
REAL-TIME MEDIAN FILTERING
WITH A FAST HARDWARE SORTER

Steven B. Leeb Alfred0 Ortiz James L. Kirtley, Jr.

Laboratory for Electromagnetic and Electronic Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

This work develops a hardware realization of a median
filter suitable for use in real-time control and monitoring
applications in power electronic circuits. Median filters
have the ability to supprem impulse noise in signals while
preserving underlying edges. The performance of the
filter is demonstrated with results from a prototype.

I. Introduction

This paper describes a fast hardware implementation
of a median filter with emphasis on possible applications
to power electronics. The median filter is a discrete, non-
linear filter which can remove spike noise from a signal
while accurately preserving underlying edges. It is one
example of a group of filters which make use of a sort-
ing or ranking operation to filter a waveform. This work
focuses on the median filter as a relatively easily under-
stood and implemented example which richly illustrates
the potential of nonlinear filtering in power electronics.

Median and median-type filters have been popular for
the past twenty years in signal and image processing a p
plications, e.g., [I, 21. Until recently, however, these fil-
ters have received little attention from the power elec-
tronics community (31. In situations where the frequency
spectra of the noise and the underlying signal overlap and
the noise is highly impulsive, the median filter can have
remarkable advantagea over linear filters. Such situationa
are reasonably common in the implementation of power
electronic circuits and machine drive systems.

Many specialized hardware architectures for imple-
menting median-type filters have appeared in the signal
processing literature [4, 5, 61. Most proposed architec-
turea for hardware median filters are not optimal for use
in real-time control applications because their latency
is too large or increases unreasonably with filter size.
Such designs could introduce intolerable delay. This pa-
per presents a filter design which is intended for use in
control and monitoring loops in power electronic circuits.

Note that this architecture is designed for use in filtering
"signal strength" sources, not 'power strength" inputs
and outputs.

The next section of this report describes the median
filtq and some of its properties. To show the power of
the median filter, a review of off-line d t a firet pre-
sented in [3] compares output fiom the median and lin-
ear filters for a common input waveform: a awit& volt-
age transient in a flyback converter. New off-line results
in this section show the result of filtering a noisy motor
tachometer signal with the median filter, suggesting one
potential real-time application. Section III details "e

of the problems and trade-offs Msodated with mveral
traditional median filtering architectures. Section lV d a
scribes the proposed architecture for a real-time median
filter and discusses the benefits of the deaign. In Sec-
tion V, results from actual prototype of the design
are presented. Section VI summarizes our resulta and
anticipated future experiments.

II. Median Filter Baaice

The median filter operates on a windowed &ion con-
taining an odd number of evenly spaced, discrete sam-
ples from an input stream of data, X. The window slides
across the input stream, advancing one point at a time.
At any instant, the output of the filter, Y, is the median
of the data in the window. The schematic in Fig. 1 ill-
trated this process for a window of 2N + 1 points. This
filter is referred to as a filter of siee N. In Fig. 1, the m a
dian value of the data window is determined by a sorting
operation; this is not the only method for determining
the median, but an adaptation of this approach provides
one of the fastest possible hardware implementations. In
a real-time setting, we have found it convenient to ini-
tialize the data window with zeros, although other valuea
are possible [3, 71.

There are several ways to understand the behavior of
the median filter. Studying the frequency propertied of
the filter is not typically one of the best ways, since the

254

CH2992-6/91/0000-0254 $1.00 0 1991 IEEE

X[ntN]

X[n-N]

+++++,

X
h

Figure 1: Schematic Diagram of a Median Filter

t
Constant 7 7 7 7 Neighborhood

I I l l 1 .
k- N+1+

b

7 Oscillation

Figure 2: Signal Building Blocks

median 6lter is nonlinear. One succedul approach i
to consider haw the median filter alters the local geom-
etry or shape of a waveform. We will avoid extensive
formalism here; the interested reader is directed to (3,7,
81 for detailed explications of median filter behavior in
geometric terms.

