sufficiently robust to noise. This 
paper addresses these concerns and presents tech- 
niques specifically suited to power electronic and dig- 
ital control environments. 
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11. SYSTEM OVERVIEW 

A number of circuit topologies for inductively cou- 
pled power transfer in servomechanical applications 
are reviewed in [3]. One power electronic drive, for 
example, is a unidirectional power transfer coupling 
that draws power from the AC utility through a high 
power factor pre-regulator. Power is transferred to 
the load through a half-bridge inverter that energizes 
a separable transformer or inductive coupling. An- 
other drive explored in [3] employs a high power factor 
pre-regulator capable of bidirectional power transfer, 
to or from the electric utility, and either a full-bridge 
or symmetric half-bridge inverter circuit capable of 
transferring power to or from a load through the in- 
ductive coupling. 

An inductive coupling provides features including: 
safety isolation; a separable or sliding, non-ohmic 
electro-mechanical interface; and, often, the possibil- 
ity of transferring power across an unbroken environ- 
mental interface, e.g., the skin of a patient receiving 
an externally powered in-vivo implant, or a wall in a 
transportation system. The advantages and engineer- 
ing challenges of operating this type of coupling and 
the associated drive circuitry over a range of power 
levels and applications have been reviewed in numer- 
ous publications, including [4], [5],  [6], [7], [8], and [9], 
among others. 

In [lo], [ll], and [12], we exploited large-signal 
linear models for developing controllers for the 
inductively-coupled power electronic drives used in [3]. 
Large-signal linear models are essential for developing 
controllers with verifiable performance in tracking ap- 
plications. The general multirate digital control tech- 
niques developed in [3], [12], and [ll] presume that 
the driving-point impedance or other input-to-output 
behavior of the load can be described by a linear, 
time-invariant transfer-function model. The time in- 
variance constraint implies that the differential equa- 
tions or transfer function describing the load model 
contains constant coefficients. These coefficients must 
be known in order to apply conventional design tech- 
niques. Not surprisingly, a number of applications do 
not fit this description. 
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The next sections present techniques for estimat- 
ing the slowly varying coefficients of a load model for 
a load driven by an inductively coupled power elec- 
tronic drive. These techniques can be used to update 
the gains of a controller to ensure specified perfor- 
mance under load changes. The parameter estima- 
tion and adaptive controller demonstrations are con- 
structed using a prototype 1.5 kW inductively cou- 
pled drive (described in detail in [3]). However, the 
estimation techniques could be used in virtually any 
on-line, digitially controlled power electronic applica- 
tion. Also, since many power electronic drives em- 
ploy a fixed (non-separable) transformer for isolation 
or voltage conversion, the demonstration of these con- 
trol techniques with an inductively coupled (separa- 
ble transformer) drive, which is very similar to a fixed 
transformer drive, does not limit their applicability. 

111. PARAMETER ESTIMATION FOR POWER 
ELECTRONIC DRIVES 

A conventional linear estimation problem begins 
with the assumption that a column vector y com- 
posed of scalar measurements y[k] can be related to 
the product of a “regressor” matrix R (composed of 
row vectors r[kIT) and a column vector of parameters 
8 which characterize the system [2]: 

R 8 = y  (1) 

In a typical application, a large number (relative to 
the number of parameters in 8)  of measurements are 
made to assemble the y vector. The system is over- 
Constrained. Generally, no vector 8 can be found that 
precisely satisfies (1). The least-squared error solution 

d = ( R ~ R ) - - ~ R ~ Y  (2) 

minimizes the sum of the squared errors, i.e., the 2- 
norm of the vector y - Rd. (The “hat” notation 
is used throughout this paper to indicate estimated 
quantities.) Note that direct solution of (2) is a nu- 
merically poorly conditioned approach for finding 8, 
and that recursive formulations based on this equation 
may also be numerically inferior to more clever solu- 
tion techniques. It is imperative to ensure that the 
number of parameters does not exceed the number 
that can be identified given the information content 
or “richness” of the measurements, e.g., the matrix 
R should not be too poorly numerically conditioned. 
Given sufficiently rich measurements, all of these esti- 
mation approaches are generally functional for appli- 
cation with thriftily modeled servomechanical drives 
with small numbers of parameters to be estimated. 

