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Abstract: An analytical modelling approach for fully differential amplifiers is presented and validated through examples.
Separation of the analysis into two steps coupled with linear superposition techniques leads to concise mathematical
expressions. An added benefit of the two-step approach is that the usual symmetry assumptions are not needed. As a
consequence, the results hold for arbitrary element values. The mathematical results are validated by comparison to SPICE
simulations and experimental data.
1 Introduction

Fully differential (FD) amplifiers afford notable benefits in
dynamic range and rejection of unwanted signals. The
dynamic range benefit is significant when contending with
low supply voltages in fully integrated and system-on-chip
design [1–7], general purpose and audio frequency
instrumentation [4, 8–10] and in discrete op-amp
applications particularly for accommodating dynamic mode
(DM) input analogue to digital converters [9–13].
Integrated switched capacitor amplifiers have exploited this
benefit as well [14–17]. Power supply disturbances and
common-mode (CM) pickup constitute typical unwanted
signals that are better rejected by FD electronics when
compared to their single-ended (SE) counterparts [8, 14,
18–21]. Both voltage-mode and current-mode
(transimpedance) FD amplifiers are useful as front-end
amplifiers for suppressing unwanted carrier content in
balanced or ‘bridge-like’ systems [22–25]. Additionally,
DM signal processing rejects the effects of even-order non-
linearities [11, 20]. Both balanced and intentionally
asymmetric FD amplifiers play important roles [10, 13].

These benefits come at the expense of added complexity in
analysis. Powerful simplifications are possible upon assuming
perfect or almost perfect symmetry, for example, equality
between homologous elements, Zf 1 and Zf 2, in Fig. 1.
References [20, 26–28] exploit those simplifications to
develop half-circuit decomposition methods. In [10] the
author analyses FD amplifiers directly, but relies on perfect
symmetry assumptions late in the analysis to arrive at
expressions in terms of DM or CM input signals.

This work takes an alternative approach to the analysis of
FD amplifiers. The analysis is separated into two steps
corresponding to the inner transimpedance amplifier and the
outer voltage-mode amplifier. Linear superposition of CM
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and DM signals assures that the results are written directly
in terms of those quantities. Separation of the analysis and
the use of linear superposition lead to concise or ‘low-
entropy’ mathematical expressions [29]. An added benefit of
the approach is that the usual symmetry assumptions are not
needed and so the results hold for arbitrary element values.

The development of the FD transimpedance amplifier
circuit model in Section 2 is perhaps the core contribution of
this work. The versatility of that circuit model is
demonstrated in three key contexts. First, the transimpedance
amplifier model is used to derive the performance of a
voltage amplifier with arbitrary impedance elements, Z1 and
Z2 in Fig. 1. The results hold for arbitrary impedance values
and agree well with the simulated behaviour of a
commercial FD op-amp. Second, the extension of that
analysis to include finite op-amp input impedance using the
same transimpedance amplifier circuit model is described.
Finally, the transimpedance amplifier model is used to
predict the behaviour of a capacitive bridge sensor system.
In the capacitive bridge sensor system, the external
impedance elements Z1 and Z2 are further generalised to an
arbitrary impedance network. Finite op-amp input
impedance is captured by including shunt impedances at the
transimpedance amplifier circuit model inputs. In the
capacitive bridge sensor system, the front-end amplifier is
loaded by the subsequent synchronous demodulation
circuitry. Model validation comparing experimental data to
data simulated using the transimpedance amplifier circuit
model shows excellent agreement.

1.1 Current paths in FD amplifiers

The ensuing analysis will be better appreciated having an
understanding of the CM and DM current paths through a
FD amplifier. The current paths in the FD amplifier
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(Fig. 2b) are in some sense a generalisation of those in the
SE amplifier (Fig. 2a); current return paths are supported by
the output structure of the op-amp itself, but in the FD
amplifier purely DM and purely CM currents take two
distinct paths. The circuit models developed through the
analysis in Sections 2 and 3 will mirror the current paths
shown in Fig. 2b. Note that the incremental grounds in
Fig. 2 are physically supported by the op-amp power
supply connections. Incremental grounds are those potential
surfaces exhibiting purely DC voltages with respect to the
actual system ground.

1.2 Definitions

Definitions of CM and DM signal decompositions vary
among the literature. We define them in this work as follows

vdm = v+ − v− (1)

vcm = v+ + v−
2

(2)

idm = i+ − i−
2

(3)

icm = i+ + i− (4)

1.3 Scope

The analysis in Sections 2 and 3 focuses on the DM output
voltage while the CM output voltage is assumed to be held
fixed by the CM feedback circuit included in all
commercial FD op-amps. The scope of this paper is
intended to address op-amp circuits that process signals
having frequency content well below the op-amp cross-over
frequency, for example, 1 kHz in the simulations of the
LTC6404. These cases are ubiquitous as they are coincident

Fig. 1 FD closed-loop op-amp circuit
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with good design practices guaranteeing that the op-amp
will exhibit large DM–DM gain, ad, and relatively small
CM–DM gain, ac. Loading effects on the closed-loop
op-amp circuit are negligible under these conditions because
the feedback control significantly reduces the effect of finite-
op-amp (open-loop) output impedance. The assumptions
described above will be validated in both simulation and in a
practical setting in Section 4.

