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Transient Recognition Control for Hybrid Fuel
Cell Systems
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Abstract—Hybrid power systems combining fuel cells with fast
energy storage devices are good solutions to the fuel cell load-
following problem. Hybrid systems may also offer efficiency and
reliability advantages. In this paper, we propose a power control
scheme for hybrid systems that exploits feed-forward information
about the steady-state behavior of incoming load transients. The
method uses a modified cluster-weighted modeling (CWM) algo-
rithm to build a load transient recognition model. The model is for-
mulated sequentially and can provide useful feed-forward informa-
tion in real time. Simulation and experimental results are provided
that demonstrate the effectiveness of the transient recognition
model and the proposed power control scheme for hybrid fuel cell
systems.

Index Terms—Cluster-weighted modeling, fuel cell, hybrid
power system, load transient, pattern recognition.

1. INTRODUCTION

UEL CELLS have attracted much attention as an effi-
F cient, scalable, low-pollution means of generating elec-
trical power. Potential fuel cell applications include distributed
generation, auxiliary and primary generation in transportation
systems, consumer electronics, and backup generation. Load
transients often involve significant peaks in power relative to
the steady-state load that may impact lifetime and efficiency of
fuel cells [1], [2]. The effects of load transients can be reduced
by combining fuel cells with energy storage devices such as
capacitors or batteries to form a hybrid system as in [3]-[10].
This paper presents a power control scheme using feed-forward
information about load transient behavior to manage the flow of
energy between components of a hybrid fuel cell system. This
control scheme may allow designers to minimize energy storage
requirements, improve system reliability, reduce internal loss,
and extend the lifetime of fuel cell systems.

Hybrid fuel cell systems have been proposed for improved
transient response in several scenarios. Proton exchange mem-
brane (PEM) fuel cells are considered in [3], [6], [8]-[10] in
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combination with lead-acid batteries, Li-ion batteries, and ca-
pacitors as energy storage elements for portable military elec-
tronics and communication applications. A fuel cell system cou-
pled with a superconducting magnetic energy storage system
(SMES) is proposed in [7] for a distributed generation sys-
tem. The authors of [4] investigate the combination of a di-
rect methanol fuel cell (DMFC) with an all-solid-state super-
capacitor. The authors in [11]-[15] consider combining fuel
cells with batteries or super-capacitors for electric vehicle ap-
plications.

Simple hybrid fuel cell systems connect the energy storage
device in parallel with the fuel cell. During a transient, the
portion of current delivered from the fuel cell is determined
implicitly by the impedances of the fuel cell and the storage
device. An example can be found in [5]. Some hybrid systems
control the fuel cell to output approximately constant power as
in [3], [6]-[8]. In these applications, the storage device handles
all transient energy and the fuel cell operates like a battery
charger.

The transient performance of a hybrid fuel cell system can be
improved if the control system can determine the future behav-
ior of the transient. The fuel cell can then be controlled to avoid
responding to large transient currents. In limited, fixed-load sce-
narios, it may be possible for an external communications net-
work to alert a hybrid system to the startup behavior of key loads.
In this paper, we present a more flexible system motivated by
the near real-time transient recognition capabilities of the non-
intrusive load monitor (NILM) in [16]. The NILM is capable of
disaggregating and recognizing individual loads from a current
waveform using a library of transient signatures. The hybrid
control problem considered in this paper differs from NILM
in that the identification of the long-range transient behavior
must happen quickly, on a time-scale shorter than the transient.
This paper demonstrates the performance of a fuel cell and
battery prototype hybrid system using a low-latency sequential
modification of cluster-weighted modeling (CWM) [17]-[19]
presented in [20].

Our power controller is developed in the following section
for a fuel cell system, but also applies to similar systems
with transient-sensitive sources. Section III gives an overview
of the sequential CWM method developed in [20] and its
use in transient recognition control. The results section demon-
strates the capabilities of sequential CWM with experimental
results showing the behavior of the power electronics and
loads under transient recognition control. A hybrid system
with transient recognition control is compared to a simple
connection of power electronics to a fuel cell.
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Fig. 1. Hybrid power control scheme combining fuel cells or other critical
source with energy storage devices. The current demanded for the fuel cell
is determined by the recognition of the load transient. This system shows an
inverter and ac load, but dc loads could also be used.

