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Abstract 

This work develops a hardware realization of a median 
filter suitable for use in real-time control and monitoring 
applications in power electronic circuits. Median filters 
have the ability to supprem impulse noise in signals while 
preserving underlying edges. The performance of the 
filter is demonstrated with results from a prototype. 

I. Introduction 

This paper describes a fast hardware implementation 
of a median filter with emphasis on possible applications 
to power electronics. The median filter is a discrete, non- 
linear filter which can remove spike noise from a signal 
while accurately preserving underlying edges. It is one 
example of a group of filters which make use of a sort- 
ing or ranking operation to filter a waveform. This work 
focuses on the median filter as a relatively easily under- 
stood and implemented example which richly illustrates 
the potential of nonlinear filtering in power electronics. 

Median and median-type filters have been popular for 
the past twenty years in signal and image processing a p  
plications, e.g., [I, 21. Until recently, however, these fil- 
ters have received little attention from the power elec- 
tronics community (31. In situations where the frequency 
spectra of the noise and the underlying signal overlap and 
the noise is highly impulsive, the median filter can have 
remarkable advantagea over linear filters. Such situationa 
are reasonably common in the implementation of power 
electronic circuits and machine drive systems. 

Many specialized hardware architectures for imple- 
menting median-type filters have appeared in the signal 
processing literature [4, 5, 61. Most proposed architec- 
turea for hardware median filters are not optimal for use 
in real-time control applications because their latency 
is too large or increases unreasonably with filter size. 
Such designs could introduce intolerable delay. This pa- 
per presents a filter design which is intended for use in 
control and monitoring loops in power electronic circuits. 

Note that this architecture is designed for use in filtering 
"signal strength" sources, not 'power strength" inputs 
and outputs. 

The next section of this report describes the median 
filtq and some of its properties. To show the power of 
the median filter, a review of off-line d t a  firet pre- 
sented in [3] compares output fiom the median and lin- 
ear filters for a common input waveform: a awit& volt- 
age transient in a flyback converter. New off-line results 
in this section show the result of filtering a noisy motor 
tachometer signal with the median filter, suggesting one 
potential real-time application. Section III details "e 

of the problems and trade-offs Msodated with mveral 
traditional median filtering architectures. Section lV d a  
scribes the proposed architecture for a real-time median 
filter and discusses the benefits of the deaign. In Sec- 
tion V, results from actual prototype of the design 
are presented. Section VI summarizes our resulta and 
anticipated future experiments. 

II. Median Filter Baaice 

The median filter operates on a windowed &ion con- 
taining an odd number of evenly spaced, discrete sam- 
ples from an input stream of data, X. The window slides 
across the input stream, advancing one point at a time. 
At any instant, the output of the filter, Y, is the median 
of the data in the window. The schematic in Fig. 1 ill- 
trated this process for a window of 2N + 1 points. This 
filter is referred to as a filter of siee N. In Fig. 1, the m a  
dian value of the data window is determined by a sorting 
operation; this is not the only method for determining 
the median, but an adaptation of this approach provides 
one of the fastest possible hardware implementations. In 
a real-time setting, we have found it convenient to ini- 
tialize the data window with zeros, although other valuea 
are possible [3, 71. 

There are several ways to understand the behavior of 
the median filter. Studying the frequency propertied of 
the filter is not typically one of the best ways, since the 
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Figure 1: Schematic Diagram of a Median Filter 
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Figure 2: Signal Building Blocks 

median 6lter is nonlinear. One succedul approach i 
to consider haw the median filter alters the local geom- 
etry or shape of a waveform. We will avoid extensive 
formalism here; the interested reader is directed to (3,7, 
81 for detailed explications of median filter behavior in 
geometric terms. 

For a 6lter with a window size of 2N + 1, consider the 
four fundamental signal shapes shown in Fig. 2, folluwing 
the development in [3, 71. Note that any dk re t e  wavs 
form may be described as a sequential collection of con- 
stant neighborhoods, edges, impulses, and osci l l~t i~~. 
We state that pMsing a signal once through a median 
filter will eliminate impulses and reduce oscillations. It 
has been shown that repetitive median filtering of a fi- 
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Figure 3: Switch Voltage 

nite length signal will produce, after a hite number of 
repetitions, a root dgnal which ia invariant to further 
applications of the filter [7]. Such a root eal conaista 
only of edges and constant neighborhoods. Hence, if a 
waveform CODE~E~S of an underlying nignal of edgm and 
constant neighborhooda corrupted with noise which con- 
sists of i m p u h  and d a t i ~ ~ ,  the m e d b  filter wi l l  
remove or reduce the noire without modXyiq the under- 
lying signal. 