1.4 Dynamics

The results in this paper are derived in terms of op-amp gain
parameters, ad and ac, and generalised external impedance
elements. The behaviour of an arbitrary system having
dynamic effects may be described by inserting the
frequency dependencies of those parameters into the
mathematical results or circuit models.

1.5 Model validation

Comparison of the mathematical results with the simulated
and experimental data validates the assumptions taken in
the analysis, the practical relevance of this work and the
correctness of the mathematical manipulations. Simulated
model validation was carried out by comparing numerical
results from the mathematical results to SPICE simulations
of ideal circuit models and of a commercial FD op-amp, the
LTC6404. The commercial LTC6404 FD op-amp part was
chosen for the model validations because of the availability
of a SPICE model for that part in the library provided with
the simulation software used here, LTSPICE. The model
validations plot the quantities of interest against percentage
mismatch between homologous elements, e.g. DZ is the
mismatch between Z1 and Z2 in Fig. 1. 0% mismatch
corresponds to perfect symmetry. 200% mismatch means
that one element is zero-valued while the other is twice the
average value.

Experimental model validation was carried out by
comparing simulated data to experimental data in a practical
setting involving macroscopic capacitive occupancy sensing
and a synchronous detection signal processing system. The
commercial FD op-amp employed in that experimental
setup was the Texas Instruments part, THS4140. While a
SPICE model was not readily available for the THS4140
part, only the linearised circuit model developed in this
paper was needed in the experimental model validation for
Fig. 2 Small-signal current paths in closed-loop op-amp amplifiers

a SE
b FD
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Section 4. The model parameters inserted into the linearised
circuit model can be taken from the data sheet for that part,
which was readily available.

2 Analysis step one: transimpedance
amplifier

In this section we analyse a FD transimpedance amplifier
using the small-signal model shown in Fig. 3. In the small-
signal model, the input and output voltages are

vid = v+ − v− (5)

vic =
1

2
(v+ + v−) (6)

vod = vo+ − vo− (7)

The DM and CM input currents are respectively

iid = isd = 1

2
(i+ − i−) (8)

iic = isc = i+ + i− (9)

and the amplifier has the effects

vod = advid + acvic (10)

vo+ = −vo− (11)

where ad, the DM–DM op-amp gain, is large by design and
ac, the CM–DM op-amp gain, is relatively small, also by
design. The small-signal CM output voltage is an
incremental ground.

2.1 Transimpedance amplifier output behaviour

A CM–DM superposition approach for determining the
transimpedance amplifier’s DM output voltage is summarised
by the equation

vod = iid
vod

iid

( )
iic=0

+ iic
vod

iic

( )
iid=0

(12)

in which the terms in parentheses are the transimpedance and
cross-transimpedance. To find (vod/iid)iic=0, the CM input
current sources are deactivated. Note that in this case

iid = isd = i+ = −i− (13)

Fig. 3 FD transimpedance amplifier small-signal model
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From Fig. 3, the resulting input terminal voltages are

v+ = vo− + iidZf 2 (14)

v− = vo+ − iidZf 1 (15)

so that, from (5) and (6), the CM and DM input voltages become

vic =
1

2
(v+ + v−) = iid

2
(Zf 2 − Zf 1) (16)

vid = v+ − v− = −vod + iidZf 2 + iidZf 1 (17)

Substituting the CM and DM input voltages into the output
voltage from (10) yields

vod = ad(iid(Zf 1 + Zf 2) − vod) + ac

iid
2

(Zf 2 − Zf 1) (18)

so that

vod

iid

( )
iic=0

= 2
ad

1 + ad

Zf −
ac

2(1 + ad)
DZf (19)

where we have made the following definitions

Zf ;
(Zf 1 + Zf 2)

2
(20)

DZf ; Zf 1 − Zf 2 (21)

To calculate (vod/iic)iid=0, the DM input current source is
deactivated. A similar analysis yields

vod

iic

( )
iid=0

= 1

2

(−adDZf + acZf )

(1 + ad)
(22)

Superposing the two responses in (19) and (22) yields the
complete expression for the DM output voltage in response to
generalised input currents

vod = iid
2adZf − (1/2) acDZf

(1 + ad)

( )
+ iic

acZf − adDZf

2(1 + ad)

( )
(23)