A .  Recursive Least-Squares Estimation 
Recursive least-squares (RLS) estimation is an iter- 

ative reformulation of the conventional least-squares 
solution technique for overconstrained linear systems 
[2]. Rather than waiting to accumulate a collection of 
measurements before estimating the parameter vec- 
tor, as in conventional least-squares estimation, the 
estimate 6 can be updated as each new measurement 
is made. The RLS estimator is very attractive for 
real-time applications. Because the RLS algorithm is 
recursive, very few data points need to be stored be- 
tween iterations, and computations occur at specified 
intervals with a predictable computational complex- 
ity. 

The recursive least-squares algorithm is shown in 
(3) below: 

€[IC] = y[k] - ~ [ I c ] ~ ~ [ I c  - 11 

where ~ [ k ]  is a scalar prediction error, g [ k ]  is a gain 
vector, and P[k]  is a weighting matrix [l]. The algo- 
rithm in (3) is executed from top to bottom at each 
iteration of the index k. 

For now, assume that the “forgetting factor,” p, is 
unity. In this case, after N iterations, the recursive 
algorithm can, with infinite precision arithmetic, re- 
turn the exact parameter estimates that would occur 
using non-recursive least squares on the same N data 
points. However, a perfect match requires very spe- 
cific initial conditions for P[k].  In practice, the ma- 
trix P[O] and the initial parameter vector may be de- 
termined by producing initial estimates, perhaps off- 
line, using conventional least squares. Alternatively, 
the algorithm could be started with an initial guess 
at the parameters and a P [ O ]  matrix set to a large 
constant multiplied by an identity matrix. Although 
this can cause large initial transients in the parameter 
estimate, the large P[O] helps assure relatively rapid 
parameter convergence. 

The RLS algorithm just described refines its pa- 
rameter estimates at each iteration. So after N iter- 
ations the accuracy of the estimate accumulates the 
contributions from all N - 1 previous iterations. This 
prevents the algorithm from accurately tracking time- 
varying parameters unless the effect of distant data 
points can somehow be mitigated. This can be accom- 
plished by setting the forgetting factor p to a value less 
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than unity. The forgetting factor modifies the mini- 
mization criteria of the RLS algorithm so that errors 
that occurred at time index k - i are weighted by pz. 
The number of samples effectively kept in “memory” 
is roughly proportional to 1/(1 - p )  [2]. 

Exponential forgetting must be tuned with some 
care for optimum performance. If p is chosen too 
large, it will lead to slow convergence of the estimates, 
and if chosen too small, it will result in noisy esti- 
mates, which are based on too few data points. Thus, 
the choice of p represents a trade-off between parame- 
ter tracking and disturbance rejection. Another prob- 
lem, known as “covariance matrix explosion,” may 
occur during moments of low excitation [2]. In the 
absence of a significantly exciting input, the quantity 
P[k - l]r[lc] will approach zero, in which case P[k] 
will begin to increase exponentially. In turn, the pa- 
rameter estimates become increasingly sensitive to the 
prediction error ~ [ k ] ,  and the slightest noise or model 
inaccuracy can lead to erratic or erroneous parameter 
estimates. In practice, we could attempt to mitigate 
this effect by skipping the RLS update if a defined 
variable, such as the output, changes by less than an 
amount 6 between samples. 

Recursive estimation is a rich topic that has re- 
ceived much research attention. Many modifications 
have been proposed to optimize the performance of 
the basic recursive estimator for noise environments 
with specific, known probabilistic distributions. Also, 
note that the performance analyses of the basic least 
squares approach typically assume that noise or mea- 
surement error is confined to the vector of observa- 
tions and assumes an understood form. In fact, in 
servomechanical applications of interest, noise often 
affects both the measurement vector and the regressor 
matrix. Other techniques, e.g., “total” least squares 
[13], have been developed to provide solutions that 
are optimal in some sense for these cases. Generally, 
careful characterization of the noise environment in a 
power electronic servomechanism, where disturbances 
and noise may be closely correlated and impulsive or 
non-Gaussian in nature, is difficult. Experiments with 
the prototype hardware show that using the RLS es- 
timation technique to determine the parameters of a 
“state-variable-filtered” plant model can lead to rela- 
tively noise-immune parameter estimation techniques 
suitable for the power electronic environment. 