For a 6lter with a window size of 2N + 1, consider the
four fundamental signal shapes shown in Fig. 2, folluwing
the development in [3, 71. Note that any dk re t e wavs
form may be described as a sequential collection of con-
stant neighborhoods, edges, impulses, and osci l l~t i~~.
We state that pMsing a signal once through a median
filter will eliminate impulses and reduce oscillations. It
has been shown that repetitive median filtering of a fi-

2 5 1 5 0 7 8 9 1 0

Time. eeeond. I Io-*

Figure 3: Switch Voltage

nite length signal will produce, after a hite number of
repetitions, a root dgnal which ia invariant to further
applications of the filter [7]. Such a root eal conaista
only of edges and constant neighborhoods. Hence, if a
waveform CODE~E~S of an underlying nignal of edgm and
constant neighborhooda corrupted with noise which con-
sists of i m p u h and d a t i ~ ~ , the m e d b filter wi l l
remove or reduce the noire without modXyiq the under-
lying signal.

The median filter haa proven to be an invaluable off-
line tool for smoothing anpimenu cumeo for compar-
ison to simulated or theoretid data [3]. For example,
Fig. 3 shows the twiteh voltage in a flyback converter
when the controllable twitch tu" off. The "spikem on
thqriaing edge of the .tep U a high frequency ringing
created by the MOSFET body capacitance and
former leakage inductanca. Fv 4 ah- the d t a of
median filtering thb waveformwith .filter ofdre N = 8.
Figure 5 shcrws the d t a of filtering the waveform in
Fig. 3 with three diBerent fourth order Bu- 6l-
ters, whose cutoff frequencits ispan a rauge ofduea with
respect to the sample frequency. The median filter is
uniquely capable of removing the spike while praerkg
the edge.

Figure 6 shows an unfiltered plot of speed ver" time
during the free acceleration of a 3 hp, 4 pole induction
motor. This plot wsm developed by sampling the d t a g e
acrotm a small DC tachometer connected to the motor.
Commutator brush noiw created the spikw in the wave-
form. Attempts to remove them s p h with a linear filter
are complicated by the fact that the rate of occumnce
of the spikes ia a function of the motor rpeed, which is
rapidly changing during the transient. Hence, it m a y
be difEcult or i m w b l e in mamy mtuatimu to doet a
(non-adaptive) linear filter cut-off frequency which re-
moves the spikes without distorting the underlying edge.
In [9], for example, the authors were forced to rely on an

255

-101 1
z 3 4 5 6 7 8 0 10

Time. mecond. 110-6

t

Figure 4: Median Filtered Switch Voltage

J
0 0 0 5 0 1 015 0 2 0 2 5 0 3

Time. mecond.

Figure 7: Median Filtered Free-Acceleration Curve

Figure 5: LOw-Pass Filtered Switch Voltage

ZOOO, I

0 0 05 0.1 0.15 0.2 0.25 0.3

rime. seconds

Figure 6: Induction Motor Free-Acceleration

d hoc off-line scheme for removing such spikes before
further processing of the waveform could proceed. Fig-
ure 7 shows the results of filtering this waveform with a
median filter of size ZV = 4.

The success of the median filter in the off-line pro-
cesqing of a variety of wavefomw f" power electronic
circuits and motor drive qstems haa led us to explore p
tential filter architecturem for use in real-time monitoring
and control applications.

Three broad c l t " of digital median filter architec-
tures are described in [lo]:

Origind order designs, which nuinkin the window
of samples in chronological order in a bder. The
median is produced by -me "median hdinfl 1111
or sorting hardware. See 141, for example.

Sorted order designs, which maintain the window of
samples in sorted order. A linlred-bt M u y e m e n t
is used to tag each point with an "age" index to
indicate its time of arrival in the window. See [SI,
for example.

Bitwise designs, which implement a variety of s e
phisticated algorithms to determine the median en-
try in the data windm based on the assumption that
the number of bits repreaenting individual sample8
is relatively small. See the "stack filter" pmpoeed in
(61 for one approach in this class.

An excellent and detailed summary of the Merent trade-
offs between speed and complexity for these a p p d e a ,
including several important variations and hybrids, may
be found in [ll].