II. NOVEL POWER CONTROL SCHEME FOR HYBRID FUEL
CELL SYSTEMS

Fig. 1 shows the proposed transient-based control scheme
for a hybrid system using energy storage elements and fuel
cells or other critical sources. The power electronic circuit in
Fig. 1 regulates the voltage on the dc bus and uses the input
command from the transient recognition control (TRC) module
to adjust energy flow from the storage devices and the fuel cells
during a transient. The architecture in Fig. 1 allows the fuel cell
to respond to the estimate of the steady-state behavior of the
load supplied by the TRC module. In contrast, the response of a
conventional control depends on the initial transient behavior. A
conventional control may unnecessarily accelerate the reactions
in the fuel cell, leading to thermal consequences and system
inefficiency. The system in Fig. 1 is particularly useful when the
magnitude of the load transients is significant compared to the
capacity of the critical source.

Fig. 2 shows the potential advantages of the transient control
scheme in Fig. 1. The load current transient on the dc bus, in
this case from an incandescent light bulb, has initial values that
are large relative to the steady-state value. The “conventional
control” response shows how a hybrid system with a linear
controller might control the fuel cell for this transient. Storage
devices provide the difference between the load current and
the fuel cell output current at the beginning of the transient.
However, the fuel cell response overshoots the demand before
reaching steady state, vigorously accelerating the generating
process. In contrast, the transient recognition control response
in Fig. 2 shows how the fuel cell could respond to the transient
given the estimate of the long-range transient behavior .

Given a class of transients, a conventional control system
could be designed to minimize the overshoot, fuel cell thermal
excursions, or any other criterion of interest. However, that con-
trol would be a compromise solution over all possible loads. A
control that recognizes the “fingerprint” of an incoming load
can provide a response that is optimal for that load. The delay in
estimating a useful iss must be as short as possible. We address
this problem by adopting a sequential modification of cluster-
weighted modeling to the hybrid control problem. In practical
systems it may be desirable to combine the TRC with some
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Fig. 2. Theoretical comparison of conventional control and transient recogni-
tion control responses to a load transient.

TABLE I
SUMMARY OF KEY NOTATION
Notation Meaning
(d1:d2) (041 042 )7 for any vector 6
P(em) prior probability of cluster ¢,
P(Znlem) conditional prior probability density of input #,, given

cluster ¢,, representing input pattern space

conditional prior probability density of output ¥, given
cluster ¢, representing input pattern space, and Z, the

p(y‘n|fn7 Cm)

input

p(em|yn,ZTn)  conditional posterior probability density of cluster ¢y,
given {yn, T} being observed

P(Yn, Tn) joint probability density of sample pair

conventional control to handle, for example, small offset errors
in ig in the steady state.

III. SEQUENTIAL LOAD TRANSIENT RECOGNITION

This section provides an overview of our implementation of
the transient recognition control using a modification of the clus-
ter weight modeling (CWM) method. We begin with a review
of the CWM method using the notation in [18]. Full derivations
can be found in [18]. The remainder of the section includes de-
velopment of a sequential CWM predictor for real-time fuel cell
control, a transient scaling scheme, and a description of how the
TRC module in Fig. 1 can be implemented. Table I summarizes
the notation used in this section.
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A. Cluster-Weighted Modeling

Cluster-Weighted Modeling [17]-[19] is an iterative scheme
for constructing a functional mapping between input patterns &
and outputs y given a sample set {y,,, ¥, }'_;, where N is the
total number of samples. CWM characterizes the input space
using a number of clusters. Each cluster includes a stochastic
description of how the inputs group around the cluster and a local
model relating the input to the desired output for that cluster. The
output of a CWM is a probabilistic combination of all the cluster
outputs, which allows CWM to achieve a globally nonlinear
mapping even if the local models are linear. CWM has proven
useful for pattern recognition, stochastic time series analysis
and synthesis [19], [21], [22], and nonlinear modeling [23].