The median filter haa proven to be an invaluable off- 
line tool for smoothing anpimenu cumeo for compar- 
ison to simulated or theoretid data [3]. For example, 
Fig. 3 shows the twiteh voltage in a flyback converter 
when the controllable twitch tu"  off. The "spikem on 
thqriaing edge of the .tep U a high frequency ringing 
created by the MOSFET body capacitance and 
former leakage inductanca. Fv 4 ah- the d t a  of 
median filtering thb waveformwith .filter ofdre N = 8. 
Figure 5 shcrws the d t a  of filtering the waveform in 
Fig. 3 with three diBerent fourth order Bu- 6l- 
ters, whose cutoff frequencits ispan a rauge ofduea with 
respect to the sample frequency. The median filter is 
uniquely capable of removing the spike while praerkg 
the edge. 

Figure 6 shows an unfiltered plot of speed ver" time 
during the free acceleration of a 3 hp, 4 pole induction 
motor. This plot wsm developed by sampling the d t a g e  
acrotm a small DC tachometer connected to the motor. 
Commutator brush noiw created the spikw in the wave- 
form. Attempts to remove them s p h  with a linear filter 
are complicated by the fact that the rate of occumnce 
of the spikes ia a function of the motor rpeed, which is 
rapidly changing during the transient. Hence, it m a y  
be difEcult or i m w b l e  in mamy mtuatimu to doet a 
(non-adaptive) linear filter cut-off frequency which re- 
moves the spikes without distorting the underlying edge. 
In [9], for example, the authors were forced to rely on an 
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Figure 4: Median Filtered Switch Voltage 

J 
0 0 0 5  0 1  015  0 2  0 2 5  0 3  

Time. mecond. 

Figure 7: Median Filtered Free-Acceleration Curve 

Figure 5: LOw-Pass Filtered Switch Voltage 
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Figure 6: Induction Motor Free-Acceleration 

d hoc off-line scheme for removing such spikes before 
further processing of the waveform could proceed. Fig- 
ure 7 shows the results of filtering this waveform with a 
median filter of size ZV = 4. 

The success of the median filter in the off-line pro- 
cesqing of a variety of wavefomw f" power electronic 
circuits and motor drive qstems haa led us to explore p 
tential filter architecturem for use in real-time monitoring 
and control applications. 

Three broad c l t "  of digital median filter architec- 
tures are described in [lo]: 

Origind order designs, which nuinkin the window 
of samples in chronological order in a bder. The 
median is produced by -me "median hdinfl 1111 
or sorting hardware. See 141, for example. 

Sorted order designs, which maintain the window of 
samples in sorted order. A linlred-bt M u y e m e n t  
is used to tag each point with an "age" index to 
indicate its time of arrival in the window. See [SI, 
for example. 

Bitwise designs, which implement a variety of s e  
phisticated algorithms to determine the median en- 
try in the data windm based on the assumption that 
the number of bits repreaenting individual sample8 
is relatively small. See the "stack filter" pmpoeed in 
(61 for one approach in this class. 

An excellent and detailed summary of the Merent trade- 
offs between speed and complexity for these a p p d e a ,  
including several important variations and hybrids, may 
be found in [ll]. 
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Minimizing delay or latency is an important design 
constraint in the development of a hardware median fil- 
ter. Referring to Fig. l we see that, in mathematical 
terms, filter operation on the data window at time n for 
a filter of size 2N + 1 may be described as 

Y [n] = Median of (X[n - NI, ..., X[n], ..., X[n + NI), 

where X[n] represents a discrete input data sample and 
Y[n] is the filter output, both at time n. In principle, 
the median filter is non-causal; that is, it requires fu- 
ture samples of the input data stream X to compute the 
output value at time n. In practice, there must be a 
pure delay associated with an implementation of a me- 
dian filter. For a filter of size N, the delay cannot be less 
than N sample intervals since N "future" points are re- 
quired to predict an output point. In the off-line results 
presented in Section 11, the output waveforms have been 
shifted by N samples to correct for this pure delay. In a 
real-time setting, the delay is inescapable, and the deci- 
sion to use a median filter with its nonlinear smoothing 
properties must be carefully balanced against other fil- 
ter types, which may have frequency-dependent or pure 
delays. To avoid further complicating a potential con- 
trol or monitoring problem, a hardware median filter of 
size N should, ideally, introduce no more than the in- 
evitable N sample interval delay. Generally, we suspect 
that designs with exceasive latency or, worse, with laten- 
cies which increase with window size or content, should 
be avoided. 

