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Abstract

This work develops a hardware realization of a median
filter suitable for use in real-time control and monitoring
applications in power electronic circuits. Median filters
have the ability to suppress impulse noise in signals while
preserving underlying edges. The performance of the
filter is demonstrated with results from a prototype.

I. Introduction

This paper describes a fast hardware implementation
of a median filter with emphasis on possible applications
to power electronics. The median filter is a discrete, non-
linear filter which can remove spike noise from a signal
while accurately preserving underlying edges. It is one
example of a group of filters which make use of a sort-
ing or ranking operation to filter a waveform. This work
focuses on the median filter as a relatively easily under-
stood and implemented example which richly illustrates
the potential of nonlinear filtering in power electronics.

Median and median-type filters have been popular for
the past twenty years in signal and image processing ap-
plications, e.g., [1, 2]. Until recently, however, these fil-
ters have received little attention from the power elec-
tronics community (3]. In situations where the frequency
spectra of the noise and the underlying signal overlap and
the noise is highly impulsive, the median filter can have
remarkable advantages over linear filters. Such situations
are reasonably common in the implementation of power
electronic circuits and machine drive systems.

Many specialized hardware architectures for imple-
menting median-type filters have appeared in the signal
processing literature [4, 5, 6]. Most proposed architec-
tures for hardware median filters are not optimal for use
in real-time control applications because their latency
is too large or increases unreasonably with filter size.
Such designs could introduce intolerable delay. This pa-
per presents a filter design which is intended for use in
control and monitoring loops in power electronic circuits.
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Note that this architecture is designed for use in filtering
“signal strength” sources, not “power strength” inputs
and outputs.

The next section of this report describes the median
filter and some of its properties. To show the power of
the median filter, a review of off-line results first pre-
sented in [3] compares output from the median and lin-
ear filters for a common input waveform: a switch volt-
age transient in a flyback converter. New off-line results
in this section show the result of filtering a noisy motor
tachometer signal with the median filter, suggesting one
potential real-time application. Section III details some
of the problems and trade-offs associated with several
traditional median filtering architectures. Section IV de-
scribes the proposed architecture for a real-time median
filter and discusses the benefits of the design. In Sec-
tion V, results from an actual prototype of the design
are presented. Section VI summarizes our results and
anticipated future experiments.

II. Median Filter Basics

The median filter operates on a windowed section con-
taining an odd number of evenly spaced, discrete sam-
ples from an input stream of data, X. The window slides
across the input stream, advancing one point at a time.
At any instant, the output of the filter, Y, is the median
of the data in the window. The schematic in Fig. 1 illus-
trates this process for a window of 2N + 1 points. This
filter is referred to as a filter of size N. In Fig. 1, the me-
dian value of the data window is determined by a sorting
operation; this is not the only method for determining
the median, but an adaptation of this approach provides
one of the fastest possible hardware implementations. In
a real-time setting, we have found it convenient to ini-
tialize the data window with zeros, although other values
are possible [3, 7.

There are several ways to understand the behavior of
the median filter. Studying the frequency properties of
the filter is not typically one of the best ways, since the
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Figure 1: Schematic Diagram of a Median Filter
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Figure 2: Signal Building Blocks

median filter is nonlinear. One successful approach is
to consider how the median filter alters the local geom-
etry or shape of a waveform. We will avoid extensive
formalism here; the interested reader is directed to 3, 7,
8] for detailed explications of median filter behavior in
geometric terms.

For a filter with a window size of 2N + 1, consider the
four fundamental signal shapes shown in Fig. 2, following
the development in {3, 7]. Note that any discrete wave-
form may be described as a sequential collection of con-
stant neighborhoods, edges, impulses, and oscillations.
We state that passing a signal once through a median
filter will eliminate impulses and reduce oscillations. It
has been shown that repetitive median filtering of a fi-
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Figure 3: Switch Voltage

nite length signal will produce, after a finite number of
repetitions, a root signal which is invariant to further
applications of the filter [7]. Such a root signal consists
only of edges and constant neighborhoods. Hence, if a
waveform consists of an underlying signal of edges and
constant neighborhoods corrupted with noise which con-
sists of impulses and oecillations, the median filter will
remove or reduce the noise without modifying the under-
lying signal.