A cluster ¢, in CWM consists of a probability P(c,,) and
probability densities p(Z,, | ¢, ) and p(y, | %, ¢ ). The prior
probability P(c,,) is a reflection of the relative importance
of ¢,, to the model. If input patterns associated with ¢,, oc-
cur often, P(c,,) is relatively large. The conditional probabil-
ity density p(Z, | ¢,,) can be thought of as the likelihood of
the input Z, with respect to the cluster c,,. If Z,, is far from
Cm» then p(&, | ¢, ) is small. Finally, the conditional density
P(Yn | Zn, ¢ ) is the likelihood of a particular output y,, for the
¢, cluster, given the input &, . For load transient recognition, Z,,
is the input load transient, y,, is the long range behavior of the
transient, and a cluster ¢,,, may represent a particular transient
or class of transients.

The probability densities in CWM are used to localize the in-
put space, and can be any suitable function. However, Gaussian
density models, i.e.,

D

1
p(fn ‘Cm) = H exp[
i1\ [2m02
T, ! —\In T fnvgm 2
Py | Fvcm) = exp[ (. — I ))] o

20,2,“ y

have an intuitive probabilistic interpretation and good localiza-
tion properties. In (1), D is the dimension of the transient pattern
Z,,. Alsoin (1), the full covariance matrix is replaced with a vari-
ance matrix with D diagonal elements 2, . Although the full
covariance matrix would allow the CWM to use correlation in-
formation, the size and computational costs grow quickly with
the length of the transient pattern.

The local model for each cluster, f(Z,, Em ), is embedded in
(2) as the expectation value of the conditional output density
function. The local model parameters E,,L are determined as a
part of the estimate of p(y,, | Z,, ¢, ). The global mapping is a
“cluster weighted” combination of the local mappings for each
cluster. Specifically, the contribution of each local model for
each cluster is weighted by a likelihood that the input data is
associated with that cluster

(] F) = / yp(y| Za)dy

— 22\71:1 f(fn Ll gm )p(fn | Cm, )P(Cm) ) (3)

M p(@n | em)Plem)

_ _ 2
(xn‘d ,Ufm,,d) ] (1)

2
20m1d

In (3), M is the total number of clusters and p(Z,, | ¢ ) P(cm)
is a likelihood weighted by the prior probability of the cluster
Cn, . The denominator in (3) is a normalization factor for the
weighted combination. Although any output from (3) depends
on all clusters for all different loads, the interaction between
classes of loads with dissimilar transients is weak. For example,
local models formulated for light bulbs will have little influence
on outputs associated with motors because p(Zmotor | Chulb) 1S
very small. The models f(Z,, Hm ) in (2) can be relatively simple
because of the localization properties of p(Z,, | ¢, ) in (3). We
use a linear local model

D
f(fnaﬁm) = B;Tn . fn = Zﬁm,d *Tn.d- (4)
d=1

With this choice of f(Z,, 5, ), CWM can be thought of as a
bank of FIR filters, each tuned to a particular load transient, with
a probabilistic mechanism for selecting an appropriate combi-
nation of outputs.

The presentation in this section emphasizes the output pre-
diction process using (3). The output prediction is most critical
in the hybrid control scenario because it must be real-time. In
contrast, the training or update process for the distributions used
in the prediction step can be pseudo real-time. In a given itera-
tion of training, the posterior p(c,, | yn, &) is evaluated based
on the priors { P(¢y, ), p(Zn | ¢m ), p(yn | £, ¢ )} from the pre-
vious step. Then the posterior is used to update the priors so that
they maximize the joint log likelihood 25:1 log[p(yn, Tn)]-
Refer to [18] for a detailed presentation of CWM training.

