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Detection and Diagnosis of HVAC Faultsvia
Electrical Load Monitoring

S.R. Shaw, Ph.D. L.K. Norford, Ph.D. D. Luo, Ph.D. S.B. Leeb, Ph.D.
Member ASHRAE  Student Member ASHRAE

Detection and diagnosis of faults (FDD) in HVAC equipment have typically relied on measure-
ments of variables available to a control system, including temperatures, flows, pressures, and
actuator control signals. Electrical power at the level of a fan, pump, or chiller has been gener-
ally ignored because power meters arerarely installed at individual loads. This paper presents
two techniques for using electrical power data for detecting and diagnosing a number of faults
in air-handling units. The results from the two techniques are compared and the situation for
which each is applicable is assessed.

One technique relies on gray-box correlations of electrical power with such exogenous vari-
ables as airflow or motor speed. This technique has been implemented with short-term average
electrical power measured by dedicated submeters. With somewhat reduced resolution, it has
also been implemented with a high-speed, centralized power meter that provides component-
specific power information via analysis of the step changes in power that occur when a given
device turns on or off. This technique was developed to detect and diagnose a limited number of
air handler faults and is shown to work well with data taken from a test building. A detailed
evaluation of the method is presented in the companion paper, which documents the results of a
series of semiblind tests.

The second technique relies on physical models of the el ectromechanical dynamics that occur
immediately after a motor is turned on. This technique has been demonstrated with submetered
data for a pump and for a fan. Tests showed that several faults could be successfully detected
from motor startup data alone. While the method relies solely on generally stable and accurate
voltage and current sensors, thereby avoiding problems with flow and temperature sensors used
in other fault detection methods, it requires electrical data taken directly at the motor, down-
stream of variable-speed drives, where current sensors would not be installed for control or
load-monitoring purposes.

INTRODUCTION

The performance of many HVAC systems is limited more by poor installation, commission-
ing and maintenance than by poor design (Tong 1989). Computer-based control systems have
the capability to collect and store sensor and control signals that could be analyzed to detect and
diagnose faults. A considerable amount of research work has been carried out to develop FDD
techniques for HVAC systems and, recently, to test these techniques in realistic laboratory set-
tings and in real buildings (Ahn et al. 2001; Chen and Braun 2001; Dexter and Benouarets 1996;
Dexter and Ngo 2001; Haves et al. 1996a; House et al. 2001; Hyvarinen 1996; Lee et al. 1996a,
1996b; Li et al. 1996; Peitsman and Bakker 1996; Salsbury 1996; Stylianou and Nikanpour
1996; Tsutsui and Kamimura 1996; Yoshida et al. 1996).

Steven R. Shaw is an assistant professor at Montana State University, Leslie K. Norford and Steven B. Leeb are asso-
ciate professors with the Massachusetts Institute of Technology, and Dong Luois a senior engineer with United Tech-
nologies Corporation.
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A fault is detected when the observed behavior of a system differs from the expected behavior
by some threshold. The expected behavior of the system is often expressed in a model, whether
physical, statistical or fuzzy. The number of measurements required to use a given model for
fault detection is of central importance, as there is a cost associated with installation and mainte-
nance of sensors that are not required by the control system.

A fault is diagnosed when it is detected and a cause is determined. Diagnosis is significantly
more difficult than detection, because measured effects must be attributed to a particular cause
to the exclusion of all other possibilities. The difficulty of diagnosis increases with the number
of possible causes, and careful validation in the context of the target application is required for
any proposed diagnostic technique.

Current approaches to HVAC FDD have been driven by the confidence researchers have in their
own modeling approach—its ease of implementation, robustness, and ability to generalize to many
different HVAC faults—and in the availability and accuracy of measured data. The approach in
this paper begins with the premise that electrical power measurements are useful in FDD, based on
the authors’ experience extracting device-level information from centralized power measurements.
The paper presents FDD techniques using submetered power data that, in some cases, may be
readily adapted for use with centralized measurements. Whether these techniques are economically
and technically useful needs to be explored in the field over the coming years.

There are four generic approaches to consider for use of electrical power data in HVAC FDD,
as shown in Table 1. Power signals can be obtained from meters attached to fans, pumps, chill-
ers, or other individual pieces of electrically powered HVAC equipment. Alternatively, power
data can be collected at a single point. Further, detection and diagnosis of faults can be based on
analysis of changes in steady-state electrical power, or analysis of the dynamic variation of
power during the typically very brief startup transient. For submetered power, steady-state is
defined as one-minute averages at times other than those encompassing a startup or shutdown
event or substantial power oscillation. In contrast, for centralized power measurements, steady-
state power is the difference in power before and after a turn-on or turn-off event. Techniques
presented in this paper cover three of the four approaches, as noted in Table 1. The detection and
diagnosis of faults from startup transients recorded centrally, the most powerful but difficult
method, has not been attempted to date.

Centralized load monitoring takes its name of Non-Intrusive Load Monitoring (NILM) from
its origins in load analysis in houses, where the normal revenue meter was replaced by a meter
capable of clustering step changes in real and reactive power and associating these clusters with
major household appliances (Hart 1992). Over the last decade, the early techniques have been
extended in two directions. First, enhanced detection of step changes in power have been shown
to screen out power spikes caused by switching electronics and to find power oscillations caused
by poorly tuned controllers (Norford and Mabey 1992, Hill 1995, Luo et al. 2002). Second, a
powerful detection approach has been developed to analyze the rapid changes in power that
occur when a motor, lamp, or computer is first turned on (Leeb 1993, Leeb et al. 1995, Norford
and Leeb 1996, Abler et al. 1998). The startup patterns are governed by the physics of the device
and are generally not masked by power electronics that reduce reactive power. In addition, anal-

Table 1. Optionsfor Detecting and Diagnosing HVAC Faults by Analyzing Electrical
Power Signals Explored in this Paper

Analysis of Changesin Analysis of Power Dynamics During
Location of Meters Steady-State Power Equipment Startup
Individual loads X X

Centralized X
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ysis of startup transients is useful in a busy electrical environment, due to the very brief amount
of time (typically fractions of a second) required to log a characteristic signal. Both approaches
to centralized load monitoring rely on a combined hardware/software platform that is consider-
ably more capable than the typical Watt meter and of comparable cost. This platform has been
refined to the extent that it consists solely of the necessary transducers fed into a personal com-
puter for analysis and communication via the internet.