The median filter has proven to be an invaluable off-
line tool for smoothing experimental curves for compar-
ison to simulated or theoretical data [3]. For example,
Fig. 3 shows the switch voltage in a flyback converter
when the controllable switch turns off. The “spike® on
the, rising edge of the step is a high frequency ringing
created by the MOSFET body capacitance and trans-
former leakage inductance. Figure 4 shows the results of
median filtering this waveform with a filter of sise N = 8.
Figure 5 shows the results of filtering the waveform in
Fig. 3 with three different fourth order Butterworth fil-
ters, whose cutoff frequencies span a range of values with
respect to the sample frequency. The median filter is
uniquely capable of removing the spike while preserving
the edge.

Figure 6 shows an unfiltered plot of speed versus time
during the free acceleration of a 3 hp, 4 pole induction
motor. This plot was developed by sampling the voltage
across a small DC tachometer connected to the motor.
Commutator brush noise created the spikes in the wave-
form. Attempts to remove these spikes with a linear filter
are complicated by the fact that the rate of occurrence
of the spikes is a function of the motor speed, which is
rapidly changing during the transient. Hence, it may
be difficult or impoesible in many situations to select a
(non-adaptive) linear filter cut-off frequency which re-
moves the spikes without distorting the underlying edge.
In [9], for example, the authors were forced to rely on an
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Figure 5: Low-Pass Filtered Switch Voltage
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Figure 6: Induction Motor Free-Acceleration
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Figure 7: Median Filtered Free-Acceleration Curve

ad hoc off-line scheme for removing such spikes before
further processing of the waveform could proceed. Fig-
ure 7 shows the results of filtering this waveform with a
median filter of size N = 4.

The success of the median filter in the off-line pro-
cessing of a variety of waveforms from power electronic
circuits and motor drive systems has led us to explore po-
tential filter architectures for use in real-time monitoring
and control applications.

III. Design Overview

Three broad classes of digital median filter architec-
tures are described in {10]:

e Original order designs, which maintain the window
of samples in chronological order in a buffer. The
median is produced by some “median finding” [11]
or sorting hardware. See [4], for example.

o Sorted order designs, which maintain the window of
samples in sorted order. A linked-list arrangement
is used to tag each point with an “age” index to
indicate its time of arrival in the window. See [5],
for example.

o Bitwise designs, which implement a variety of so-
phisticated algorithms to determine the median en-
try in the data window based on the assumption that
the number of bits representing individual samples
is relatively small. See the “stack filter” proposed in
{6] for one approach in this class.

An excellent and detailed summary of the different trade-
offs between speed and complexity for these approaches,
including several important variations and hybrids, may
be found in [11].



Minimizing delay or latency is an important design
constraint in the development of a hardware median fil-
ter. Referring to Fig. 1 we see that, in mathematical
terms, filter operation on the data window at time n for
a filter of size 2N + 1 may be described as

Y [n] = Median of (X[n — N, ..., X[n],...,X[n + NJ),

where X[n| represents a discrete input data sample and
Y[n] is the filter output, both at time n. In principle,
the median filter is non-causal; that is, it requires fu-
ture samples of the input data stream X to compute the
output value at time n. In practice, there must be a
pure delay associated with an implementation of a me-
dian filter. For a filter of size N, the delay cannot be less
than N sample intervals since N “future” points are re-
quired to predict an output point. In the off-line results
presented in Section II, the output waveforms have been
shifted by N samples to correct for this pure delay. In a
real-time setting, the delay is inescapable, and the deci-
sion to use a median filter with its nonlinear smoothing
properties must be carefully balanced against other fil-
ter types, which may have frequency-dependent or pure
delays. To avoid further complicating a potential con-
trol or monitoring problem, a hardware median filter of
size N should, ideally, introduce no more than the in-
evitable N sample interval delay. Generally, we suspect
that designs with excessive latency or, worse, with laten-
cies which increase with window size or content, should
be avoided.