The sorted order architecture can be constructed to 
provide the best overall performance (i.e., minimum la- 
tency) [Ill. In short, this design implements the equiv- 
alent of a hardware insertion sort algorithm [12]. The 
goal of this design is to take advantage of the fact that 
as the window "slides" across the data point by point, 
only one data value is being discarded and one added 
at any time. The rest of the l i t  is already in sorted 
order. By using a collection of parallel comparators to 
simultaneously compare the incoming value to each point 
in the sorted list, it is possible to discard the old data 
point and insert the new point in a fixed number of clock 
cycles regardless of the length of the list. In our sorted 
order implementation, presented in the next section, this 
insertion is accomplished in two clock cycles. 

We discovered after the completion of our design and 
construction efforts that our filter is similar in many re- 
spects to the sorted order architecture reported in [5]. In 
our design we have replaced the bit-slice architecture in 
[5] with a word parallel design in which all of the W bits 
of each data point are written, compared, or read simul- 
taneously. This word parallel approach divides by W the 
number of clock cycles needed to perform an insertion 
cycle compared to a "bit-serial" design [ll]. In [5], the 
authors report only simulated performance estimates; in 

Section V, we present results from an actual prototype. 
Readers interested in further construction detaila are en- 
couraged to examine [5] in addition to the next section. 
In particular, [E] provides guidelines for determining and 
comparing silicon area for VLSI implementations which 
are beyond our current mpe. The description of our 
sorted order filter architecture presented in the next sec- 
tion is adapted in part from the thesia [13]. See [13] for 
more information, including detailed achematics. 

lV. Hardware Implementation 

A block diagram of our 2N + 1 point hardware filter 
window is shown in Fig. 8. The actual values from the 
input stream X are stored in the registera labeled data. 
The "age" of each sampled value, modulo 2N + 1 count- 
ing from zero, is stored in the auxiliary register labeled 
index associated with each data register. A window 
element is a combination of the data and index regis- 
ters and supporting circuitry. The top element in our 
design contains the largest data value in the window and 
the bottom element contains the smallest, with all other 
data in rank order in the middle elements. After an ini- 
tialization in which each window element is loaded with 
a data value of zero and an index value ranging from zero 
to 2N, the steady state operation of thm filter window 
is controlled by a finite state machine (FSM) which has 
two states, shift and load. 

The shift operation prepares the window elements to 
receive a new input value from the analog-tctdigital con- 
verter. During the shift state two proceslres occur: the 
value from the data register of the middle element is read 
into an output register as the median value, and each el- 
ement compares the value of its index register with the 
conatant 2N. The element which matches contains the 
oldest point; an index of zero indicatee the new& point. 
The result of the index age comparison in each element ia 
or-gated with the result of the index comparimn from the 
element above. Thin compkte  result propagates to the 
element below. All elements below the oldest point, de- 
termined by the propagated index age comparison, shift 
the values of their sampled data and index registers up 
one element, eliminating the oldest point by writing Over 
it, and freeing the bottom point. 

The load operation performs an insertion sort to place 
a fresh input value from the analog-bdigital converter 
into its correct position in the window. The fresh input 
value is broadcast to all of the window elements. Each 
window element compares the input value with the value 
in its data register. At some 'break point" in the win- 
dow, all of the elements below the break point wi l l  be 
leas than the input value and all of the elements above 
the break point will be greater than the input value. The 
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Figure 8: Median Filter Block Diagram 

break point in unique in that the element immediately b e  
low it comparea low to the input value and the element 
above it amparea high; thin condition is easily teated in 
pardel for all pairs of window elements. AU elements 
below the break point ahift down, opening an element in 
which the new data point from the input bua in ineerted. 
The index regiater for thb new point in wt to zero. AU 
other index registem an incremented by one. When the 
load operation in complete, the machine returns to the 
shift state and the procem beginn again. A new output 
point, the median data value in the current window, ia 
made available after every two finite state machine cycles 
(;.e., cl& cycles) regardlaas of the size of the window or 
the type of waveform being filtered. 
Figure 9 ahom a athematic of a typical wihdow el- 

ement which operatea under the two state scheme de- 
scribed above. Slight modifications must be made for 
the top and bottom elements Since theae elements do not 
have elements above or below, respectively. An action 
table summarising the behavior of the top, bottom, and 
middle elemenb during the shift and load states is shown 
in Table 1. The propa~@~I signal, checked dying the 
Shih state for each middle element refers to the value of 
the propagation chain that indicates the presence of an 
index match with the constant 2N above an element. 