This paper focuses on the use of electrical power signals for HVAC FDD and not on central-
ized load monitoring. One major motivation for this work has been an ASHRAE-sponsored
research project, 1020-RP, “Demonstration of Fault Detection and Diagnosis Methods in a Real
Building.” In this project, one electrical power FDD approach, using gray-box correlations of
steady-state changes in electrical power with flow or other variables, was tested on three vari-
able air volume (VAV) air-handling units (AHUs) in a heavily instrumented test building. A
second FDD approach (not required for 1020-RP) was also tested with data from the test build-
ing. This approach uses a physical model of the dynamics of a motor and driven load during a
startup transient. Parameters estimated solely from electrical current measurements are com-
pared with parameters estimated during periods of normal behavior to detect faults.

The HVAC system, diagrammed and described more fully in the companion paper, Norford
et al. (2002), includes variable-speed supply and return fans, constant supply-air and chilled
water temperature control, and a primary-secondary pumping system with constant-speed sec-
ondary pumps. The seven AHU faults included in these tests, listed in Table 2, are featured in
this paper. Table 2 notes whether the selected faults were abrupt or occurred slowly over time;
as implemented in the test building, abrupt faults were introduced as such and degradation faults
were introduced over one- to three-day periods. Electrical power FDD methods are no different
from others in their ability to find abrupt faults more easily than degradations.

Test results presented in this paper are limited to the faults introduced in the test building and
as such are demonstrations of the methods rather than comprehensive assessments of their effi-
cacy. A final report and the companion paper (Norford et al. 2000, 2002) summarize the results
of the blind tests conducted as part of 1020-RP. This paper, in effect, lays a foundation for the
summary paper.

While the presentation focuses on a small number of artificially introduced faults, the pre-
sented FDD methods can in principle be extended to cover additional AHU faults and faults in
other systems. The obvious prerequisite is that any fault to be detected by these methods must

Table2. List of Air-Handling Unit Faults Detected and Diagnosed
with Electrical Power Data

Fault Type

Air Mixing Section
Stuck-closed recirculation damper Abrupt
Leaking recirculation damper Degradation

Filter-Coil Section

Leaking cooling coil valve Degradation

Reduced coil capacity (water-side) Degradation
Fan

Drifting pressure sensor Degradation

Unstable supply fan controller Abrupt

Slipping supply fan belt Degradation

Note: Fault implementation is described in Norford et al. (2002).
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cause a change in electrical power. Further, the power change must be sufficiently large to cause
a noticeable deviation from expected behavior, which in turn must be defined on the basis of
gray-box power correlations using steady-state data or a physical model of a motor’s startup
transient. The gray-box power correlations require an understanding of the physics of the system
under investigation, to determine power correlations suitable for detecting a given fault. The
method therefore requires a considerable amount of expert knowledge to be made more gener-
ally applicable.

APPROACH

A. Detection and Diagnosis of HVAC Faults with Gray-Box Models and Subme-
tered Electrical Power Measurements Under Steady-Sate Conditions

The gray-box electrical power method for fault detection and diagnosis rests on the following
four steps:

1. A training phase, consisting of correlation of electrical power as measured under steady-state
conditions with load measurements (gray-box models)

2. Measurement of electrical power

3. Detection of faults by comparison of measured and predicted electrical power and by screen-
ing for rapid power oscillations

4. Diagnosis of faults by rule-based analysis of power deviations

The gray-box method requires that fan, pump, and chiller power be correlated with an indica-
tor of load for each electrical component. These correlations establish models for detecting
equipment faults. For equipment such as that installed in the test building, Tables 3 and 4 sum-
marize how these correlations depend on building thermal loads, as expressed by outside tem-
perature in each of four regions:

L. Tout < Thalance point

2. TbaJance point < Tout < Tsupplyair - ATsuppnyan
3. Tsupply air = ATsupply fan < Tout < Treturn air

4. Treturn air < Tout

The balance point temperature is the outside dry-bulb temperature at which the building
requires neither heating nor cooling. In commercial buildings, Thajance point accounts for a mini-
mum intake of outdoor air required to satisfy ASHRAE Standard 62. Above Tygance point there
is a net cooling load and the supply airflow will increase. In some cases, Tpgjance point Mmay
exceed Tgypply ajr» In Which case the two are simply exchanged in the temperature segments. The
supply air temperature is assumed to be constant, as was the case in the test building. In Table 4,
the coil capacity and slipping fan belt faults are best detected at high cooling loads but can be
detected at lower loads if sufficiently severe.

Corréations of Fan Power with Airflow

If electrical power measurements for HVAC equipment are used as the basis for an FDD
method, there must be some model of power under known load conditions. Studies have estab-
lished that whole-building fuel use correlates with outdoor temperature (Fels 1986, Ruch and
Claridge 1992). At the device level, fan power is of key importance in detecting many AHU
faults. Previous work (Lorenzetti and Norford 1992) showed that hourly average power mea-
surements for VAV supply and return fans correlate well with outdoor dry-bulb temperature. A
simple three-variable change-point model was found to work as well as or better than other
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Table 3. Variation of Outside and Supply Airflows and Pump, Chiller, and
Fan Powerswith T2

TemperatureRRegion Outside Supply Pump Chiller Fan
and Control Mode Airflow  Airflow Power Power Power
1 Heating Constant at Constant at Off Off Constant at
minimum  minimum minimum
value value value
2 Free cooling via air- Increasing Increasing On; constant Energized; minimal Increasing as a
side economizer with Ty with Tgy  power power to meet thermal polynomial function
loads in piping of flow or speed
3 Mechanical cooling Increasing Increasing Nearly constant Increasing with Ty,  Increasing as a
with 100% outside ~ with T with Toy  power if piping polynomial function
airflow is balanced of flow or speed
4 Mechanical cooling Constant at Increasing Nearly constant Increasing with Ty  Increasing as a
with minimum minimum  with Tg;  power if piping polynomial function
outside airflow value is balanced of flow or speed

4For a VAV system with variable-speed supply and return fans, constant supply air temperature, and a constant-speed
secondary chilled water pump.

Table4. Detectability of Faultswith Electrical Power Data

Stuck-Closed  Leaky L eaky Reduced Pressure Unstable Slipping
TemperatureRecirculation Recirculation Cooling Cooling Sensor  Pressure Supply Fan
Region Damper Damper  Cail Valve Coil Capacity Drift Controller Belt

1 Yes No No No Yes Yes Maybe
2 No No Yes No Yes Yes Maybe
3 No Yes No Maybe Yes Yes Maybe
4 Yes No No Yes Yes Yes Yes

models fitted to these data. Outdoor dry-bulb temperature is a reasonable predictor because the
sensible fraction of envelope loads (latent heat transfer excluded) influences the total amount of
air delivered to occupied spaces. However, this predictor does not account for variations in air-
flow, and hence fan power, due to changes in internal or solar loads. Correlations with measured
airflow provide a more precise estimate of fan power, as established in an earlier study of appli-
cations of electrical load monitoring to fault detection in ventilation systems (Norford and Little
1993). Such correlations have also been used to estimate fan energy consumption before and
after variable-speed drive retrofits (Englander and Norford 1992).