B. Sequential CWM Prediction

The CWM estimate (3) of the long range behavior of a load
transient requires waiting for a full set of D data points in the
input pattern Z,. This delay may make the resulting estimate
useless for the fuel cell system in Fig. 1. The real-time perfor-
mance of CWM can be improved by a sequential modification
of (3) as derived in [20].

The sequential prediction step in [20] splits the vector argu-
ment for the local model in (3) into two parts. The first is the
K data points just received as input. The second part uses prior
information associated with each cluster as a substitute for the
missing data. The local model outputs are combined using a
cluster weighted sum based on the conditional probabilities for
the K received points, i.e.,

Al Zﬁf:l ((Tmaﬁ_'m )p (fr(zlk) ‘ Cm) P(Cm)
(|%,) = (3)

Sop (#70 en) Plew)
where
_ T
o = (a7 o) ©

The vector ¢, is a reconstruction of the input vector relative to
¢y using the K available points from the input and the stored
prior information /I,(nl,"’Ll:D )" for the cluster. Some reconstructed
input vectors may be rather implausible, such as when the first

points of an incoming bulb transient are concatenated with the
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Fig. 3. Informative segments (v-sections) in a load transient. A load transient

can have one or more v-sections. Each v-section represents a significant variation
in the long-term power dissipation, and can be modeled individually by CWM.

last points of motor transient cluster. However, the likelihood
p(;ﬁ(}:A ) | ¢, ) should be small for reconstructions that join truly

dissimilar events. The value of p(;ﬁfll:K)

taking the product in (1) over K.

| ¢ ) can be found by

C. TRC Implementation

An empirical observation important to the nonintrusive load
monitor (NILM) is that transients from differently sized but
physically similar loads tend to be similar up to scale factors
in amplitude and time [16]. The proposed transient recognition
classifier takes advantage of this observation by finding an off-
set and an amplitude scale factor for the transient relative to the
clusters. The offset b is continuously estimated by a moving av-
erage filter and is available when the transient arrives. The scale
factor a™M for the maximum likelihood cluster is determined
sequentially according to the maximum likelihood criterion

max logp (:NE’(I:K) ‘ cm,am) @)
where
F (#0:5 — ). @®)

The coefficients ¢ and b are then used to prescale the transient
before CWM prediction of the associated output. Limits are
imposed on the scaling range for each cluster to prevent scaling
that is likely to lead to poor results.

In the NILM, the principle purpose of transient recognition is
to identify the load. In this context, it is important to apply the
same scale factor to each “v-section” or significant feature of
the input stream. Fig. 3 shows v-sections in the context of sam-
ple transient. In transient recognition control the v-sections can
be treated separately. Each v-section is used to predict the effec-
tive long range power change. For instance, the first v-section
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in Fig. 3 can be used to predict the initial change 7, in a long-
duration transient. Unlike NILM, there is no need to link v-
sections to estimate the exact load type. V-sections are found
in the input transient stream by a change of mean detector, as
in [16].

A procedure for implementing TRC using sequential CWM
is provided here.

Step 1) Filter the input transient signal (') to eliminate
switching noise from power electronics.

Step 2) Determine the maximum likelihood scale factor
aMl offset b, and scaled transient data z . as
in Section III-C.

Step 3) Compute the partial likelihood p(g?'(l:K) | ¢, aME)
for each cluster.

Step 4) Reconstruct the scaled transient vector for each clus-
ter using (6).

Step 5) Calculate (y | & ) according to (5).

Step 6) Apply scale factors to CWM output

e = a% (s FHO )+, )

IV. EXPERIMENTAL RESULTS

This section provides two kinds of experimental results. The
first set of results shows the application of the sequential cluster-
weighted modeling approach to transient recognition control.
The results are Matlab simulations of the sequential cluster-
weighted model output with measured data as input. The second
set of results shows how a real hybrid fuel cell system would
react under transient recognition control. These results were
obtained by storing the precomputed responses to transients
in an arbitrary waveform generator and measuring the system
response. The difference between this scenario and a full real-
time implementation is that the TRC runs in less than real-time
in Matlab. A real-time implementation involves no theoreti-
cal changes but technical challenges specific to the choice of
platform.