B. State Variable Filtering 

The term “lambda method” (LM) is used here to 
describe a modification to the conventional recursive 

least-squares (RLS) algorithm, which will be referred 
to as LM-RLS. The technique relies on an “opera- 
tor transformation” that allows the differentiation op- 
erator in a continuous-time (CT) transfer function 
model to be replaced, in principle, without approx- 
imation. The result is a discrete-time (DT) estima- 
tion algorithm, which operates on transformed or fil- 
tered observations of the input and output data. An 
estimation algorithm can then be designed around 
the transformed model. This technique is described 
briefly in [a] and in other literature under the head- 
ing “model transformation” or “state-variable filter”, 
but appears to have been largely overlooked in the 
power-electronics literature. However, our experi- 
ments demonstrate that a substantial reduction in 
noise sensitivity can be achieved in comparison to con- 
ventional RLS. 

The LM-RLS technique is developed around a CT 
transfer function model of the system, e.g., the ratio- 
nal CT transfer fuction 

where the denominator polynomial has order m and 
the coefficients ai and bi may be time varying. This 
system function might model the driving point ad- 
mittance of a battery to be charged, or the through 
transfer function of a speed-control servomechanism, 
or, generally, the system function of any plant to be 
driven and controlled by a power electronic drive. The 
coefficients of H ( s )  equivalently describe a linear dif- 
ferential equation model of the system written as 

pmy( t )  + a1pm-ly( t )  + * * + amy(t)  = (5) 
blp”-’u(t) + * + b,u(t) 

where p represents the derivative operator $ and u(t) 
and y ( t )  represent the input and output variables of 
the system with system function (4). An operator 
transformation can be applied to (5), whereby the p 
operator is replaced by the, causal, low-pass “lambda” 
operator 

A=- 
TAP+ 1 

(6) 
1 

where TA is a positive time constant. Using (6) to 
eliminate p from (5) yields a new linear model, which 
can be written as 

~ ( t )  + alAy(t) + * * + amXmy(t) = (7) 
P1Xu(t) + . . . + P,Xrnu(t) 

where the reformulated parameters ai and pi are al- 
gebraically related to the starting parameters ai, bi, 

1193 



and the time constant TA.  Equation (7) is special in 
that the addends Xy(t), Xu(t), etc., represent inputs 
and outputs operated on by A. More specifically, the 
X operator specifies a first-order low-pass filter with a 
time constant TA. Powers of X are multiple applica- 
tions of the operator. 

The reformulated parameters from (7) can be esti- 
mated directly using the RLS algorithm. Assuming 
that the filtered CT quantities are available, they can 
be sampled every Tk seconds, in synchrony with the 
corresponding DT algorithm iterated by the index k. 
At each time step I C ,  the sampled data is compiled into 
a regressor vector: 

and a vector of transformed parameters is computed 
by the RLS algorithm: 

The final operation at each time step is to recover 
estimates of the starting parameters, and &, from 
their known relationships to bi, &, and TA. 

The convergence properties of the LM-RLS method 
are strongly affected by the selection of the filter time 
constant TA. Experimental evidence suggests that TA 

should not exceed the nominal settling time of the 
target system. Doing so will unnecessarily slow the 
convergence rate of the parameter estimates. A com- 
promise may be necessary, however, if TA is increased 
to attenuate noise from an external source. Con- 
versely, decreasing TA can speed up the convergence 
rate, but the convergence transient can be expected to 
become increasingly violent [2] .  Nevertheless, the con- 
vergence properties of the LM-RLS method demon- 
strate a marked improvement over the direct RLS ap- 
proach. This will be demonstrated by the experimen- 
tal tests in the following section. 

IV. EXPERIMENT: MOTOR SPEED CONTROL 

A range of servomechanical control demonstrations 
were designed, constructed, and documented in [3] ,  in- 
cluding an electric vehicle battery charger, a solvent 
bath temperature control system, and a motor-speed 

ana 
power Electronics 

Fig. 1. Setup for motor speed control experiments. 

control system. Space limitations restrict the discus- 
sion here to a review of the speed servo. This sys- 
tem could, for example, model the drive system for 
an underwater vehicle, where electrical power passes 
contactlessly through the vehicle's hull to an external 
drive motor. Other examples might include process 
control or automation systems, where non-contact in- 
ductive coupling is used to transfer power across an 
environmental boundary. 