256

Minimizing delay or latency is an important design
constraint in the development of a hardware median fil-
ter. Referring to Fig. l we see that, in mathematical
terms, filter operation on the data window at time n for
a filter of size 2N + 1 may be described as

Y [n] = Median of (X[n - NI, ..., X[n], ..., X[n + NI),

where X[n] represents a discrete input data sample and
Y[n] is the filter output, both at time n. In principle,
the median filter is non-causal; that is, it requires fu-
ture samples of the input data stream X to compute the
output value at time n. In practice, there must be a
pure delay associated with an implementation of a me-
dian filter. For a filter of size N, the delay cannot be less
than N sample intervals since N "future" points are re-
quired to predict an output point. In the off-line results
presented in Section 11, the output waveforms have been
shifted by N samples to correct for this pure delay. In a
real-time setting, the delay is inescapable, and the deci-
sion to use a median filter with its nonlinear smoothing
properties must be carefully balanced against other fil-
ter types, which may have frequency-dependent or pure
delays. To avoid further complicating a potential con-
trol or monitoring problem, a hardware median filter of
size N should, ideally, introduce no more than the in-
evitable N sample interval delay. Generally, we suspect
that designs with exceasive latency or, worse, with laten-
cies which increase with window size or content, should
be avoided.

The sorted order architecture can be constructed to
provide the best overall performance (i.e., minimum la-
tency) [Ill. In short, this design implements the equiv-
alent of a hardware insertion sort algorithm [12]. The
goal of this design is to take advantage of the fact that
as the window "slides" across the data point by point,
only one data value is being discarded and one added
at any time. The rest of the l i t is already in sorted
order. By using a collection of parallel comparators to
simultaneously compare the incoming value to each point
in the sorted list, it is possible to discard the old data
point and insert the new point in a fixed number of clock
cycles regardless of the length of the list. In our sorted
order implementation, presented in the next section, this
insertion is accomplished in two clock cycles.

We discovered after the completion of our design and
construction efforts that our filter is similar in many re-
spects to the sorted order architecture reported in [5]. In
our design we have replaced the bit-slice architecture in
[5] with a word parallel design in which all of the W bits
of each data point are written, compared, or read simul-
taneously. This word parallel approach divides by W the
number of clock cycles needed to perform an insertion
cycle compared to a "bit-serial" design [ll]. In [5], the
authors report only simulated performance estimates; in

Section V, we present results from an actual prototype.
Readers interested in further construction detaila are en-
couraged to examine [5] in addition to the next section.
In particular, [E] provides guidelines for determining and
comparing silicon area for VLSI implementations which
are beyond our current mpe. The description of our
sorted order filter architecture presented in the next sec-
tion is adapted in part from the thesia [13]. See [13] for
more information, including detailed achematics.

lV. Hardware Implementation

A block diagram of our 2N + 1 point hardware filter
window is shown in Fig. 8. The actual values from the
input stream X are stored in the registera labeled data.
The "age" of each sampled value, modulo 2N + 1 count-
ing from zero, is stored in the auxiliary register labeled
index associated with each data register. A window
element is a combination of the data and index regis-
ters and supporting circuitry. The top element in our
design contains the largest data value in the window and
the bottom element contains the smallest, with all other
data in rank order in the middle elements. After an ini-
tialization in which each window element is loaded with
a data value of zero and an index value ranging from zero
to 2N, the steady state operation of thm filter window
is controlled by a finite state machine (FSM) which has
two states, shift and load.

The shift operation prepares the window elements to
receive a new input value from the analog-tctdigital con-
verter. During the shift state two proceslres occur: the
value from the data register of the middle element is read
into an output register as the median value, and each el-
ement compares the value of its index register with the
conatant 2N. The element which matches contains the
oldest point; an index of zero indicatee the new& point.
The result of the index age comparison in each element ia
or-gated with the result of the index comparimn from the
element above. Thin compkte result propagates to the
element below. All elements below the oldest point, de-
termined by the propagated index age comparison, shift
the values of their sampled data and index registers up
one element, eliminating the oldest point by writing Over
it, and freeing the bottom point.

The load operation performs an insertion sort to place
a fresh input value from the analog-bdigital converter
into its correct position in the window. The fresh input
value is broadcast to all of the window elements. Each
window element compares the input value with the value
in its data register. At some 'break point" in the win-
dow, all of the elements below the break point wi l l be
leas than the input value and all of the elements above
the break point will be greater than the input value. The