2.2 Transimpedance amplifier input behaviour

Having derived the DM output voltage, a similar analysis
leads to the DM and CM input voltages. These results will
be grouped according to the superposition expressions below

vid = iid
vid

iid

( )
iic=0

+ iic
vid

iic

( )
iid=0

(24)

vic = iid
vic

iid

( )
iic=0

+ iic
vic

iic

( )
iid=0

(25)

Analysing the small-signal model in Fig. 3 leads to

vic = −iid
DZf

2
+ iic

Zf

2
(26)
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and

vid = iid

2Zf +
1

2
acDZf

(1 + ad)

⎛
⎜⎝

⎞
⎟⎠− iic

DZf + acZf

2(1 + ad)

( )
(27)

Comparing these results to (24) and (25) reveals the distinct
terms resulting from the superposition of the CM and DM
input sources. An interesting pattern arises in the results
above. Terms with one of ac or DZf influence cross-
coupling from CM to DM signals. On the other hand, terms
with a product of ac and DZf appear as non-ideal terms in
the relation between two DM signals. This pattern is
intuitive and ubiquitous in this paper.

2.3 Circuit models of the transimpedance amplifier

For the second step of the analysis, it will be useful to form
circuit models of the transimpedance amplifier. Figs. 4b and
c show ‘T’ and ‘P’ topologies that are helpful for
representing the CM and DM input voltages in (26) and
(27). Both models include a dependent voltage source at the
output, which captures the function of the transimpedance
and the cross-transimpedance from (23). The two models
differ in their input structures. The T-network and the P-
network are each intended to approximate the behaviour of
the CM and DM input voltages in (26) and (27).

To simplify the following discussion, it is convenient to
rename the terms in (26) and (27) as follows

Zc ;
vic

iic

( )
iid=0

=
Zf

2

( )
(28)
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Zd ;
vid

iid

( )
iic=0

=
2Zf + (1/2)DZf ac

(1 + ad)

( )
(29)

ec(iid) ; iid
vic

iid

( )
iic=0

= −iid
DZf

2

( )
(30)

ed(iic) ; iic
vid

iic

( )
iid=0

= −iic
DZf + acZf

2(1 + ad)

( )
(31)

The terms Zc and Zd are the diagonal-terms from (26) and (27)
and they are the CM and DM input impedances of the
transimpedance amplifier. The terms ec(iid) and ed(iic)
represent dependent voltage sources that capture the effects
of the ‘cross-terms’ in (26) and (27).

Using the definitions in (28)–(31), the following model
parameters achieve an exact match between the terminal
behaviours of the circuits in Figs. 4b and c and the input
voltages represented by (26) and (27)

T-Model: P-Model:

Za = Zd Zg = Zd

Zd

Zd||4Zc

(32)

Zb = Zc Zd = Zc (33)

ea = ed(iic) eg = ed(iic)
Zd

Zd||4Zc

(34)

eb = ec(iid) − iicZd

4
ed = ec(iid) (35)

The model parameters in (32)–(35) can be simplified under
practical approximations to make the circuit models more
intuitive. For sufficiently small Zd, the additive term, (iicZd/
Fig. 4 FD transimpedance amplifier and two approximate small-signal models

a FD transimpedance amplifier
b Small-signal T-model
c Small-signal P-model
T-model and the P-model differ in the structure of their input network. Each contain an internal node labelled ecc
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 5, pp. 371–383
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4), will approach zero and the multiplicative term, (Zd/
Zd‖4Zc), will approach unity. From (28)–(31), Zd is
guaranteed to be small if both ad and the ratio ad/ac are
large. Under these assumptions, the model parameters in
(32)–(35) reduce to

T-Model: P-Model:

Za = Zd Zg = Zd (36)

Zb = Zc Zd = Zc (37)

ea = ed(iic) eg = ed(iic) (38)

eb = ec(iid) ed = ec(iid) (39)

For simplicity, the rest of this analysis assumes that the gain
criteria above have been met and proceeds with the
approximate model parameters in (36)–(39).

2.4 Transimpedance amplifier model validation

Fig. 5 shows model validation plots for the transimpedance
amplifier. In the model validations, the amplifier was driven
with a 1 kHz sinusoidal current source with equal CM and
DM components each having an amplitude of 1 mA. The
calculated results for vid, vic and vod were overlayed on the
simulated results for the T and P circuit models, a small-
signal (‘s2s ’) op-amp model and a simulated commercial
op-amp. The left column in Fig. 5 shows results for positive-
valued mismatches, DZf. The right column shows results for
negative-valued mismatches. The results in Fig. 5 show
good agreement among the calculated and simulated results.

2.5 Virtual short-circuit approximation

From (29), the impedance of the DM virtual short-circuit is
predominantly 2Zf /(1 + ad). The DM gain, ad, is large by
design, so this impedance is small and hence the virtual
short-circuit approximation. On the other hand, the CM input
impedance in (28) is half the average feedback impedance –
approximately equal to Zf 1‖Zf 2 for small mismatch values.
These results become intuitive when following the respective
current paths (Fig. 2b) through the amplifier.