A. Simulation Results

A variety of load transients were collected to test the tran-
sient recognition control scheme. The test setup consisted of
an HP 6011A power supply operated in constant voltage mode
connected to a Xantrex 1750 prowatt inverter. Load transient
currents on the dc side of this system were measured using an
LEM LA100-P active current sensor connected to a 14-bit data
acquisition system. A total of 265 transients were recorded for
five types of loads including a lathe, bulb, computer monitor,
drill, and vacuum cleaner. The number of transients for each
load is indicated in Table II. The monitor transient includes two
v-sections that were treated as individual transients.

Measured transients were normalized, FIR filtered to elim-
inate the 120-Hz ripple from the inverter, and down-sampled.
The load transient dimension after down-sampling was D = 50.
Most of the transients were used to initialize the sequential
CWM model, including cluster centers, variances, and local
model parameters. More than one cluster was used for each class
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TABLE II
CWM CONFIGURATION AND TESTING SPECIFICATIONS

Transient Training Testing Clusters
transients  transients
Lathe 40 8 6
Monitor v-sectionl 30 6 6
Monitor v-section2 30 6 6
Bulb 51 17 3
Drill 30 10 3
Vacuum 28 9 3
Total 209 56 27
20 20
~ 15 15 0%
< . Lathe transients < i
= 10} € 10} % V-section1 of monitor transients
% S S
e TRC outputs £ 14 /
3 s :. / 3 5 ;}/TRC outputs
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Fig. 4. Testing results of sequential recognition for different load transients.

of transient to accommodate the variability within the class. The
last column of Table II shows the number of clusters used for
each kind of transient.

A set of 56 measured transients was used to test the CWM.
These transients were not used for initialization. Although im-
plemented in Matlab, the testing procedure was the same as
proposed for real-time TRC implementation.

The TRC prediction results are shown in Fig. 4. The dashed
lines show the family of measured transients. The transients
show some expected variability between observations. The solid
lines show the outputs of the transient recognition control. The
TRC outputs have significant prediction errors at the beginning
of the transients. This is expected, as it is clearly impossible
to determine the future behavior of a transient from the first
one or two data points. However, in almost all cases the TRC
output settles quickly compared to the length of the transient. In
practice a “lock-out” interval could remove spurious low-time
TRC outputs to the fuel cell control system.

B. Hybrid Fuel Cell System Results

Fig. 5 shows a diagram of a prototype fuel cell hybrid system
built to test the transient recognition control concept. The system
inFig. 5 is a simple representation of the general system in Fig. 1.

Arbitrary synchronization circuit

Waveform

Generator

i
in ir
s .—/7
SRI2 |+ pepe | —— Test
PEM c ot E— Inverter AC Bus Load
Fuel cell onverter —‘—
24V DC Bus
Fig.5. Multisource test system implementation. This system can be compared

to Fig. 1, except that the control signal is synthesized offline and output at the
appropriate time by the arbitrary waveform generator.

TABLE III
COMPONENTS USED FOR SYSTEM IN FIG. 5

Component Specifications

Avista Labs SR-12
Modular PEM Generator
Kollmorgen KXA-80-10-20
PWM servo amplifier
17 AH, 12V lead acid
EXELTECH XP600
600W Inverter
1100W surge
Tektronix AFG320

Fuel cell
DC/DC converter
Battery

DC/AC inverter

Arbitrary waveform
generator

25 T T

T T T
—+— Inverter input current
—e— Battery output current
—— Converter output current

20

Current (A)

1 1 1 1 1 1
60 70 80 90 100 110 120 130 140 150 160

Time (ms)

Fig. 6. Responses on dc bus of hybrid fuel cell system to incandescent light
bulb transient.