Figure 1 shows a third-order polynomial correlation between fan power and airflow for a
VAYV supply fan with a variable-speed drive. The use of a third-order polynomial correlation is
based on the fan laws, which show that power varies as a cubic function of speed for a variable-
speed centrifugal fan. A similar correlation has also provided a good fit in practice for data col-
lected from VAV fans equipped with inlet vanes. Ninety percent confidence intervals were
established from uncertainties in the polynomial coefficients and a t-statistic. The confidence
intervals express the confidence that a single new measurement point will lie between the upper
and lower intervals, if the measurement is subject to the same conditions as occurred during the
training phase. Increasing the confidence interval would make the method less sensitive to faults
and less likely to generate false alarms. In the test building, the use of 90% confidence intervals
did not generate false alarms, but in practice the confidence interval could be enlarged, reducing
the number of both detected faults and false alarms. To tighten the correlation and improve the
sensitivity of the method, only training data with duct static pressure within 25 Pa (0.1 in. of
water) of the 300 Pa (1.2 in. of water) set point were accepted. This tolerance on duct static
pressure was arbitrarily selected after the data were examined by eye and was intended to elimi-
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AHU-A SUPPLY FAN POWER VS. FLOW RATE, UNDER NORMAL OPERATION
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Figurel. Correlation of Fan Power with Airflow During a Training Period
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Figure2. Fan Power Data Outside 90% Confidence Interval Established with Normal
Operating Data, Due to Offset of 150 Pa (0.2 in. of water) in Supply Duct Pressure Sensor

nate data points collected during system transients when the supply fan speed was changing to
bring the duct static pressure back to the set point.

This method has the desirable property that the threshold for fault detection is determined
solely by the selection of a desired confidence interval and the distribution of data during the
training phase. For example, unevenly distributed data sets will cause the confidence intervals to
expand in airflow regions where data are scarce (Norford and Little 1993). The threshold for fault
detection at any flow is therefore not arbitrary but is statistically defensible, under the major
assumption that data collected during the training phase represent normal operation of the AHU.

Correlations of power with flow can be used to detect faults involving duct pressure, includ-
ing pressure sensor faults, stuck dampers, and fouled filters. Figure 2 shows data well outside
the confidence intervals, obtained in a fault condition when air was bled from the static pressure
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AHU-A SUPPLY FAN POWER VS. FAN MOTOR SPEED CONTROL SIGNAL WHEN
FAN BELT WAS VERY LOOSE
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Figure 3. Reduction of Fan Power at Very High Speed-Control Signals,
Dueto Slipping Fan Belt

sensor’s pneumatic line to simulate an offset in the static pressure sensor. The offset was intro-
duced in three stages of 50, 100, and 150 Pa (0.2, 0.4, and 0.6 in. of water), with the most
extreme case illustrated in Figure 2.

The correlation shown in Figures 1 and 2 can be used to detect a pressure sensor offset, either
positive or negative, at any time of year. The same correlation can also be used to detect the
stuck-closed recirculation-damper fault, but only under conditions identified in Table 4, where
the damper would normally be wide open or nearly so. Under such conditions, a stuck-closed
damper will increase the pressure drop in the air handler and therefore increase fan power for a
given airflow.

Correlations of Fan Power with Fan-M otor Speed-Control Signal

Some faults can be detected when power is correlated with motor speed control signal,
rather than airflow. For example, reduced tension in a fan belt can cause the belt to slip and
transmit less mechanical energy from the motor to the fan at high load. If there is relatively
little dissipation of energy in the loose belt, then, for a given motor speed, the motor draws
less power and the airflow is lower. Fan motor power is not expected to change significantly
for a given airflow. However, the power drawn by the motor for a given rotational speed will
be less than normal, because the fan is not spinning as fast as it normally would and therefore
transfers less power to the air. This fault can therefore be detected by a deviation from the
expected relationship between fan power and the motor speed control signal, as shown in Fig-
ure 3. It is important to note that the power-speed correlation is immune to changes in duct
pressures that can be detected with the power-flow correlation, as was established in Norford
and Little (1993). As a result, the method for detecting the slipping fan belt is also sufficient
to distinguish it from the faults detected with the power-flow correlation. However, a power-
speed correlation will detect such additional faults as a loose pulley or a transducer failure,
making fault diagnosis problematic. Figure 4 shows a transducer failure implemented in the
test building.
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AHU-1 SUPPLY FAN POWER VS. FAN MOTOR SPEED CONTROL SIGNAL, UNDER
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Figure 4. Reduction of Fan Power at High Values of Speed-Control Signal,

as Result of Controller Failure

The top figure shows the fit to data from a single day of normal operation. The lower figure shows data
during a three-hour period when the fan speed was fixed at a single value, over a range of speed-control

inputs.

Correation of Chilled Water Pump Power with Cooling Coil Valve Position

Changes in pump power can be used to detect blockages in piping, in the same manner as
using fan power to detect stuck dampers. In many buildings with a single chilled water loop, the
chilled water pump is run at constant speed and flow to the cooling coil is controlled with a
three-way valve. The pump will ride the pump curve as flow resistance changes and pump
power will change accordingly. Flow resistance can change due to normal operation (operation
of the three-way valve to control flow to the coil, which has a larger flow resistance than the by-
pass piping unless the latter includes a balancing valve) or due to a fault (flow obstruction). With
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a two-way valve in lieu of a three-way valve, pump power will vary more strongly with valve
position. While changes in pump power are an attractive means of detecting flow-restriction
faults, chilled water flow is rarely measured and therefore is not a desirable correlating variable.
The one available control signal, which adjusts the position of the cooling coil valve (either two-
way or three-way) was used.

The test building has a primary-secondary piping system, with a variable-speed primary
pump and constant-speed secondary pumps for the two test air handlers. Initially, the cooling
loops used two-way valves to control flow to the air-handler cooling coils, but these valves
were replaced with pairs of two-way valves that are controlled to perform as three-way
valves. Further, flow balancing valves were installed to equalize the pressure drop across the
coil and the bypass piping. The pump power under normal operation is expected to be nearly
independent of valve position. If there is a flow restriction in a cooling coil when balancing
valves are installed and used properly, it is expected that there will be less flow through the
coil; the discharge air temperature will tend to rise above its set point; the valve controller will
open the valve to send more flow through the coil and less to the bypass loop; the overall flow
resistance will increase and the pump will ride up the pump curve to a lower total flow and
reduced pump power.