3 Analysis step two: voltage amplifier

In Fig. 6, input elements Z1 and Z2 are added onto the P-model
of the transimpedance amplifier circuit model to form a voltage
amplifier model. The goal of this section is to find the DM
output voltage, vod, that results from the CM and DM input
voltages, vsc and vsd. The transimpedances derived in Section
2 reveal the relationships between the input currents, iic and
iid, and the DM output voltage, vod, from (23). The voltage
amplifier analysis reduces to finding the relationships
between the input voltage sources, vsc and vsd, and the
input currents, iic and iid. This analysis results in four
transconductances.

A superposition approach to find the overall DM output
voltage yields the following expression

vod = iid
vod

iid

( )
iic=0

+ iic
vod

iic

( )
iid=0

(40)

where the terms in parentheses are the two transimpedances
from Section 2. The currents, iid and iic in (40), may be
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 5, pp. 371–383
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found using linear superposition of the DM and CM input
voltage sources as follows

vod = vsd

iid
vsd

( )
vsc=0

+ vsc

iid
vsc

( )
vsd=0

( )
︸



















︷︷



















︸

iid

vod

iid

( )
iic=0︸



︷︷



︸

transimpedance

(41)

+ vsd

iic
vsd

( )
vsc=0

+ vsc

iic
vsc

( )
vsd=0

( )
︸



















︷︷



















︸

iic

vod

iic

( )
iid=0︸



︷︷



︸

cross−transimpedance

(42)

where the added terms in parentheses are the four
transconductances. The two transimpedances and four
transconductances can be renamed for brevity as follows

Zdd ;
vod

iid

( )
iic=0

Zcd ;
vod

iic

( )
iid=0

(43)

Ydd ;
iid
vsd

( )
vsc=0

Ycd ;
iid
vsc

( )
vsd=0

(44)

Ydc ;
iic
vsd

( )
vsc=0

Ycc ;
iic
vsc

( )
vsd=0

(45)

so the expression in (42) can be written as

vod = (vsdYdd + vscYcd)Zdd + (vsdYdc + vscYcc)Zcd (46)

and regrouped with the source terms

vod = vsd(YddZdd + YdcZcd) + vsc(YcdZdd + YccZcd) (47)

The analysis may be simplified using the virtual short-circuit
approximation quantified in Section 2.5. Analysis of the
resulting circuit in Fig. 6c may be divided into four distinct
pieces for the four unknown transconductances needed in
the expression for vod (47). Shorting the DM input source
results in the set of constraints on the input currents

i+ = (vsc − ecc)

Z1

(48)

i− = (vsc − ecc)

Z2

(49)

while shorting the CM input source results in the set of
constraints on the input currents

i+ = ((1/2)vsd − ecc)

Z1

(50)

i− = ( − (1/2)vsd − ecc)

Z2

(51)

In either case, the node voltage ecc in Fig. 6c is constrained
to be

ecc = ec + (i+ + i−)Zc (52)

Solving for iid ¼ (i+ 2 i2)/2 and iic ¼ (i+ 2 i2) leads to
four permutations of constraints corresponding to the four
transconductances. For instance, to find Ydd, the CM input
voltage is deactivated according to the definition in (44), and
375
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the DM input current is found from

iid = i+ − i−
2

(53)

with the three constraints from KVL above, (50), (51) and

(52). Solving for iid/vsd and simplifying leads to [30]

Ydd =
2Zf + Z1 + Z2

4(Z1||Z2 + (1/2)Zf )(Z1 + Z2) + DZDZf

(54)

Fig. 5 Validating the transimpedance amplifier model

a vid for DZf . 0
b vid for DZf , 0
c vic for DZf . 0
d vic for DZf , 0
e vod for DZf . 0
f vod for DZf , 0
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The denominator in Ydd above appears in all four
transconductances. The quantities in that denominator can be
identified with respect to physical current paths in the
voltage amplifier as follows

Zdm = Z1 + Z2 (55)

Zcm = Z1||Z2 +
Zf

2
(56)

For the simplified model of Fig. 6c, Zdm is the impedance seen
by a purely DM input voltage source driving a purely DM
input current and Zcm is the impedance seen by a purely CM

Fig. 6 Adding the input elements onto the transimpedance
amplifier model yields a voltage-mode amplifier model

a FD voltage-mode amplifier
b Voltage-mode amplifier model built from the P-model of the
transimpedance amplifier
c Voltage-mode amplifier model using the ‘virtual short-circuit
approximation’
d The model used for deriving the correction in Section 3.1
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 5, pp. 371–383
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input voltage source driving a purely CM input current. That is

Zdm = vsd

iid

( )
vsc=0
iic=0

(57)

Zcm = vsc

iic

( )
vsd=0
iid=0

(58)

Applying the constraints in the four permutations, simplifying
and identifying the impedance terms Zdm and Zcm leads to

Ydd = 2
Zf + Z

4ZcmZdm + DZDZf

(59)

Ycd = 2
−DZ

4ZcmZdm + DZDZf

(60)

Ydc = 2
DZf − DZ

4ZcmZdm + DZDZf

(61)

Ycc = 8
Z

4ZcmZdm + DZDZf

(62)

The common denominator in these transconductances aids
further analysis when we form linear combinations of these
terms (see Section 3.3).