Figure 1 illustrates the motor-speed control appa- 
ratus used for the experiments. The personal com- 
puter (PC) illustrated in Fig. 1 was used to record 
experimental data for later analysis. This system 
recorded two electrical signals: the controlled boost 
voltage vbst(t) from the output of the pre-regulator in 
the 1.5 kW inductively-coupled prototype electronic 
drive, and also the motor speed uf(t) .  For use in con- 
trol, the motor speed was also relayed to an embedded 
80C196KC digital microcontroller board used to con- 
trol the power electronics as described in [ll] and [3] .  
It is important to emphasize that the PC in this ex- 
perimental setup simply and only provided archival 
data collection for later, off-line comparison to exper- 
imental results. All digital control and estimation al- 
gorithms were implemented on-board the embedded 
80C196KC microcontroller board. A control panel at- 
tached to the microcontroller board provided a user 
interface for setting control options, speed setpoints, 
etc. The load consists of a DC motor, a variable- 
inertia load and a tachometer circuit. The motor was 
affixed securely to a support beam and used to spin a 
variable number of circular weights. By dropping ad- 
ditional weights onto the rotating shaft, the mass and 
hence the inertia could be changed abruptly. Mass 
could be added or removed in increments of 4.5 kg. 
The shaft speed of the rotating system was sensed us- 
ing a small DC motor as a tachometer. A low-pass 
filter circuit was used to remove brush and harmonic 
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Fig. 2. Block diagram for motor speed control experi- 
ments. 

noise from the tachometer voltage. 

A .  Control Design 

The multi-loop adaptive speed control system is 
illustrated in Fig. 2. The system actually consists 
of three nested control loops. An innermost ana- 
log loop (not shown explicitly) controls the wave- 
shaping provided by a unity power factor, interleaved 
boost pre-regulator in the power electronics block. 
Next, a digital loop (again hidden in the dashed box), 
based on a large signal linear model of the boost con- 
verter, controls the output voltage of the converter 
to track with command inputs V,[lc]. The output 
voltage of the boost converter serves as the input 
to a high-frequency, DC-DC, zero-voltage switched 
bridge converter that transfers power across a separa- 
ble inductive coupling to the electromechanical load, 
represented overall by the dashed box in the figure. 
The final feedback loop, the adaptive, pole placement 
(PP) compensated feedback loop, regulates mechan- 
ical speed by controlling input voltage to the motor. 
This DT loops runs at a slower time scale than the in- 
ner voltage regulation loop. That is, many time steps 
of the voltage loop occur in one time step of the speed 
loop. The remaining blocks in Figure 2 represent the 
adaptive speed controller. Parameter estimation for 
this controller was performed using the LM-RLS al- 
gorithm. 

A transfer function that relates the output filtered 
tachometer voltage to the input drive voltage from 
the boost pre-regulator can be derived with the aid of 
Figure 3. The DC/DC stage energizing the inductive 
coupling can be modeled as an ideal transformer and 
a series impedance R d  (representing the droop charac- 
teristic of the open loop DC/DC stage). The output 
voltage of the DC/DC stage drives a 1000 Watt per- 
manent magnet DC motor. The model for this DC 
motor includes an armature winding resistance Rj, 
an armature inductance L f  and a motor back-EMF 
constant Km. The motor’s torque acts to rotate an 
inertia J against a frictional damping f. The final 

~ 
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Fig. 3. Equivalent electromechanical load model. 

speed of this assembly is sensed by a small tachometer 
mounted to the opposite end of the motor shaft. The 
output voltage of the tachometer is low-pass filtered 
to smooth out brush noise. The transfer function of 
this filter is 

where the time constant 7-f is set at approximately 
lOs, and O f ( s )  and Om(s)  are the transforms of w f ( t )  
and wm(t) ,  respectively. 

The motor torque can be written as 

where the effect of the winding inductance L f  has 
been dropped because the armature electrical time 
constant is considerably shorter than the sampling in- 
terval of the DT speed controller. The load torque, 
which balances the motor torque, is determined by the 
inertia, the frictional damping, and the shaft speed: 

Combining (8) and the Laplace transforms of (9) 
and (10) yields a single CT transfer function relating 
the transforms of wbs t ( t )  and the tachometer speed 
voltage w f ( t ) :  

where 

and 

The inner DT voltage loop controlling the output 
voltage of the boost converter is designed to work 
quickly on the time scale of the outer DT speed loop. 
This means, for example, that the inner voltage loop 
might be configured and modeled as a “power-level” 
zero-order hold (ZOH) on the time scale of the speed 
loop. This configuration and other possibilities is en- 
sured by the guaranteed dynamics of the large-signal 
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sary to determine the transfer function H ( z )  for the 
dashed box in Fig. 2 that relates the z-transform of 
output speed to the z-transform of the input voltage 
command from the PP speed compensator. For the 
speed servo, we have exploited the time scale separa- 
tion between the DT voltage and speed loops and the 
natural time constants of the plant to configure the 
voltage loop so that H ( z )  can be found by applying 
an impulse-invariant CT-to-DT transformation [14] to 
the transfer function H ( s ) :  

where 

The variable Tk represents the time step of the inner 
voltage loop in seconds. 