The sorted order architecture can be constructed to
provide the best overall performance (i.e., minimum la-
tency) [11]. In short, this design implements the equiv-
alent of a hardware insertion sort algorithm [12]. The
goal of this design is to take advantage of the fact that
as the window “slides” across the data point by point,
only one data value is being discarded and one added
at any time. The rest of the list is already in sorted
order. By using a collection of parallel comparators to
simultaneously compare the incoming value to each point
in the sorted list, it is possible to discard the old data
point and insert the new point in a fixed number of clock
cycles regardless of the length of the list. In our sorted
order implementation, presented in the next section, this
insertion is accomplished in two clock cycles.

We discovered after the completion of our design and
construction efforts that our filter is similar in many re-
spects to the sorted order architecture reported in [5]. In
our design we have replaced the bit-slice architecture in
[5] with a word parallel design in which all of the W bits
of each data point are written, compared, or read simul-
taneously. This word parallel approach divides by W the
number of clock cycles needed to perform an insertion
cycle compared to a “bit-serial” design [11]. In [5], the
authors report only simulated performance estimates; in
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Section V, we present results from an actual prototype.
Readers interested in further construction details are en-
couraged to examine {5} in addition to the next section.
In particular, [5] provides guidelines for determining and
comparing silicon area for VLSI implementations which
are beyond our current scope. The description of our
sorted order filter architecture presented in the next sec-
tion is adapted in part from the thesis [13]. See [13] for
more information, including detailed schematics.

IV. Hardware Implementation

A block diagram of our 2N + 1 point hardware filter
window is shown in Fig. 8. The actual values from the
input stream X are stored in the registers labeled data.
The “age” of each sampled value, modulo 2N + 1 count-
ing from zero, is stored in the auxiliary register labeled
index associated with each data register. A window
element is a combination of the data and index regis-
ters and supporting circuitry. The top element in our
design contains the largest data value in the window and
the bottom element contains the smallest, with all other
data in rank order in the middle elements. After an ini-
tialization in which each window element is loaded with
a data value of zero and an index value ranging from zero
to 2N, the steady state operation of this filter window
is controlled by a finite state machine (FSM) which has
two states, shift and load.

The shift operation prepares the window elements to
receive a new input value from the analog-to-digital con-
verter. During the shift state two processes occur: the
value from the data register of the middle element is read
into an output register as the median value, and each el-
ement compares the value of its index register with the
constant 2N. The element which matches contains the
oldest point; an index of zero indicates the newest point.
The result of the index age comparison in each element is
or-gated with the result of the index comparison from the
element above. This composite result propagates to the
element below. All elements below the oldest point, de-
termined by the propagated index age comparison, shift
the values of their sampled data and index registers up
one element, eliminating the oldest point by writing over
it, and freeing the bottom point.

The load operation performs an insertion sort to place
a fresh input value from the analog-to-digital converter
into its correct position in the window. The fresh input
value is broadcast to all of the window elements. Each
window element compares the input value with the value
in its data register. At some “break point” in the win-
dow, all of the elements below the break point will be
less than the input value and all of the elements above
the break point will be greater than the input value. The
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Figure 8: Median Filter Block Diagram

break point is unique in that the element immediately be-
low it compares low to the input value and the element
above it compares high; this condition is easily tested in
parallel for all pairs of window elements. All elements
below the break point shift down, opening an element in
which the new data point from the input bus is inserted.
The index register for this new point is set to zero. All
other index registers are incremented by one. When the
load operation is complete, the machine returns to the
shift state and the process begins again. A new output
point, the median data value in the current window, is
made available after every two finite state machine cycles
(ie., clock cycles) regardless of the size of the window or
the type of waveform being filtered.

Figure 9 shows a schematic of a typical window el-
ement which operates under the two state scheme de-
scribed above. Slight modifications must be made for
the top and bottom elements since these elements do not
have elements above or below, respectively. An action
table summarizing the behavior of the top, bottom, and
middle elements during the shift and load states is shown
in Table 1. The propagated signal, checked during the
shift state for each middle element refers to the value of
the propagation chain that indicates the presence of an
index match with the constant 2N above an element.

Only the top and bottom elements, therefore, require
special control coding. A filter of arbitrary size may be
constructed by stacking sufficient “generic” middle ele-
ments between a top and bottom pair. For simplicity,
analog signals are level shifted prior to analog-to-digital
conversion in our prototype, so the lowest-valued digital
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from l
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Figure 9: Typical window element

sample stored in the window is zero. Hence, our proto-
type does not handle negative sample values digitally; all
register values are positive binary numbers. The median
output of the filter can be inverse shifted to restore the
original bias.