3.1 Model correction

The virtual short-circuit approximation led to some
inaccuracy in the results for CM–DM gain, Avc, in the
small-mismatch region (Fig. 7a). The modularity of the
results allows for rapid correction of this inaccuracy.
Adding the effect of ed(iic) is most critical for correcting Avc

because it accounts for a DM input voltage in response to a
CM input current. Among the two transconductaces that
affect CM–DM gain, Ycd quantifies the DM input current,
which is most directly affected by the addition of ed(iic) to
the model. This correction re-derives Ycd from the circuit in
Fig. 6d, while Ycc is assumed sufficiently accurate.

The circuit in Fig. 6d leads to the following constraints

iid = ied +
ed

4Zc

= ied + i′id (63)

iic = i+ + i− = i′ic (64)

where

i′id ;
1

2
(i′+ − i′−) (65)

i′ic ; i′+ + i′− = iic (66)

and the current through the added DM voltage element is

ied = i+ − i′+ = i′− − i− (67)

Finally, applying KVL results in two equations

vsc − i+Z1 − ed − i′−2Zc − ec = 0 (68)

vsc − i−Z2 + ed − i′+2Zc − ec = 0 (69)
377
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Fig. 7 Accuracy improvement for small-mismatch Avc

a Small-mismatch ‘zoom-in’ of Avc for DZf . 0 (uncorrected). Plotting Avc for DZ . 0 results in a very similar plot. The calculated line falls on the shorted-input
model data instead of the more accurate simulated data
b Small-mismatch ‘zoom-in’ of Avc for DZf . 0 (corrected). A plot of Avc for DZ . 0 is very similar. Small-mismatch CM–DM gain agrees well with simulated
circuits after the correction is added
Solving these constraints for the ‘corrected transconductance’,
Y ′

cd = (iid/vsc)vsd=0, leads to

Y ′
cd =

Ycc(Zf DZ + Z(DZf + acZf /1 + ad)) − DZ

4Z1Z2 + (1/2)DZf DZ
(70)

which is more complicated than the expressions in (59)–(62).
Because the small-mismatch region is of interest here, Y ′

cd can
be simplified with the small-mismatch approximations

DZf ≪ Zf 1, Zf 2, Zf (71)

DZ ≪ Z1, Z2, Z (72)

which imply that Zf 1 ≃ Zf 2 ≃ Zf and Z1 ≃ Z2 ≃ Z. The
‘small-mismatch corrected transconductance’ becomes

Y ′
cds ≃

(acZf /1 + ad) − DZ

2ZdmZcm

(73)

The denominator in (73) can be forced to match the common
denominator from the other three transconductances by
multiplying the numerator and denominator by 2 and adding
the small quantity, DZfDZ, back in

Y ′
cds ≃ 2

Zf (ac/1 + ad)
︷






︸︸






︷correction term

−DZ

4ZdmZcm + DZf DZ
(74)

Comparing Y ′
cds from (74) to Ycd from (60) reveals that they

differ only in the ‘correction term’ (Zf (ac/1 + ad)).
Model validation (Fig. 7b) with this corrected Y ′

cds shows
good agreement for small mismatch values. Although Y ′

cds
was calculated while assuming small mismatches, model
validations will show that the full model, including the
corrected Y ′

cds, agrees for the range 0–200% of resistive
element mismatch values. Therefore the following results,
including Y ′

cds, are proposed as the full transconductance–
transimpedance descriptive abstraction of the FD voltage
378

& The Institution of Engineering and Technology 2011
amplifier

Ydd = 2
Zf + Z

4ZcmZdm + DZDZf

(75)

Y ′
cds = 2

Zf (ac/1 + ad) − DZ

4ZcmZdm + DZDZf

(76)

Ydc = 2
DZf − DZ

4ZcmZdm + DZDZf

(77)

Ycc = 8
Z

4ZcmZdm + DZDZf

(78)

and the transimpedance amplifier results are repeated here
for convenience

Zdd = 2
adZf − acDZf /2

(1 + ad)
(79)

Zcd = 1

2

acZf − adDZf

(1 + ad)
(80)

The results in (75)–(80) yield the full expression for the DM
output voltage when substituted into the following expression

vod = vsd(YddZdd + YdcZcd) + vsc(Y
′
cdsZdd + YccZcd) (81)