257

Window Element 4 [olt.l ixia lControlJ

If index = 2N+1)
nothing

1 - 1

data=drta above
index =

index abovetl
If (data above >

data = input
input)

index = 0

data=data above
index =

index abovetl

else

v
I Window Element I

Input, -
X I I * output, Y

(...) 1 Median

t
Window Element

1.1
T

Window Element
"-1

- FSY

Figure 8: Median Filter Block Diagram

break point in unique in that the element immediately b e
low it comparea low to the input value and the element
above it amparea high; thin condition is easily teated in
pardel for all pairs of window elements. AU elements
below the break point ahift down, opening an element in
which the new data point from the input bua in ineerted.
The index regiater for thb new point in wt to zero. AU
other index registem an incremented by one. When the
load operation in complete, the machine returns to the
shift state and the procem beginn again. A new output
point, the median data value in the current window, ia
made available after every two finite state machine cycles
(;.e., cl& cycles) regardlaas of the size of the window or
the type of waveform being filtered.
Figure 9 ahom a athematic of a typical wihdow el-

ement which operatea under the two state scheme de-
scribed above. Slight modifications must be made for
the top and bottom elements Since theae elements do not
have elements above or below, respectively. An action
table summarising the behavior of the top, bottom, and
middle elemenb during the shift and load states is shown
in Table 1. The propa~@~I signal, checked dying the
Shih state for each middle element refers to the value of
the propagation chain that indicates the presence of an
index match with the constant 2N above an element.

Only the top and bottom elements, therefore, require
special control coding. A filter of arbitrary size may be
~ons t ru~ted by stacking sufficient "generic" mihdle ele-
ments between a top and bottom pair. For simplicity,
analog signale are level shifted prior to analog-*digital
conversion in our prototype, 80 the lowesbvalued digital

~

D a h Data Initial
Above Below Input Constant

I
I +I Adder

m
Data

Register I
1

Comparator 1

Element Below 2~ FSY

Figure 9: Typical window element

sample stored in the window is !zero. Hence, our p r o b
type does not handle negative sample values digitally; all
register values are positive binary numbers. The median
output of the filter can be inverse shifted to restore the
original bias.

Clement

Middle

Bottom

If (data <= input
and (index = 2Nt1 or data above>input)

ropagated=TRUE) kkX :put
data = else if (data>input

and
index = index data above>input)

belor index t= 1 else

Table 1: Element Action Table

In the next section we present results from an actual
prototype of our filter design.

258

40 I ' 1

Sample number

40

0 10 20 30 40 50 BO 70 80 90 100

Sfimple number

Figure 10: Test Input and Output

Converter D'A t-Yu

Median
Filter

Figure 11: Median Filter Test Configuration

V. Experimental Results

To study the validity and potential performance of our
proposed design, we constructed a hardware prototype of
a median filter of size one (a window size of three points).
First, to test the hardware sorter, the prototype was used
to filter digital data stored in an EPROM. A eection of
the digitized input waveform is shown in the top trace
in Fig. 10. The precise sample locations are indicated
with +- symbols. The edges and constant neighborhoods
in the signal are corrupted with spike noise. The bottom
trace in Fig. 10, the output of the filter, shows that the
noise is removed by the prototype filter with ita three
point window.

Next, the filter was used in the test configuration
shown in Fig. 11. The signal Yu was used to monitor
the waveform of digitized samplea fed as input to the
median filter. The signal Yf WBB a real-time, median
filtered version of the digitized input waveform, Y,,.

Figure 12 shows the reaults of presenting a 35kHz tri-
angle wave as the input to the filter test hardware. The
top trace in Fig. 12 shows Yu. For this N = 1 filter, the
crest and trough samples of this triangle wave are part of
signal oscillations where the wave is changing directions.
We expect, therefore, that these oscillations will be re-

259

Figure 12: lkiangle Wave Input

d u d in the filtered output. The bottom trace in Fig. 12
shows Yf, the output of the median filter. As expected,
the crest and trough samples have been eliminated. The
filter sampling rate for this experiment WM 575kHz.

We have had similar t ~ ~ c c e c e a operating our hard-
ware filter at sample ratea as high as 1.23hfHr, near
the l i t of our digital-banalog conversion hardware.
Even at thia reasonably fa& sample rate, we mw no s i p
in our breadboarded prototype of performance degrads
tion which would prevent the filter from running at even
higher sample ratea. A robust, tightly-packed hardware
layout on a printed circuit board or m t o m integrated
circuit would presumably perform well at much higher
frequencies.

