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Abst rac t  

The nonintrusive load monitor (NILM) determines the 
operating schedule of the major electrical loads in a 
building from measurements made at the utility service 
entry. This paper describes a multiscale transient event 
detection algorithm that extends the applicability of the 
NILM to challenging commercial and industrial sites. 
The performance of the algorithm is illustrated with re- 
sults from a prototype event detector. 

I. Background 

Electric utilities and commercial facilities managers 
want to develop detailed electric power consumption p r e  
files of their customers. Conventional metering of indi- 
vidual appliances is costly and inconvenient to the con- 
sumer. To deal with these concerns, utilities have sought 
a way of determining the operating history of an elec- 
trical load from measurements made solely at the utility 
service entry of a building. The residential nonintrusive 
load monitoring project undertaken in MIT’s Laboratory 
for Electromagnetic and Electronic Systems has demon- 
strated the feasibility of a low cost, microprocessor-based 
recorder that competes favorably with conventional load 
monitoring schemes ([l], [2]). The advantages of nonin- 
trusive load monitoring over conventional load monitor- 
ing include: 

ease of installation at the monitoring site, since the 
nonintrusive load monitor (NILM) requires a single 
set of electrical ties 
simplification of data collection, since the NILM au- 
tomatically determines the electrical nature of the 
simple, “two-state” appliances in a target building 
without the need for a load survey or inspection 

facilitation of data analysis since, by definition, the 
NILM collects and potentially analyzes all data at a 
central location. 

The NILM is more than a convenient and economical 
means of acquiring energy usage data. It is, for example, 
a potentially important platform for power quality mon- 
itoring. Many loads, such as computers and other office 
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equipment, lighting fixtures, and adjustable speed drive 
systems, could draw distorted, nonsinusoidal input cur- 
rent waveforms ([3]). The NILM could track down power 
quality offenders by correlating the introduction of un- 
desired harmonics with the operation of certain loads at 
a target site. The NILM could also serve as a platform 
for monitoring the performance of critical loads. 

The current implementation of the residential NILM 
tracks the operating schedules of the loads at a target 
site by looking for changes in steady state levels of real 
and reactive power. While informative in the residential 
setting, changes in steady state power levels are less re- 
vealing in commercial or industrial environments, where 
substantial efforts, e.g., power factor correction and load 
balancing, are made to homogenize the steady state be- 
havior of different loads. 

Fortunately, the transient behavior of many important 
load classes is sufficiently distinct to serve as a reliable 
indicator of load type. This paper describes a transient 
event detection algorithm, introduced in [4], that can 
be used to identify observed transient waveforms even 
when multiple transients overlap. This algorithm is suit- 
able for incorporation into an advanced NILM which 
would be capable of monitoring demanding commercial 
and industrial sites. The performance of the algorithm is 
demonstrated with results taken from a prototype real- 
time event detector implemented with a digital signal 
processor. 

11. Approach to Transient  Recognition 

The transient behavior of a typical load is intimately 
related to the physical task that the load performs. The 
load survey conducted in [4] indicates that nonlineari- 
ties in the constitutive relationships of the elements that 
comprise a load model, or in the state equations that 
describe a load, or both, tend to create interesting and 
repeatably observable turn-on transient profiles suitable 
for identifying specific load classes. The turn-on tran- 
sients associated with a fluorescent lamp and an induc- 
tion motor, for example, are distinct because the physical 
tasks of igniting an illuminating arc and accelerating a 
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rotor are fundamentally different. Transient profiles tend 
not to be eliminated even in loads which employ active 
waveshaping or power factor correction. 

However, direct examination of a current waveform 
or a closely related waveform like instantaneous power 
may fail to accentuate important features for pattern 
recognition. It is important to  isolate key features from 
near constant frequency, “carrier wave” type signals like 
120 Hertz instantaneous power so that slight errors in 
matching carrier frequency variation with a template do 
not dominate the results of a recognition system search- 
ing for a modulating envelope. An analog preprocessor 
in the prototype event detector eliminates carrier fre- 
quency artifacts from input data by averaging over at 
least one carrier frequency period to generate a short 
time estimate. The slow envelopes of the time average 
of instantaneous power, i.e., real power, and of reactive 
power, and of higher harmonic content, are found by mix- 
ing the observed current with appropriate sinusoids and 
then low-pass filtering. The event detector searches the 
slow envelopes or input data streams for known transient 
shapes as new data  is acquired. 