Correlating pump power with valve control signal is therefore sufficient to detect flow block-
ages under cooling loads sufficiently high that a substantial fraction of the total flow is directed
through the coil. However, it is not likely to detect coil fouling, where a very thin coating of cal-
cium carbonate can drastically reduce heat transfer across the coil but can have a small impact
on flow resistance. The change in pump power as correlated with valve position is illustrated in
Figure 5. The training period did not include system loads large enough to cause the cooling coil
valve to open more than 70%. Pump power was assumed to remain nearly constant under higher
flows through the cooling coil.

Chiller power can provide another indication of faults in chilled water piping. For low to
moderate cooling loads, the valve controller will compensate for a flow restriction in the cooling
coil by directing more water to the coil and less to the bypass piping. Under high cooling loads,
the valve controller will saturate, flow through the coil will be less than needed to maintain the
discharge-air temperature, the building will be undercooled, and chiller power will therefore
drop. Monitoring to determine a reduction in chiller power at high load also offers the advantage
of detecting not only flow-restriction faults but also reduced thermal conductivity due to depos-
its on the water side of the cooling coil.

Whole-building energy studies have correlated building electricity consumption with outside
temperature as a means of analyzing the building’s energy requirements for cooling, typically
with linear change-point models (Ruch and Claridge 1992, Ruch et al. 1993). More detailed
studies of chiller power have established that chiller power is primarily a function of load on the
chiller and the temperature difference between leaving condenser water and chilled water flows,
and that a biquadratic functional form is a reasonable model (Braun et al. 1987). For an air-
cooled chiller as is used in the test building, outside air temperature directly affects condenser
performance.

In this study, an HVACSIM+ simulation of a building modeled for a controls simulation test
bed (Haves et al. 1996b, 1998) was used to correlate cooling load, as measured by heat transfer
across the cooling coil, against outdoor temperature. It was possible to detect a fouled coil. This
method was not applied in the test building to detect the coil capacity fault because the chiller is
a two-stage reciprocating unit and power levels are discrete, rather than continuously varying.
Cycling periods between states were not regular and not easily discerned at high loads. At low
cooling loads, however, chiller cycling was both regular and revealing of certain faults, as will
be discussed.
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CHILLED WATER PUMP POWER VS. COOLING COIL VALVE POSITION
CONTROL SIGNAL UNDER NORMAL CONDITIONS
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Figure5. Correlation of Pump Power with Valve Position, for Normal Conditionsand for

Reduction in Cooling Coil Capacity Dueto Obstruction in Chilled Water Piping
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Analysis of Reciprocating Chiller Cycling Periods

Cycling periods for the two-stage reciprocating chiller, between shutdown and the low-power
state, can be analyzed to detect such faults as a leaky recirculation damper and a leaky cooling
coil valve. Both of these faults can be detected only at low cooling loads, when the recirculation
damper would normally be shut by the air-side economizer and when the cooling coil valve
would be normally closed. Under low loads, a reciprocating chiller will cycle on for a short
period and then shut down for a longer period, controlled to maintain the chilled water tempera-
ture returning to the chiller within a specified band. For the leaky recirculation damper, the
chiller cycling period can be analyzed in a narrow band of outside temperatures, just above the
point where the cooling coil valve starts to open and there is a cooling load across the coil. (This
corresponds to the boundary between outdoor temperature regions 2 and 3, as defined above.)
Limiting the analysis window to a narrow band guards against labeling as a fault those changes
in cycling period that are due to a normal increase in cooling load with outside temperature.

This approach works well when outdoor temperatures exceed the supply air temperature set
point by a small fraction of the supply-return temperature difference (20% has been used as a
cutoff), and, importantly, remain in this region long enough to detect a stable chiller cycling pat-
tern. When the outdoor temperature rises and the building cooling load increases, as is the case
on many days, chiller-cycling period is not a good fault detection metric.

The leaky cooling coil valve will increase the load on the chiller for a given valve position. It
is difficult to correlate changes in reciprocating chiller cycling periods with valve position, due
to the coarse nature of the former. An acceptable alternative is to analyze changes in chiller-
cycling period when the valve control signal is zero and the valve is nominally shut. This
approach is relatively robust, with less chance for false alarms than if chiller-cycling data were
considered when the valve is partially open. It also distinguishes the symptoms of this fault from
the leaky recirculation damper.

Figure 6 shows a chiller-cycling period of 20 to 25 min. when the cooling coil valve was
closed, much shorter than the normal cycling period of 38 to 39 min. observed earlier the same
day and indicative of a leaky valve. The cycling interval dropped to 14 to 15 min. when the cool-
ing coil valve was about 20% open later in the day, a period excluded from analysis.

Analysis of Fan Power Oscillations

Norford and Leeb (1996) showed that centralized power monitoring could detect chiller-
power oscillations due to an unstable chilled water temperature controller. Screening for rapid
power oscillations forms the basis for detecting faults caused by underdamped or unstable local-
loop controllers. Power oscillations are quantified by the standard deviation of the data sampled
in a sliding window. In the test building, this approach has been used to detect an unstable
pressure-control-loop fault in the test building, as shown in Figure 7.

B. Detection and Diagnosis of HVAC Faultswith Gray-Box M odésand
Centralized Electrical Power Measurements Under Steady-State Conditions

The steady-state, gray-box FDD method was also evaluated when the electrical power data
came from centrally located power meters rather than submeters dedicated to individual compo-
nents. Two centralized meters, known as Non-Intrusive Load Monitors (NILMs), were installed
in the test building, one on the motor control center serving five fans and ten pumps, and one at
the whole-building electrical service entry. A detailed development of the signal-processing
algorithms needed to detect steady-state changes in HVAC loads is presented in Luo et al.
(2002). The use of the centralized meters to detect classes of faults, including six of the seven
introduced in the test-building air handlers, is briefly described.
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Figure 6. Detection of Leaky Cooling Coil Valve by Analysis of Cycling Period
of Reciprocating Chiller

The power-flow correlation for the fan that was readily made with submetered power data
could not be generated with electrical power measurements from the NILM installed on the
motor control center in the test building. The NILM yielded one data point per day, when the fan
was turned off in the evening. The startup point was not valuable because the fan motor has a
variable-speed drive that has a slow and complex startup pattern that is very different from an
abrupt change most easily seen by the change-of-mean detection algorithm applied to data col-
lected by the NILM. Further, there was little variation in flow at the time of fan shutdown and no
opportunity to generate a polynomial relationship between power and flow. The limited range of
data also made it impossible to correlate fan power with the motor-speed-control signal, a corre-
lation established with submetered data and used to detect and diagnose the slipping fan belt.