VI. Conclnsiona

This paper has presented a hardware median filter d e
sign which meets the stringent requkmenta necumary
for control and monitoring applications. The "It. from
the hardware prototype mbotantiate the expected perfor-
mance of the filter. Several important problems remain
in the development of specific applications.

A point mentioned previously that cannot be over-
emphasized is that the median filter is nonlinear. Stan-
dard linear analysis techniques for the design of feedback
control systems, for example, cannot be directly applied
if a median filter is incorporated in the closed loop. De-
veloping satisfactory techniques for determining stability
and other properties of system which contain nonlinear
building blocks like the median filter is an open and ac-
tive area of research.

Of course, any field uw of the median filter would ne-
cessitate a more rugged construction technique than the
solderleas breadboarding used here. The highly modular
structure of the filter naturally points towards a custom
VLSI implementation, an approach taken by many re-

-

searchers studying nonlinear filtering in the signal pro-
cessing fields. We hope to report on our experiences
with a custom integrated circuit application at a later
date. The commercial sue" of fast fioating point units
for modem digital signal proceasing applications is well
known. We suspect that, in the long run, the power of
nonlinear filtering may generate a demand for the de-
velopment of commercially available chip packages for
nonlinear operations such aa sorting.

Achowledgementr

The authors gratefully acknowledge the support of the
Electric Power Research Institute. SBL thank8 Professor
George C. Verghese, W. Clem Karl, Kwaku 0. Prakah-
Asante, and Lawrence A. Jones for valuable assistance
and discussions.

References

G.R. Arce and N.C. Gallagher, Jr.,“BTC Image
Coding Using Median Filter Roots,” IEEE fiansac-
tiona on Communications, June 1983, pp. 784793.

P.A. M a r a p and R.W. Schafer, “Morphological
Skeleton Representation and Coding of Binary Im-
ages,” IEEE fiansactions on Acoustics, Speech, and
Signal Processing, October 1986, pp. 1228-1244.

W.C. Karl, S.B. Leeb, L.A. Jones, J.L. Kirtley,
and G.C. Verghese, ”Applications of a Class of
Nonlinear Filters to Problem in Power Electron-
ics,” IEEE Power Electronics Specialists Confer-
ence, June 1990, pp. 35-42.

K. Oflazer, “Design and Implementation of a Single-
Chip 1-D Median Filter,” IEEE ‘Izansactions on
Acoustics, Speech, and Signal Processing, October
1983, pp. 1164-1168.

G.R. Arce and P.J. Warter, UA Median Filter Ar-
chitecture Suitable for VLSI Implementation,” 23rd.
Allerton Conf on Comun. , Cont., and Comput.,
October 1984, pp. 172-181.

E.J. Coyle, “The Theory and VLSI Implementa
tion of Stack Filters,” VLSZSignal Processing, IEEE
Press, New York, NY, 1986.

G.R. Arce, N.C. Gallagher, and T.A. Nodes, “Me-
dian Filters: Theory for One- and Two-dimensional
filters,” Advances in Computer Vision and Image
Processing, JAI Prese, Greenwich, CN, 1986.

P. Maragos and R.W. Schafer, “Morphological Fil-
ters - Part II: Their Relations to Median, Order-
Statistic, and Stack Filters,” IEEE ‘Izansactions on

Acoustics, Speech, and Signal Processing, August
1987, pp. 1170-1184.

[9] B. Szabadoa, J.H. Dableh, G.M. Obermeyer, R.E.
Draper, and R.D. Findlay, “Measurement of the
Torque-Speed Characteristics of Induction Motors
Using an Improved New Digital Approach,” ZEEE
fiansaction on Energy Conversion, September 1990,
pp. 565-571.

[lo] G.R. Arce, P.J. Warter, R.E. Foster, “Theory and
VLSI Implementation of Multilevel Median Filters:
International Sympaeium on Circuits and Systems,
June 1988.

[U] D.S. Richards, “VLSI Median Filters,” ZEEE fians-
actions on Acoustica, Speech, and Signal Processing,
January 1990, pp. 145-153.

[12] W. Presa, B. Flannery, S. Teukolsky, and W. Vetter-
ling, Numerical Recipes in C, Cambridge University
Presa, Cambridge, 1988.

[13] A. Ortiz, “Flaah Filter: Median Filtering by Inser-
tion Sort,” S.B. Thesis, MIT Department of Electri-
cal Engineering and Computer Science, May 1990.

260