3.2 Voltage amplifier input impedance

CM and DM input impedances for the voltage-mode amplifier
may be taken directly from the transconductances as follows

Zind ;
vsd

iid

( )
vsc=0

= Y−1
dd (82)

Zinc ;
vsc

iic

( )
vsd=0

= Y−1
cc (83)
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 5, pp. 371–383
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so that the DM input impedance is

Zind = 1

2

4ZcmZdm + DZDZf

Zf + Z
(84)

and the CM input impedance is

Zinc =
1

8

4ZcmZdm + DZDZf

Z
(85)

Simplifying the expressions for DM and CM input impedance
with the small-mismatch approximations in (71) and (72)
leads to the ‘small-mismatch DM input impedance’

Zind s = Zdm = Z1 + Z2 (86)

and the ‘small-mismatch CM input impedance’

Zinc s = Zcm = Z1‖Z2 +
Zf

2
(87)

which can be approximated for intuition as

Zinc s ≃ Z1||Z2 + Zf 1||Zf 2 (88)

The DM and CM input impedance expressions, especially
(86) and (88), are intuitive when following the respective
current paths (Fig. 2b) through the amplifier. As one might
expect, the special-case impedances, Zdm and Zcm from (55)
and (56), are related to the input impedances, Zind and Zinc

in (84)–(87). In fact, Zdm and Zcm are, by definition, special
cases of Zind and Zinc

Zdm = Zind|iic=0 (89)

Zcm = Zinc|iid=0 (90)

Moreover, the results in (86) and (87) suggest that those
special cases are coincident with small mismatches in the
external homologous elements.

3.3 Discussion

Familiar quantities such as DM–DM gain, Avd, and common-
mode rejection ratio (CMRR) are readily extracted and
simplified from the modularised result. For instance, DM–
DM gain in the result from (81) is

Avd ;
vod

vsd

( )
vsc=0

= YddZdd + YdcZcd (91)

and expanding this leads to the full DM voltage gain
expression (see (92))

This full-gain expression can be simplified to suit the
particular non-idealities of interest. For instance, if
mismatches are small, the difference between them is
smaller (DZf 2 DZ ≃ 0), and the second term in the
numerator of (92) can be disregarded leaving only
Avd ≃ YddZdd. In the small-mismatch approximation this
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becomes

Avd ≃
4(Zf + Z)(adZf − (1/2)acDZf )

(4ZcmZdm)(1 + ad)
(93)

where the small second-order mismatch term in the
denominator has been left out. Expanding the impedances,
Zdm and Zcm, the DM voltage gain above reduces to

Avds =
(adZf − (1/2)acDZf )

Z(1 + ad)
(94)

where we define Avds as the ‘small-mismatch DM voltage
gain.’ In the fully ideal limit, ad � 1 and ac � 0

Avdo =
Zf

Z
(95)

where we define Avdo as the ‘fully-ideal voltage gain.’ The
form of Avdo is consistent with intuition that we bring from
SE amplifier cases.

Also from (81), the CM–DM cross-coupling gain is

Avc ;
vod

vsc

( )
vsd=0

= Y ′
cdsZdd + YccZcd (96)

and dividing this quantity by the DM–DM gain yields the
common-mode rejection

CMR ;
Avc

Avd

( )
= Y ′

cdsZdd + YccZcd

YddZdd + YdcZcd

(97)

which can be simplified by neglecting small terms to obtain
the approximate CMR

CMR ≃
4(Zf (ac/1 + ad) − DZ)adZf + 4Z(acZf − adDZf )

4(Zf + Z)adZf + (DZf − DZ)(acZf − adDZf )

(98)

The common denominator in the transconductances (75)–(78)
divides out, simplifying the calculation above. Collecting
terms, approximating (1 + ad) ≃ ad, and rewriting (98) gives

CMR ≃
(ac/ad) − ((Z/Zf )DZf + DZ/ Zf + Z )

1 + ((DZf − DZ)(ac/ad − DZf /Zf )/4(Z + Zf ))

(99)

Reducing (99) further with the small-mismatch approximations
in (71) and (72), the denominator approaches 1, leaving the
numerator and we arrive at the ‘small-mismatch common-
mode rejection’

CMRs =
ac

ad︸︷︷︸
‘op-amp gains’

−
(Z/Zf )DZf + DZ

Zf + Z︸








︷︷








︸
‘external elements’

(100)
Avd =
4(Zf + Z)(adZf − (acDZf /2)) + (DZf − DZ)(acZf − adDZf )

(4ZcmZdm + DZDZf )(1 + ad)
(92)
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which is neatly separable into an ‘op-amp gain term’ and an
‘external element term’.