The fact that airflow, fan speed and fan power showed little variation at shutdown from day to
day, due to nearly constant (and very light) building loads in late evening, made it possible to
use deviation of fan power from the normal value as a basis for fault detection. For example,
when the fan belt in the test building slipped severely, the fan power was about 750 W with a
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Figure 7. Detection of Unstable Pressure Controller via
Analysis of Standard Deviation of Supply Fan Electrical Power

100% motor speed control signal at shutdown, compared to a normal speed of about 20% and a
normal power of about 500 W.

Supply fan electrical power of 600 W at shutdown, 100 W above the typical value, was taken
as a threshold above which a fault was flagged. This value, selected after examination of the
data, proved acceptable in that it did not generate false alarms in the test building. Among
the limited number of faults introduced into the test building, the three possible causes were the
stuck-closed recirculation damper, an offset in the supply duct static pressure sensor, and
the slipping fan belt. Power data alone were sufficient to detect these faults but not to diagnose
them. Motor speed data would separate the slipping fan belt from the two faults that are driven
by pressure changes.

Figure 8 shows fan power as estimated by the NILM and the supply fan submeter. Power is
plotted against airflow to show the limited range of airflows at shutdown, compared with the
operating range shown earlier in Figures 1 and 2. The NILM estimate of power is systematically
lower than the submeter, a discrepancy that stems from the difference between one-minute
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Figure 8. Detection of Pressure Sensor Offset (Top) and Stuck Closed Recirculation
Damper (Bottom), via Analysis of Fan Power at Time of Shutdown, as Recorded by
Centralized Power Meter with Fault Detection Threshold of 600 W

power averages as used in the submeter and the NILM’s calculation of power on the basis of
short-term data immediately before and after the shutdown event is detected.

There are two alternative approaches that avoid establishing a somewhat arbitrary power
threshold for detecting faults at the time the fan is shutdown. First, fan power as a function of
flow and static pressure set point can be modeled from manufacturer’s data (Englander and Nor-
ford 1992). The model can be tuned with one or more data points. However, such a model does
not provide the statistical confidence intervals that come from a polynomial fit of power to flow
and a threshold for fault detection would still need to be assigned. Second, fan power data at
times other than shutdown can be used to generate the polynomial relation between fan power
and airflow or motor speed. Power data can be obtained with a portable power meter used during
a commissioning period, or by shutting down the fan several times during a training period,
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when airflows or speeds are at values that span the expected range of operations. As with sub-
metered power data, confidence intervals establish a range over which data are considered to be
normal and no arbitrary threshold is required. Power at shutdown can then be compared with the
expected power for the flow measured at shutdown. This approach was implemented and the
power estimate that came from fitting power to airflow during the training period was found to
closely predict subsequent power measurements made with submeters.

Submetered power for the secondary chilled water pump was adequate to detect the coil-
capacity fault. However, the pump power was so small that it was difficult to reliably detect
from the NILM at the motor control center, without lowering the detection threshold to the point
where small, unknown, and uninteresting loads were flagged. Further, successful detection of
this fault requires accurate analysis of small changes in the small load. Therefore, the NILM was
not used to detect pump power.

Luo et al. (2002) describe an effective means for using the meter at the building service entry
to pinpoint chiller cycling, even in a very noisy electrical environment. This method boosts sen-
sitivity and reduces false alarms by sampling the power signal at multiple rates, detecting on-
and off-events for each data set, and combining the results to reconstruct the sequence of on- and
off-events for a given component.

This method has been used to successfully detect both the leaky cooling coil valve and the
leaky recirculation damper in the test building. As noted in the discussion of FDD with subme-
ters, the two faults were distinguished by insisting that the cooling coil valve be closed as a pre-
requisite for diagnosing the leaky valve and by focusing on a narrow range of outdoor
temperatures when the recirculation damper should normally be tightly shut and chiller loads are
low. Figure 9 shows the use of the NILM at the building service entry to detect the leaky recircu-
lation damper. The middle plot, based on submetered power data, shows a chiller cycling inter-
val of about 15 min. over a 10-h period when the outdoor dry-bulb temperature was sufficiently
low. The lower plot shows the output of the NILM. Positive changes in power are associated
with the chiller’s going from an off-condition to the lower of its two stages, and negative power
changes signify shutdown events. The NILM detected all of the transitions, which is what was
needed to detect the leaky recirculation damper, although the power the NILM associated with
these transitions differs from the submetered value of 5 kW. The normal cycling period was
observed to be well above the 30-min. threshold established for this fault.

Power oscillations were detected with the NILM attached to the motor control center, indica-
tive of the unstable-supply-duct-pressure-controller fault introduced in the test building. In gen-
eral, fault diagnosis from a central point is not possible. While it may be possible to assign the
magnitude of the power oscillations to classes of equipment (fans, pumps, chillers), it is not pos-
sible to pinpoint a particular fan or pump if there are multiple units of comparable size.

C. Detection and Diagnosis of HVYAC Faultswith Dynamic M odels and
Submetered Electrical Power M easurements

The chilled water pump and the supply fan associated with AHU-B in the test building were
considered for detection and potential diagnosis of faults using a dynamic-modeling approach.
The method used involves fitting parameters to a physical model of the startup behavior of the
motor and its attached load using only current measurements available at the stator of the motor.
Changes in these physical parameters provide useful HVAC diagnostic information such as flow
obstructions.

Pump Diagnostics
Deposits in the pipes of a heater exchanger are difficult to detect noninvasively and can con-
tribute to decreased heating and cooling efficiency. In principle, it might be possible to detect
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Figure9. Detection of L eaky Recirculation Damper via Analysis of Reciprocating Chiller

Cycling Intervalswith Outdoor Temperature from 13to 15°C (55 to 59°F)

The second plot shows submetered chiller power and the lower plot reveals the power changes (positive
for turn-on, negative for turn-off) detected by the NILM.
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Figure 10. Simplified Diagram of Cooling Loop for AHU-B in Test Building
A single variable-speed primary pump and a fixed-speed secondary pump were used for each air handler.
An obstructed cooling coil was simulated with a throttling valve. Current to the secondary pump
CHWP-B was measured.

deposits by estimating flow resistance for the fluid in the pipes. Electrical transients were
recorded for a chilled water pump in the HVAC system for both normal and an obstructed-flow
condition. Detection of the obstructed flow is demonstrated via parameter estimation using the
collected data.