Element State
Shift Load
If (index = 2N+1) |If (data <= in{ut)
data = data ata = inpul
Top below li!:uiex =0
: = else
index = index ™ dex 4= 1

If (data <= input
an

I (mdexo: M+ data above>input)
Ipropagated =TRUE) data = input

dex = 0
. data = data o i
Middle el | elseif ‘(;!Elvmput
index = index |data above>input)
below index += 1
else

data=data above

index =

index above+1

It findex = 2N+1) If (data speve >

: input
o nothing data = input

index = 0

else
data=data above
index =
index above+l

Bottom

Table 1: Element Action Table

In the next section we present results from an actual
prototype of our filter design.

258



40

Value

40

Sample number

. |
50 80 70 80 20 1

00

40

30

Value

T A

o 10 20 30 40

o
Sample number

Figure 10: Test Input and Output

D/A
Converter > Yu
A/D
X— Conv/erter
Median D/A
Filter Conérter > Yf

Figure 11: Median Filter Test Configuration

V. Experimental Results

To study the validity and potential performance of our
proposed design, we constructed a hardware prototype of
a median filter of size one (a window size of three points).
First, to test the hardware sorter, the prototype was used
to filter digital data stored in an EPROM. A section of
the digitized input waveform is shown in the top trace
in Fig. 10. The precise sample locations are indicated
with + symbols. The edges and constant neighborhoods
in the signal are corrupted with spike noise. The bottom
trace in Fig. 10, the output of the filter, shows that the
noise is removed by the prototype filter with its three
point window.

Next, the filter was used in the test configuration
shown in Fig. 11. The signal Y,, was used to monitor
the waveform of digitized samples fed as input to the
median filter. The signal Y; was a real-time, median
filtered version of the digitized input waveform, Y.

Figure 12 shows the results of presenting a 35kH z tri-
angle wave as the input to the filter test hardware. The
top trace in Fig. 12 shows Y,,. For this N =1 filter, the
crest and trough samples of this triangle wave are part of
signal oscillations where the wave is changing directions.
We expect, therefore, that these oscillations will be re-
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Figure 12: Triangle Wave Input

duced in the filtered output. The bottom trace in Fig. 12
shows Yy, the output of the median filter. As expected,
the crest and trough samples have been eliminated. The
filter sampling rate for this experiment was 575kH z.

We have had similar successes operating our hard-
ware filter at sample rates as high as 1.23MHz, near
the limit of our digital-to-analog conversion hardware.
Even at this reasonably fast sample rate, we saw no signs
in our breadboarded prototype of performance degrada-
tion which would prevent the filter from running at even
higher sample rates. A robust, tightly-packed hardware
layout on a printed circuit board or custom integrated
cirouit would presumably perform well at much higher
frequencies.

VI. Conclusions

This paper has presented a hardware median filter de-
sign which meets the stringent requirements necessary
for control and monitoring applications. The results from
the hardware prototype substantiate the expected perfor-
mance of the filter. Several important problems remain
in the development of specific applications.

A point mentioned previously that cannot be over-
emphasized is that the median filter is nonlinear. Stan-
dard linear analysis techniques for the design of feedback
control systems, for example, cannot be directly applied
if a median filter is incorporated in the closed loop. De-
veloping satisfactory techniques for determining stability
and other properties of systems which contain nonlinear
building blocks like the median filter is an open and ac-
tive area of research.

Of course, any field use of the median filter would ne-
cessitate a more rugged construction technique than the
solderless breadboarding used here. The highly modular
structure of the filter naturally points towards a custom
VLSI implementation, an approach taken by many re-




searchers studying nonlinear filtering in the signal pro-
cessing fields. We hope to report on our experiences
with a custom integrated circuit application at a later
date. The commercial success of fast floating point units
for modern digital signal processing applications is well
known. We suspect that, in the long run, the power of
nonlinear filtering may generate a demand for the de-
velopment of commercially available chip packages for
nonlinear operations such as sorting.
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