Model validation plots for CMRs in Fig. 8 show good
agreement for symmetric mismatches up to about 100% in the
feedback and input elements. CMRR is defined here as the
logarithmic version of CMR measured in decibels, CMRR ; 20
log10|CMR|. For calculating CMR with larger mismatches, the
expression in (99) can be used for better accuracy as it is shows
good agreement for large percentage mismatch (200%).
Numerical results from the half-circuit decomposition analysis in
[28] are overlaid on the lower plots. Note that in Figs. 8a and b,
the results from [28] are somewhat trivial due to the limitations
of the analytical approach employed there.

The model validations also support the well-known fact that
the optimal mismatch, yielding the smallest CMR, occurs for
non-zero-valued mismatches (see the nulls in Figs. 8a and c).
Although significant, the analysis from [28] does not predict
this behaviour. The cancellation effect at non-zero-valued
mismatch results from the finite DM and CM gains of the
op-amp, ad and ac, as is clear from the CMR expression in
(100). For example, with Zf = 100V, the optimal mismatch
for the LTC6404-1 for either the feedback or input element
mismatch alone is about 0.61% as shown in Fig. 8. In
theory, arbitrarily small CMR values could be obtained by
adjusting the mismatches to achieve zero-valued CM–DM
380
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gain. In practice, such control over the mismatch is perhaps
difficult. The zero-crossing of the CM–DM gain, which
leads to the null in the CMRR, is also evident in the plot of
Fig. 7b from Section 3.1. Note that the plots for CMRR in
Fig. 8 approach the CMRR of the op-amp, 250 dB, for
zero-valued mismatches and are also in agreement with (100).

3.4 Sensitivity

The results in Sections 2 and 3 have shown good model
accuracy having considered op-amp gain parameters, ad and
ac. Examining the sensitivity of the mathematical model to
those parameters may reveal the amount of modelling error
caused by uncertainties in our knowledge of the op-amp gain
parameters. It may also reveal the amount that particular
performance metrics change as op-amp gain parameters vary
in time due to temperature effects, and so on. In either case,
the simple derivative may be employed to examine the effect
of changes in the op-amp gain parameters.

For example, starting from (100), the value of feedback
impedance mismatch corresponding to the null in CMRR
varies with op-amp gain parameters as follows

ad

∂DZf

∂ad

∣∣∣∣
CMRR�−1
DZ=0

= − ac

ad

Zf

Z
(Zf + Z) (101)
Fig. 8 Finite op-amp CM gains, ad and ac, lead to a null in the CMRR at non-zero mismatch values

a CMRR for DZf . 0
b CMRR for DZf , 0
c CMRR for DZ . 0
d CMRR for DZ , 0
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ac

∂DZf

∂ac

∣∣∣∣
CMRR�−1
DZ=0

= ac

ad

Zf

Z
(Zf + Z) (102)

Analysis regarding the value of input-element mismatch leads
to similar results. Note that the error due to changes in ad is
simply the negative of the error due to changes in ac.

As a numerical example, consider the nominal impedances
Zf = Z = 100V and op-amp gain parameters from the
simulations above. Using (101), a fractional change in DM op-
amp gain, ∂ad/ad ¼ 20.15, corresponding to a multiplicative
error of 0.85, leads to an error in the location of the null of
approximately +0.09% in agreement with the results plotted
in Fig. 9. Fig. 9 also illustrates the effect of larger changes in
ad. Naturally, the zero-mismatch CMRR should increase as ad

decreases, also in agreement with Fig. 9.

Fig. 9 Plots of CMRR for various multiplicative errors in op-amp
gain ad compared to the actual CMRR for the linear technology part
LT6404-1
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3.5 Finite op-amp input impedance

The results above were calculated based on the op-amp model
in Fig. 3 and the assumptions described in Section 1.3. Model
validation showed excellent agreement among the calculated
results and the behaviour of a commercial FD op-amp. In
general, there may be a need to include other aspects in the
op-amp model. The versatility of the transimpedance
amplifier abstraction developed in Section 2 was
demonstrated in a first example, by adding to it the input
elements, Z1 and Z2, yielding a voltage amplifier. Here, we
consider the addition of finite op-amp input impedance to
the idealised op-amp model of Fig. 3.

The op-amp input impedance elements can be modelled as
shunt impedances at the op-amp input nodes to incremental
ground. The addition of those impedances can be viewed as
a modification of the voltage amplifier analysis in Section 3
leading to the four transconductances, Ydd–Ycc. Since the
transimpedance amplifier model responses were derived in
terms of the input currents i+ and i2, only the voltage
amplifier analysis needs to be iterated.