A simplified diagram of the chilled water circulation system is shown in Figure 10. The
chilled water system consists of a single, variable-speed primary pump and one fixed-speed sec-
ondary pump for each air handler. For the test, the three-way cooling coil valve was positioned
so that all liquid flowed through the heat exchanger. The primary chilled water pump, equipped
with a variable-frequency drive, was operated to control pressure as indicated. The response of
this control loop was presumed to be slow enough to ignore in comparison to the startup tran-
sients of the secondary pump, CHWP-B. Further, the impact of the primary loop on the second-
ary pump startup transient could be accurately modeled by including the fixed pressure of the
primary loop and not the complete primary loop flow path. To simulate the obstructed flow
fault, the building operators installed a valve in series with the heat exchanger, as indicated. In
the no-fault condition, with both primary and secondary pumps running, flow in the loop was
approximately 1.7 L/s (27 gpm). With the fault in place, flow was reduced to 0.7 L/s (11 gpm),
which is approximately 40% of nominal flow.

The experimental procedure was to introduce the simulated fault, turn CHWP-B on and off a
few times, remove the fault, and again cycle CHWP-B. The resulting startup transients were
recorded and then analyzed off-line.

Transducers were installed to measure current on two of the phases feeding the balanced,
three-phase 480 V pump motor. Data were sampled with 12-bit resolution at 4000 Hz. A typical
transient is shown in Figure 11. Inspection of the data revealed the presence of an unanticipated
fault, consisting of an occasional line-cycle of zero current in the transient. This phenomenon
was attributed to the contactor. Because contactor failure was not part of the model, transients
with contactor problems were discarded. The remaining transients were labeled A, B, C, and D
and will be referred to as such when results are presented. Transients A and B were collected
under fault conditions.

A simple electrical model for the cooling system is an induction machine connected to an
inertia with damping. In addition to the six parameters implied by this simplistic model, it is
necessary to estimate the electrical angle when the motor was turned on and the initial speed of
the motor. Extracting eight parameters from a simple transient as shown in Figure 11 is difficult.

It was assumed that the fault lay in the mechanical system (i.e., that the motor performance
was the same when comparing two transients). A “joint,” two-transient model was formed
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Figure 11. Typical Electrical Transient for CHWP-B Motor
The transient is the fault transient labeled “A” in Table 5.

where identical motor parameters were used for both transients, while the mechanical parame-
ters were allowed to differ for each transient. Mathematically, the model consists of induction
motor equations in what is known as dg space:

Ay

i }"ds
dt qu
}”d

Vys rsiqs + w}"ds
Oy Folge— (okqs
= - Q)
0 Fg+(@=-0)k;,
0 rridr_(w_mr)x‘qr

where o is the electrical frequency, o, is the rotor frequency, and the As are the flux linkages

(Krause 1986). The dq transform

is a change of coordinates to a rotating frame, often applied to

variables in electric machines to simplify analysis. The flux linkages are related to the currents by
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These electrical dynamics are
transient:
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influenced by a set of mechanical interactions, one for each
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where the torque of electrical origin for the subscripted system is given by
T = )‘qridr_)‘driqr “)

The term f; (B,) is a damping parameter and K; (K5) is a parameter inversely proportional to
the rotational inertia of the motor and pump. The output equations bring the simulation variables
to the measured currents in the lab frame of reference. For each transient,

i = iggcos[w(0)t+¢]-iggsin[w(0)t+¢] &)

where ¢ is a parameter representing the electrical turn-on phase for each transient. The complete
parameter vector of each joint model is then

w = [rrrsl-ml-|K151@(0)1¢1K2ﬁ2m(0)2¢2]l (6)

This parameter vector is then optimized to fit both transients in a given data set, as listed in Table
5. The result is that different mechanical parameters are obtained for each transient, while maintain-
ing common electrical parameters. This model structure encapsulates the assumption that the differ-
ence between the two transients lies in the mechanical system. Parameter identification with
different combinations of transients provides a useful crosscheck of the consistency of the estimates.

The model fit the data well, as shown in Figure 12. The residuals were small, but not struc-
tureless, as revealed by such typical residual analysis tools as the zero-crossing test and the
Kolmogorov-Smirnov test (Johansson 1993). The model is simple and does not include compli-
cated modeling of the interaction between water and pump. The residuals indicate that a more
complicated model might be feasible with the data available. On the other hand, a more compli-
cated model might cause identification problems with different data sets.

Parameters for the six data sets are shown in Tables 6 and 7. The data sets are separated by
type, as given in Table 5. The parameters in Tables 6 and 7 agree well. In particular, the individ-
ual transients produce remarkably consistent estimates independent of the transients that they
are paired with when fitting a joint model.

It is not necessarily important that the residuals are not structureless. The key issue for diag-
nostic purposes is the robustness of the parameters under perturbations of the measurements
(i.e., whether parameter values are interpreted as faulty or not depends on the disturbances). This
issue can be addressed by making parameter distribution estimates using synthetic data sets.
Synthetic data set estimates of the distributions of the mechanical parameters, under fault and
no-fault conditions with data set P, appear in Figure 13, which strongly suggests that detection
of the fault would be successful under the presumed disturbance.

Table5. Data Set Organization for Pump Tests

Data Set Transient 1 Transient 2 Type
Py A C Fault/No-fault
Py A D Fault/No-fault
P, B C Fault/No-fault
Ps A D Fault/No-fault
Py A B Fault/Fault
Ps C D No-fault/No-fault
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Figure 12. Comparison of Model to Experimental Data for Data Set Py

Data with the reduced-flow fault are shown in the upper figure, while fault-free data are in the lower figure.
The quality of fit is typical of the other data sets. While the fault-free and fault data appear visually similar,
the differences are sufficient to produce significantly different values for the mechanical parameters.