The impulse-invariant configuration and model for 
the inner voltage loop were chosen to yield an &(z) 
for which a satisfactory PP compensator could be 
designed. This compensator provides the beneficial 
property of zero steady state error without requiring 
an explicit DT accumulator variable. Since the load 
is second-order, a second-order PP compensator was 
developed for computing the control command V,[k]: 

K [ k ]  = d l V , [ k  - 11 + dzVc[k - 21 + hl(wtef[k] - wf[k]) + * * .  

h ( w r e f [ k ]  - w f [ k  - 11) + h(wref[k]  - wf[k  - 21) 
(15) 

where wTef [ I C ]  is the motor-speed reference command 
and dl,  d2, hl, h2 ,  and h 3  are constant gains. Satura- 
tion may be added in practice to limit the maximum 
and minimum voltage commands. 

Combining (15) and the load model in (13) results 
in a closed-loop transfer function, which relates the 
transforms of the output tachometer voltage to the 
input command voltage, of the form 

Fig. 4. Estimator. 

when the control gains in (15) are related to the coef- 
ficients in the closed-loop transfer function as follows: 

dl = x4 /a2  

d2  = dl - 1 

hl = ( 5 1  + dl - a 1  + l ) / b l  
h2  = ( 5 2  + d l ( a 1 -  1) + a 1  - az)/bl 

h3  = ( 2 3  + dl (a2  - .1) + a2)/b1. 

(17) 

Since (17) allows the coefficients of (16) to be as- 
signed arbitrarily, the closed-loop poles may be lo- 
cated freely in the z-plane. One reasonable choice for 
a stable, well-damped response is to place the four 
closed loop poles at identical locations rn on the real 
axis, i.e., ~1 ,2 ,3 ,4  = rn. 

B. Adaptive Updating 
Adaptive updating of the speed controller gains is 

accomplished using an LM-RLS parameter estimation 
scheme, shown in Fig. 4. The LM-RLS estimator con- 
tains at its core an RLS estimator, which is used to es- 
timate the parameters of a low-pass transformed sys- 
tem, and not the actual system. For this example, the 
regressor and the estimate vectors are, respectively: 

The operator symbol X in (18) indicates that a par- 
ticular observation is filtered. Ordinarily, a filtering 
operation would require that the signals are passed 
through an analog low-pass filter prior to being sam- 
pled. This approach is undesirable because it in- 
creases the circuit complexity. Although the filters 
themselves are straightforward, the number of A/D 
channels increases because each filtered quantity must 
be sampled separately. In this case four A/D chan- 
nels would be required versus just two for conventional 
RLS. 

The multirate nature of the digital control imple- 
mentation provides an elegant alternative. The filter- 
ing operation can be implemented digitally at the rate 
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of the “fast” inner voltage loop. Since the voltage- 
loop time index, n, steps at a rate Q times that of 
the outer loop, the DT filters will appear essentially 
continuous on the “slow” outer-loop time scale. The 
transfer function of each digital “X-filter” in Fig. 4 
is developed by again applying a CT-to-DT transfor- 
mation to the CT transfer function of a first order 
low-pass filter. As shown Fig. 4, the outputs are all 
down-sampled to the DT time index k before entering 
the RLS estimator block. 

The output of the RLS block is a vector 6x[lc] of 
parameter estimates for the transformed load model. 
Estimates for the coefficients of the original CT load 
model in (11) can be computed according to 

.. P z  
gm = &1+&2+1’ 

(19) 

The parameter estimates that are necessary to update 
the speed controller can be obtained from the rela- 
tionships in (14) and (17). Their application yields 
formulas for the quantities in 8 [ k ]  and h[k] below: 

6 [ k ]  = [ 21 and 

The gains in &[IC] are used to update the coefficients 
of the control command, (15). 