Searching for complete transients is an undesirable ap- 
proach because it limits the tolerable rate of event gener- 
ation. No two transient events could overlap significantly 
if each transient were to be identified correctly. Instead, 
the transient event detector searches for a time pattern of 
segments with significant variation, or v-sections, rather 
than searching for a transient shape in its entirety. 

During a training phase, either before installation or 
on-site, the event detector employs a change-of-mean de- 
tector ([5]) to segment a transient representative of a 
class of loads. This segmentation process delineates a 
set of v-sections that will represent a particular transient 
shape in each of the input data streams. The trace in 
Fig. 1, for example, shows the measured envelope of real 
power during the turn-on transient of an instant start 
fluorescent lamp bank. Figure 2 shows the measured 
envelope of real power on one phase during the turn-on 
transient of a three phase induction motor. The locations 
of the v-sections in the two waveforms, as computed by a 
change-of-mean detector implemented in MATLAB, are 
approximately indicated by the ellipse in Fig. 1 and the 
rectangles in Fig. 2. In practice, a more complicated set 
which included v-sections in other data streams such as 
reactive power would be used to  represent the transient 
profile of a load. 

A complete transient identification is made by search- 
ing for a precise time pattern of v-sections. As long as 
each of the v-section shapes overlaps with no more than 
a near-constant region, the event detector will be able 
to identify the patterns of v-sections and therefore the 
transients. For example, the overlap of the two tran- 
sients from the induction motor and the instant start 
lamp bank shown in Fig. 3 is tractable because all of 
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Figure 1: Measured Instant Start Lamp Bank Real Power 
Transient 
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Figure 2: Measured Induction Motor Real Power Tran- 
sient 

the v-sections for both transients are distinguishable. 
The overlap condition in Fig. 4 would not generally be 
tractable, since the instant start v-section and the first 
induction motor v-section overlap severely. Since some 
degree of overlap is tolerable, the v-section set recogni- 
tion technique will generally operate successfully in an 
environment with a higher rate of event generation than 
would a detector searching for whole, undisturbed tran- 
sient shapes . 

Classification of individual v-sections in the input data 
streams is determined by a set of pattern discriminator 
functions. These functions are used to compute a dis- 
tance metric that locates a particular input vector in 
a region of a state space of known transient templates. 
Since a v-section may appear on top of a variably large 
static or quasi-static level created by the operation of 
other loads, the discrimination process focuses on only 
the “AC” or varying component of the v-section. 

The prototype event detector employs a transversal or 
matched filter as a pattern discriminator, although other 
possibilities could be used and are discussed in [4]. The 
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Figure 3: Acceptable Overlap 
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Figure 4: Intractable Overlap 

impulse response of a transversal filter is proportional to 
the time-reversed signal for which the filter is designed 
to search. The transversal filter is an attractive signal 
processing construct for performing pattern discrimina- 
tion because there are many efficient hardware solutions 
available for implementing a transversal filter. Each v- 
section is positively identified by checking the outputs of 
two different transversal filters. 

The first transversal filter scans an input data stream 
for a particular shape. Let t denote a vector of N samples 
of a v-section of interest, such as one of the v-sections 
marked in Figs. 1 and 2. The vector t consists of elements 

t[i] ,  i = O  ... N - 1 .  

An “AC coupled” and amplitude normalized version of 
the v-section, designated to,, can be computed as 

where the denominator in Eq. 1 is the 2-norm of the 
numerator. Thus, to, is a unit length vector with zero 
mean. This shape transversal filter operates by sliding 
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an N-point window across the input data stream. At any 
time, the window contains an AC-coupled and amplitude 
normalized vector of points xac of an N-point section or 
vector x of the input data. The vector x,, is computed 
from the vector x using an equation structurally identical 
to Eq. 1. The output of the shape transversal filter is the 
inner product of the template vector t,, and the data 
vector x,,. 