Table 6. Electrical Parameter Estimates by Data Set for Pump Tests

Transient Electrical Parameters
Data Set 1 2 re rs Lm L,
Py A C 1.548e + 01 1.424e + 01 7.266e — 01 3.046¢e - 02
P A D 1.487¢ + 01 1.418e + 01 7.050e - 01 3.096¢e - 02
P, B C 1.529¢ + 01 1.421e + 01 7.205e — 01 3.061e - 02
Ps A D 1.511e + 01 1.418e + 01 7.132e - 01 3.077e - 02
Py A B 1.545e + 01 1.380e + 01 7.324e - 01 3.072e - 02
Ps C D 1.499¢ + 01 1.462¢ + 01 7.048¢e — 01 3.046e — 02
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Table7. Mechanical Parameter Estimates by Data Set for Pump Tests

Transient Mechanical Parameters
Data Set 1 2 Kl ﬁl K2 ﬁz
Py A C 1.435e + 02 1.544e - 02 1.531e + 02 1.830e — 02
Py A D 1.415e + 02 1.498e — 02 1.516e + 02 1.771e - 02
P, B C 1.427e + 02 1.515e-02 1.531e + 02 1.828e — 02
P53 A D 1.422e + 02 1.534e-02 1.524e + 02 1.783e — 02
Py A B 1.415e + 02 1.566e — 02 1.454e + 02 1.540e — 02
Ps C D 1.496¢e + 02 1.803e - 02 1.487e + 02 1.763e — 02




Downloaded by [] at 07:55 19 July 2016

34 HVAC&R RESEARCH

Fan Diagnostics

To investigate diagnostic possibilities in ventilation systems, data were collected from one of
the test air-handling units. A diagram of the air-handling unit appears in Figure 14. Transients
from the motor connected to supply fan B were measured, and two kinds of faults were consid-
ered. Unlike the pump situation, two functioning current transducers were available for mea-
surement. For the first diagnostic, the outdoor air damper (indicated on the lower right of Figure
14) was opened to create a gross change in the flow characteristics of the system. The second
diagnostic concern in the air-handling unit was the effect of a slipping fan belt, introduced in the
test building by moving the motor to loosen the belt.

Developing an identification model of a complicated situation like Figure 14 is a challenging
task. As a first assumption, controls (e.g., for the return fan) were assumed to operate on a time
scale much slower than the induction motor startup transient. Also, other aspects of the system
(e.g., state of doors and windows in rooms served by the air-handling unit) were assumed to
remain constant during the test. The joint modeling technique used in the pump diagnostics was
also used (i.e., the induction motor was assumed to be a constant for purposes of comparing two
situations). The mechanical situation was modeled as in the pump scenario, i.e.,

—n; = 3K (t,-B,0,)
(7N
S0, = 3K, (1, - B,0,)

Unlike the pump diagnostics, two phases of current measurements were available for fan tran-
sients. These measurements were transformed to synchronously rotating dq space (Krause 1986)
for identification.

Parameter estimates for the fan tests are given in Tables 8 and 9. As with the pump tests, tran-
sients were analyzed in pairs to detect changes in mechanical parameters associated with the
presence of faults. Startup transient A refers to the no-fault situation, B corresponds to the open
outdoor air damper (simulated by opening the mixing box door), C is the slipping belt, and D is
both slipping belt and open door. The electrical parameters of Table 8 should be essentially the

RETURN FAN B

. f
@ e@g@» ! |] EXHAUST

t4t4

SUPPLY FAN B

@2@’@ D }_L‘ OUTSIDE

Figure 14. Schematic Diagram of AHU-B

Arrows indicate direction of airflow. Dampers on the right allow building air to be recirculated or mixed to
varying degrees with outside air. The supply fan was used in the tests.
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same for all combinations of data sets, because the same motor was used throughout. There is
quite close agreement for parameters r'gand L| and not such good agreement for the magnetizing
inductance L, and rotor resistance r,. It is possible that the rotor resistance r, might vary due to
thermal effects, but the variation seen in the magnetizing inductance L, is extreme. It seems
likely that r, and L, are being influenced by the changes introduced in the mechanical part of
the system. The most suspect combination in Table 8 is the first row.

The mechanical parameters for the six combinations of data sets are given in Table 9. In this
table, parameters with subscript i correspond to the ith transient column. For example, 3, in row
three corresponds to an estimate for data set D (open door, loose belt) in conjunction with data
set A (no-fault). Because the transients appear in different combinations in Table 9, a cross-
validation check of sorts can be performed. Mechanical parameters corresponding to an individ-
ual transient (A, B, C or D) should be roughly the same. Figure 15 aids in this comparison by
plotting the parameters corresponding to different mechanical situations. Note that the “no-
fault” points in Figure 15 are quite distinct from the “fault” points. Also, the outlier in Figure 15
corresponds to the suspect row F( of Tables 8 and 9.

The parameters in Figure 15 and Table 9 make good physical sense. The situations where the
fan belt is slipping show the lowest friction coefficient. As shown in Figure 14, the slipping fan
belt situation is relatively close to the slipping fan belt and open door scenario. If the motor is
not coupled to the fan, the duct configuration is irrelevant. Physical interpretation of K in Figure
15 is more involved. Because K is inversely proportional to the rotational inertia of the motor-
fan system, larger values of K mean less inertia. The open door scenario has the most coupled
inertia, followed by both slipping fan belt cases, and the no-fault situation has the least inertia.
Because the slipping fan belt essentially uncouples the motor (at least for the startup transient),
the motor should see only the inertia of the rotor and pulley. This hypothesis agrees well with

0.16 T T T T T T T
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0.04 - slipping belt * | |
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Figure 15. Scatter Plot Showing Parametersfor Each Data Set When Estimated
in Conjunction with Other Data Sets

The nine points in the lower left corner are fault points. Note that the rightmost point corresponds to the
combination in the first row of Tables 8 and 9, which is suspect.
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Table 8. Electrical Parameter Estimatesfor Fan Tests

Transient Electrical Parameters
Data Set 1 2 re ry Lm L
Fo A B 2.35¢ - 01 8.07e - 01 5.84e - 02 4.62e - 03
Fy A C 3.75¢ - 01 8.15¢e - 01 9.72¢ - 02 5.13¢-03
F A D 3.99¢ - 01 7.95¢ - 01 9.14e - 02 4.99¢ — 03
Fs B D 2.89¢ - 01 7.98e - 01 1.17e - 01 4.97e - 03
Fy4 C B 3.02e - 01 8.06e — 01 9.79% - 02 4.58¢ - 03
Fs C D 3.26e - 01 8.03¢e - 01 1.52e - 01 4.78e - 03
Table9. Mechanical Parameter Estimatesfor Fan Tests
Transient M echanical Parameters
Data Set 1 2 Ky B1 K, B
Fo A B 3.94¢ + 02 8.72¢ — 02 7.51e+01 7.16e — 02
Fy A C 2.46e + 02 1.41e - 01 1.37¢ + 02 3.40e - 02
F, A D 1.92e + 02 1.27¢e - 01 1.28¢ + 02 2.93e - 02
Fs B D 5.25¢ + 02 7.38¢ - 02 1.62e + 02 3.73e - 02
Fy4 C B 1.53e + 02 6.26e — 02 4.89¢ + 01 6.76e — 02
Fs C D 1.43e + 02 5.46e — 02 1.43e + 02 3.67e - 02

the close inertia values obtained for both slipping belt situations. In the no-fault scenario, the
inertia values are lower than in the uncoupled case. This makes sense because the no-fault case
is the only case where the return fan is supplying a force that tends to accelerate the rotor. The
back pressure should not translate exactly into a change in inertia, but its gross effect may, par-
ticularly in the absence of a more complex model. When the outdoor air damper is open, the
coupling of the supply fan to the return fan is greatly lessened, and the effective inertia includes
the air column coupled to the fan.