Using the Thevenin equivalent circuits comprising the
input voltage sources and impedances Z1, Z2 and the
additional op-amp input impedance elements, (48)–(51)
become

i+|vsd=0 = (vsc(Zin 1/Zin 1 + Z1) − ecc)

Z1||Zin 1

(103)

i−|vsd=0 = (vsc(Zin 2/Zin 2 + Z2) − ecc)

Z2||Zin 2

(104)

i+|vsc=0 = ((1/2)vsd(Zin 1/Zin 1 + Z1) − ecc)

Z1||Zin 1

(105)

i−|vsc=0 = ( − (1/2)vsd(Zin 2/Zin 2 + Z2) − ecc)

Z2||Zin 2

(106)

Starting from these modified constraints, one can re-derive the
four tranconductances in terms of op-amp input impedances,
Fig. 10 Simplified schematic of the FD signal conditioning electronics
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Zin 1 and Zin 2, while keeping the same results for the two
transconductances found in Section 2.

4 Experimental validation

This treatment of FD amplifiers was motivated by an
investigation of a particular capacitive occupancy sensor.
The sensor, presented in [25], employs a FD amplifier
connected between two electrodes, to measure changes in a
physically balanced bridge network comprising the lumped
capacitances between conducting bodies in the detection
field. A half-circuit representation of the FD amplifier was
not suitable for capturing the effect of the arbitrarily
varying capacitive impedances in the bridge network nor
was it sufficient to account for the effects of the amplifier’s
separate DM and CM current paths. Only a generalised
model with an unbroken structure could accurately represent
these effects. In this application example, the distributed
capacitances comprising the bridge network in the
capacitive sensor take the place of the impedance elements,
Z1 and Z2 from Fig. 1. Imbalances in the complicated
capacitive bridge network indicate a detection of an
occupant. It is precisely those imbalances that must be
captured accurately by our model of the FD amplifier. The
power of the intermediate FD transimpedance amplifier
circuit model from Section 2 is highlighted in this example
because it accurately captures the behaviour of the FD
structure and its effect on a complicated and intentionally
asymmetric impedance network.

Fig. 10 shows a schematic of the signal conditioning
electronics for this capacitive sensor including the FD front-
end amplifier. The signal processing scheme represented by
the electronics in Fig. 10 is synchronous detection, a well-
known approach to isolating baseband signals in amplitude
modulated carrier signals. Also shown in the figure is a
simplified depiction of the lumped element capacitive
bridge network. The capacitive impedances in the bridge
network correspond to the input impedance elements Z1 and
Z2 in Fig. 1. The FD front-end amplifier is loaded by a FD
multiplier circuit used to synchronously detect modulations
of the high-frequency carrier signal caused by the presence
of the occupant. More details can be found in [25].

Fig. 11 Plot of simulated and measured occupancy sensor output
data from [25]
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A comparison of experimental and simulated data
further validated the analytical modelling in this paper.
Experimental data was taken from an implemented capacitive
sensor using the electronics shown in Fig. 10. Simulated data
was taken from a SPICE simulation of the experimental
setup having replaced the front-end amplifier with the circuit
model of the FD amplifier in Fig. 4b. Finite op-amp input
impedances as well as coaxial shield stray capacitances were
included in the simulated model as shunt impedances at the
input terminals to the transimpedance amplifier circuit
model. In the experimental system from [25], the Texas
Instruments FD op-amp part THS4140 was used. Model
parameters, ad and ac, for the FD front-end circuit model
were taken from the datasheet for the THS4140 FD op-amp
at the signal frequency, 50 kHz in this example. Based on the
gain bandwidth product of the THS4140 part, the signal
frequency is well below the cross-over frequency for that op-
amp and so the basic assumptions stated at the beginning of
this paper are valid. Significantly, the model validation in
this section will serve to prove the utility of the circuit
models and analysis developed in this paper for yet another
commercial FD op-amp.

Finite-element modelling software, FastCapw, was used to
determine the values of the lumped element capacitances
needed for the SPICE simulation. To simulate a passing
occupant, the FastCapw simulation was re-run for several
different configurations of the system corresponding to
different time steps as the occupant passed through the
detection field. Details can be found in [25].

Model validation results showing excellent agreement are
plotted in Fig. 11. Data and simulation are shown for three
different detection ranges as the occupant passes through
the detection field. The detection range is defined as the
smallest perpendicular distance between the transmitting
(source) electrode in the capacitive sensor and the occupant
as the occupant passes through the detection field. Refer to
[25] for more details.

5 Conclusion

A new approach for small-signal analysis of FD closed-loop
op-amp circuits is presented. The approach is built upon the
development of a circuit model for a FD transimpedance
amplifier. The circuit model of the FD transimpedance
amplifier enables analysis and simulation of practical FD
circuits and captures the distinct CM and DM paths through
the amplifier. Simulated model validation showed excellent
agreement between the calculated results and the performance
of a commercial FD op-amp. Experimental model validation
showed excellent agreement between the behaviour of the
simulated FD transimpedance amplifier circuit model and an
implemented capacitive sensor employing a FD front-end
amplifier.
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