V. RESULTS 

The adaptive speed-control system was imple- 
mented in software on the 80C196KC microcontroller 
board. Detailed source listings can be found in [3]. 
Both fixed and adaptive controllers were implemented 
to allow for direct comparison. The fixed controller 
was optimized for operation with a load disk with a 
mass of 4.5 kg. The load model parameters for H ( s )  in 
(11) were approximated .experimentally at this mass 
setting. The results were 

.im = 11.7 S ,  +j = 10.0 S ,  and em = 0.011. 
(21) 

The closed-loop performance of both speed-control 
loops was targeted to have four real poles collocated 
at z = 0.70. A sample period for the speed loop of 
Tk = 1.0 s was used, and the inner- and outer-loop DT 
step indices are related by n = Qk, where Q = 120. 
The LM-RLS parameter estimation for the adaptive 

controller was configured with a forgetting factor p of 
0.97. Thus, a parameter estimate is based on approx- 
imately the last 33 seconds of data. Discrete time X 
filters were designed to approximate CT first order 
filters with a time constant of 10.0 seconds. In our 
experiments, no special initial guess was supplied for 
6 , [ k ] .  Instead, the matrix P was initialized to 10,000 
times an identity matrix, and the estimates were al- 
lowed to converge on their own. In order to assure 
stable control during start-up, the fixed controller was 
engaged for the first 1.5 minutes. This allowed time 
for the estimates to converge before adaptive control 
was engaged. 

Experimental results are shown in Fig. 5. The top 
two traces in Fig. 5 show the system under the con- 
trol of the fixed compensator. The top trace shows the 
commanded and actual tachometer voltages. The sec- 
ond trace shows the commanded drive voltage. The 
bottom two traces in the figure show the performance 
of the system under adaptive PP control. The third 
trace again shows tachometer voltage, and the fourth 
shows commanded drive voltage. A square wave in 
speed was commanded for each of the two controllers, 
fixed and adaptive, in order to demonstrate the con- 
trol performance. The initial load mass in the exper- 
iment was set at 4.5 kg. At this level, the closed-loop 
performance of both the speed controllers is nearly 
ideal. The step transients are consistent with the 
closed-loop pole locations and the tracking perfor- 
mance is good. The inertial mass of the system was 
abruptly increased at 10 minutes and again at 16 min- 
utes into each experiment. Each increase added a 4.5 
kg disk to the rotating mechanical load. 

The experimental results in Fig. 5 demonstrate that 
the adaptive controller quickly adapts to the changing 
inertia of the system, and that the tracking perfor- 
mance remains essentially constant throughout. The 
fixed controller fairs poorly in the face of load changes, 
as might be expected. The closed-loop response be- 
gins to exhibit a damped oscillatory behavior. 

Each step change in the load inertia causes a defi- 
nite disturbance in all three parameter estimates. In 
the adaptive controller, the estimates quickly converge 
on their new values after approximately two cycles of 
the step input of the system. In practice, the actual 
convergence time will vary depending on the excita- 
tion level of the system, the amplitude of the param- 
eter changes, and the LM-RLS settings for p and TA. 

Note that the time constant TA of the “X-filter” has 
an effect on the parameter convergence rate. From 
this perspective, an optimal setting for TA is equal to 
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Experimental Speed Control Performance Subjecl to Parameter Variation 

Mass Step 
9.0 kg + 13.5 kp 

Msrr step 
4.5 LI -+ 0.0 kg 

5 15 j 25 30 ’P 

Fig. 5. Results (see text). 

or slightly smaller than the time constant associated 
with the fastest pole in the load model. Additional 
consideration must be given to provide an adequate 
filter for the anticipated noise environment. 

VI. DISCUSSION 

The performance of the LM-RLS parameter esti- 
mation proved to be superior in a high noise envi- 
ronment. The motor-speed control system, for exam- 
ple, was subject to significant electrical noise. Noise 
sources included brush commutation and switching 
spikes. Prior to the LM-RLS experiments, an adaptive 
motor-speed controller was implemented using direct 
RLS estimation. Under nearly identical conditions, 
the RLS estimation proved to be erratic and unreli- 
able. The problem was traced back in part to the 
covariance matrix explosion described previously. It 
was hoped that a judicious selection of the dead-band 
width 6 and the forgetting factor p would yield satis- 
factory results. This was not the case. The LM-RLS 
method improves the situation dramatically because 
the regressor vector is composed of filtered measure- 
ments. Their noise content is reduced, and a much 
narrower dead-band 6 can be tolerated. 
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