The fit of the model to the observations was fairly good (see Figure 16). Note that these
graphs show data that have been dg transformed (Krause 1986). Other mechanical models were
attempted, including adding a yo? term to Equation (5). These models did not offer much
improvement in the fit, and in some cases it was clear that the data would not support a more
complicated model.

CONCLUSION

Two methods have been developed for using electrical power measurements to detect a num-
ber of HVAC faults. The first, gray-box, method correlates steady-state power with such exoge-
nous variables as flow, motor speed, or actuator control signal. Data that fall outside a tolerance
band around a polynomial correlation indicate a fault. Faults can be diagnosed in limited cases
where there are no other likely faults with the same power signature. The first method also
detects and diagnoses cooling load faults via analysis of the cycling time of a reciprocating com-
pressor. The second method fits high-speed power measurements taken during motor startup
transients to a physical model that includes both electrical and mechanical parameters. Changes
in the mechanical parameters indicate a fault. Both methods were demonstrated with data taken
at a test building, where a modest number of artificial faults were introduced in the air handlers.

The gray-box FDD method was implemented with data from submeters and also, to a lesser
extent, with data from centralized, high-speed electrical load monitors. Fault detection with this
method has been limited to a relatively small range of possible faults in an air handler. Some
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Figure16. Fit of Joint Model to Experimental Data Sets
(a) Tight belt and 100% recirculation and (b) Tight belt and open outdoor air damper

forms of power correlations show more scatter than others and are less useful. For example, a
correlation of fan power with flow has proved to be helpful in detecting changes in flow resis-
tance, but it is more difficult to tightly correlate chiller power with outside temperature as a
means of detecting a fault in an outdoor air temperature sensor. The strength of the correlation
will have a strong impact on the extent to which the method can be extended to detect and diag-
nose a larger set of faults.

Detection and especially diagnosis capabilities were reduced when using a centralized, high-
speed power meter. The centralized meter unavoidably has less resolution than dedicated sub-
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meters, especially for relatively small pieces of equipment. Further, establishing the power cor-
relations proved to be difficult. The central meter only collects data at equipment startup and
shutdown. At the test building used in this study, startup signals for AHU fans were masked by
the very slow control loop within the variable-speed drives. The secondary chilled water pump
ran continuously, producing no power transients. Further, airflow, fan speed, and fan power at
shutdown showed little deviation from day to day, due to similar system loads in late evening
when the air handlers were turned off. Therefore, the central meter was used only to compare
estimated fan power against a value considered to be normal, on the basis of shutdown measure-
ments over a training period. Using only the power measurement made for an efficient means of
fault detection but diagnosing the cause of the power deviation was not possible. For example, a
deviation in fan power at the normal end-of-day shutdown could be due to a stuck damper or
pressure sensor error. An alternative approach, now under investigation, requires that the fans be
shut down during the day under different loads. With power data from the central meter and cor-
responding flow or speed data, power correlations can be established in the same manner as was
done with submetered data.

While the use of electricity data for FDD was initially motivated by reduction in metering
costs associated with the central meter, the first FDD method may be more appropriately imple-
mented with submetered data if fault diagnosis and not just fault detection is highly valued. Less
expensive sensors and sensor-communication systems (e.g., wireless sensors, to avoid wiring
costs) will facilitate the use of submetered data.

The second method relies solely on submetered data and a physical model, which is more dif-
ficult to formulate than a simple power correlation but is also more powerful. It needs no correl-
ative data, such as flow measurements, and can detect a fault with data collected over the very
short period of time required for a motor to reach a steady speed. However, faults can only be
detected at the time of motor startup, which introduces an unwanted lag between fault introduction
and fault detection. Extending the method to work with data from a centrally located electrical
meter, as will be attempted in the future, is possible in principle if the startup transient for a single
motor is not masked by electrical noise introduced by other components. Limited laboratory tests
have shown that a startup transient can be properly associated with a given motor even when
another motor’s startup partially overlaps the transient under investigation. However, such tests
have not accounted for the sheer volume of events in a real building. Further, variable-speed
drives are potentially a major stumbling block, because their prolonged startup cycle further
masks the dynamics of the motor and driven load. This method is well suited to submetered power
data and may appeal in the future as an onboard diagnostic method for equipment provided with
a low-cost current transducer.

Both methods are potentially more robust than FDD methods that rely on temperature and flow
sensors, in the sense that they do not require estimating small temperature differences with sensors
that are subject to errors. Power measurements also avoid concerns about placement of flow and
temperature sensors in large ducts or pipes. Both methods require testing in more buildings.
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NOMENCLATURE
Tout outside dry-bulb temperature Igs quadrature stator current in the dg frame
Tpatance poins  balance point temperature, the out- L; leakage inductance of an induction motor

side dry-bulb temperature at whicha

building requires neither heating nor m magnetizing inductance of an induction

li motor
coolin . . .
£ . 7, electrical resistance of the rotor of an induc-
Tsupply air temperature of the supply air tion motor
AT, temperature rise across the suppl . .
supply fan fan P PPy 7 electrical resistance of the stator of an

. induction motor
Treturn air temperature of the return air

. . . ), i i
flux linkage for an induction motor @gs  direct stator voltage in dg frame

o frequency of excitation at the stator Vs quadr?ture stator voltage in dg frame ‘

of an induction motor B damping parameter for a system consisting
o, frequency of the rotor of an induction of'a motor and pump or fan

motor K parameter inversely proportional to the rota-
iy direct rotor current in the dg frame tional inertia of the motor and pump or fan
i direct stator current in the dg frame ¢ the electrical turn-on phase for a motor
igr quadrature rotor current in the dg startup transient

frame NILM non-intrusive electrical load monitor
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