In particular, the battery is connected to the dc bus, providing
both voltage regulation and a fast source. The responses of
the system in Fig. 5 under TRC are compared to the direct
connection of the inverter to the fuel cell without a battery for
an incandescent light bulb transient and a lathe transient. A
Tektronix TDS3054B oscilloscope and TCP202 current probes
were used for all measurements. Other instrumentation details
are provided in Table III.

Fig. 6 shows the response of the system to an incandescent
light bulb transient. All of the currents in Fig. 6 are on the dc
side of the inverter. The load transient starts at about 70 ms.
The current is not zero before the transient because the inverter
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Fig. 7. Responses of hybrid and simple systems to incandescent light bulb
transient. (a) Hybrid fuel cell system responses. (b) Direct connection fuel cell
system responses.

consumes some power. The current supplied to the inverter is
equal to the battery current until about 90 ms, when the TRC
control provides an estimate of the steady state current value,
which is output from the dc to dc converter. After the fuel cell
takes over the load, the battery current drops to an average value
of zero. Note that the battery continues to isolate the fuel cell
from the ripple of the inverter.

Fig. 7 shows the same incandescent light bulb transient as
seen by the fuel cell. The hybrid system responses are on the
left. The current from the fuel cell increases at about 90 ms when
the dc to dc converter receives the command from the TRC. This
step response could be adjusted to meet specific requirements
for the fuel cell. The fuel cell voltage in the lower left of Fig. 7
drops in a controlled manner as the load increases. In contrast,
the voltage and current responses on the right of Fig. 7 vary
greatly and may adversely affect the fuel cell. The peak fuel
cell current in response to the light bulb transient reaches nearly
20 A, while the voltage collapses. The transient takes longer to
evolve on the graphs to the right because the fuel cell is unable
to maintain its output. The steady-state requirement of the light
bulb is about 120 W—well within the 500 W rated capacity of
the fuel cell and inverter system.

Figs. 8 and 9 show similar results, but for a lathe transient.
Fig. 8 shows the simulated TRC response to the lathe transient.
The effective recognition time is at 200 ms, when the fuel cell
picks up the long range transient requirement. As a result, the
fuel cell voltage and current are well-behaved, as shown on the
left of Fig. 9. Without TRC there are uncontrolled excursions in
voltage and current as seen on the right of Fig. 9. Internal losses
in the fuel cell are close to the power delivered for most of the
transients on the right side of Fig. 9.

V. DISCUSSION

This paper presents a hybrid fuel cell system control scheme
that may improve the reliability, efficiency, and service life of
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Fig. 8. Responses on dc bus of hybrid fuel cell system to lathe transient.
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Fig. 9. Responses of hybrid and simple systems to lathe transient. (a) Hybrid
fuel cell system responses. (b) Direct connection fuel cell system responses.

fuel cells and other critical sources. The technique is demon-
strated by simulation of the proposed method in Matlab using
measured transient data and by emulation of a real-time control
using an arbitrary waveform generator in a real hybrid system.
A real-time implementation is feasible. On-going work includes
implementing the TRC in a real-time DSP or FPGA system. If
implemented in real-time, the methods in this paper can protect
fuel cells from undesirable load transient currents.

The training process for the TRC in this paper was performed
once, prior to testing the prediction steps. In practice the training
can occur in near real time to adapt the control to new loads. It
may be that a generic initialization can be performed for standard
loads before installation. Some combination of on-site and off-
site initialization may be desirable. The response of sequential
CWM to new and overlapping transients is considered in [20].
An advantage of CWM is that “off training set” inputs are easy
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to detect by examining the likelihood of the input relative to the
clusters. The likelihood of the input can also be used to detect
and resolve overlapping transients, a feature that may be useful
in NILM applications.

Experimental results suggest that the effective recognition
delay of the TRC is significantly less than the pattern length.
We found that the TRC typically provides good estimates using
about one-fifth of the stored pattern length. Computational effort
increases with the pattern length, so it is tempting to explore
shorter patterns. We expect to see a tradeoff between shorter
patterns and robustness.
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