Only the top and bottom elements, therefore, require 
special control coding. A filter of arbitrary size may be 
~ons t ru~ted  by stacking sufficient "generic" mihdle ele- 
ments between a top and bottom pair. For simplicity, 
analog signale are level shifted prior to analog-*digital 
conversion in our prototype, 80 the lowesbvalued digital 

~ 
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Figure 9: Typical window element 

sample stored in the window is !zero. Hence, our p r o b  
type does not handle negative sample values digitally; all 
register values are positive binary numbers. The median 
output of the filter can be inverse shifted to restore the 
original bias. 

Clement 

Middle 

Bottom 

If (data <= input 
and (index = 2Nt1 or data above>input) 

ropagated=TRUE) kkX :put 
data = else if (data>input 

and 
index = index data above>input) 

belor index t= 1 else 

Table 1: Element Action Table 

In the next section we present results from an actual 
prototype of our filter design. 
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Figure 11: Median Filter Test Configuration 

V. Experimental Results 

To study the validity and potential performance of our 
proposed design, we constructed a hardware prototype of 
a median filter of size one (a window size of three points). 
First, to test the hardware sorter, the prototype was used 
to filter digital data stored in an EPROM. A eection of 
the digitized input waveform is shown in the top trace 
in Fig. 10. The precise sample locations are indicated 
with +- symbols. The edges and constant neighborhoods 
in the signal are corrupted with spike noise. The bottom 
trace in Fig. 10, the output of the filter, shows that the 
noise is removed by the prototype filter with ita three 
point window. 

Next, the filter was used in the test configuration 
shown in Fig. 11. The signal Yu was used to monitor 
the waveform of digitized samplea fed as input to the 
median filter. The signal Yf WBB a real-time, median 
filtered version of the digitized input waveform, Y,,. 

Figure 12 shows the reaults of presenting a 35kHz tri- 
angle wave as the input to the filter test hardware. The 
top trace in Fig. 12 shows Yu. For this N = 1 filter, the 
crest and trough samples of this triangle wave are part of 
signal oscillations where the wave is changing directions. 
We expect, therefore, that these oscillations will be re- 
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Figure 12: lkiangle Wave Input 

d u d  in the filtered output. The bottom trace in Fig. 12 
shows Yf, the output of the median filter. As expected, 
the crest and trough samples have been eliminated. The 
filter sampling rate for this experiment WM 575kHz. 

We have had similar t ~ ~ c c e c e a  operating our hard- 
ware filter at sample ratea as high as 1.23hfHr, near 
the l i t  of our digital-banalog conversion hardware. 
Even at thia reasonably fa& sample rate, we mw no s i p  
in our breadboarded prototype of performance degrads 
tion which would prevent the filter from running at even 
higher sample ratea. A robust, tightly-packed hardware 
layout on a printed circuit board or m t o m  integrated 
circuit would presumably perform well at much higher 
frequencies. 

VI. Conclnsiona 

This paper has presented a hardware median filter d e  
sign which meets the stringent requkmenta necumary 
for control and monitoring applications. The "It. from 
the hardware prototype mbotantiate the expected perfor- 
mance of the filter. Several important problems remain 
in the development of specific applications. 

A point mentioned previously that cannot be over- 
emphasized is that the median filter is nonlinear. Stan- 
dard linear analysis techniques for the design of feedback 
control systems, for example, cannot be directly applied 
if a median filter is incorporated in the closed loop. De- 
veloping satisfactory techniques for determining stability 
and other properties of system which contain nonlinear 
building blocks like the median filter is an open and ac- 
tive area of research. 

Of course, any field uw of the median filter would ne- 
cessitate a more rugged construction technique than the 
solderleas breadboarding used here. The highly modular 
structure of the filter naturally points towards a custom 
VLSI implementation, an approach taken by many re- 
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searchers studying nonlinear filtering in the signal pro- 
cessing fields. We hope to report on our experiences 
with a custom integrated circuit application at a later 
date. The commercial sue" of fast fioating point units 
for modem digital signal proceasing applications is well 
known. We suspect that, in the long run, the power of 
nonlinear filtering may generate a demand for the de- 
velopment of commercially available chip packages for 
nonlinear operations such aa sorting. 
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