This output corresponds to  the cosine of the angle be- 
tween the two unit length vectors t,, and x,,. An output 
of unity indicates a perfect match between the template 
vector and the input data. Naturally, noise and slight 
variation in the repeatability of the v-sections will make 
a perfect match unlikely. In a practical system some de- 
gree of imperfection will be tolerated and any inner prod- 
uct within a certain tolerance of unity will constitute a 
match. 

When a segment in the input data  stream is found 
that matches the shape of a template v-section, a second 
transversal filter is employed to check the amplitude of 
the segment. This amplitude transversal filter computes 
the inner product of the template vector t,, and the input 
data vector x, rather than the inner product oft,, and 
xac. Checking the amplitude is essential in conjuction 
with checking shape to  ensure that a small wiggle or noise 
pattern that is fortuitously close in shape to a v-section 
template is not mistaken for an actual v-section. 

111. Searching for Patterns Over Many Time 
Scales 

Loads in a particular class which spans a wide power 
range often exhibit transient profiles that are identi- 
cal in shape but scaled in amplitude and duration. 
The transversal filter is suitable for identifying transient 
shapes over a narrowly defined time scale. The proto- 
type event detector employs a tree-structured decompo- 
sition to search efficiently over many time scales with 
the transversal filters. The use of the tree-structured de- 
composition is inspired by recent applications of subband 
coding ([SI) and the discrete-time wavelet transform ([7] ,  

A tree-structured signal decomposition is shown 
schematically in Fig. 5. An atomic section, or coder, 
of the tree shown would consist of the upsampler with 
upsampling rate I, operations R and D, and the trailing 
downsampler with downsampling rate m. Each upper 
path, or resolving path, in any particular coder in the 
tree alters the resolution of the input signal with opera- 
tion R, and also alters the scale of the input signal with 
the up/downsampling operations at rates I and m. The 
lower discriminating path implements operation D which 
identifies patterns at a particular time scale in the input 
data. In the prototype event detector, a transversal filter 
computes the discriminating coefficients, U,, for exam- 
ple, that indicate the possible presence of a v-section. 

[SI>. 
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Figure 5: Tree-Structured Signal Decomposition 

Experience gathered from the load survey in [4] and 
from experiments with the event detector indicate that 
operation R may be implemented with a linear filter for 
the v-sections associated with many commercial and in- 
dustrial loads. Constraints for designing filters that min- 
imize the impact of distortions in a pattern recognition 
setting, and conditions when nonlinear filters might be 
desirable, are presented in [4]. An adaptive algorithm 
for minimizing the effects of amplitude distortion and 
shift-variance is also presented in [4]. 

N. Event Detection Algorithm 

A flow chart of the complete event detection algorithm 
is shown in Fig. 6. This algorithm is implemented in the 
NlLMscope software that is executed by the prototype 
event detector. The NILMscope software is written in 
two components. One component performs the event 
detection algorithm and is executed on a TMS320C30 
DSP system. The other is a user interface responsible for 
initializing the DSP system and for report generation. 
This second component is executed on an 80486-based 
personal computer. Each numbered item in the following 
list is a description that details a numbered step of the 
algorithm in the flow chart. 

1. Data Acquisition: During this da ta  acquisition step, the DSP 
system collects a window of samples which will be searched 
for known transient patterns. 

2. Treestructured Decomposition: Once a full window or vec- 
tor of samples has been acquired, the DSP system performs a 
treestructured decomposition on the da ta  as described in the 
previous section. In the current implementation, the input 
data for each coder step in the tree is computed before any 
pattern discrimination occurs a t  any scale step. A tree struc- 
ture with a total of three 2 t o  1 coder or scale steps proved 
sufficient for identifying all of the transients associated with 
the loads in the test stand described in the next section. 

3. Set Scale Steps: Next, the DSP system searches a t  each scale 
for all of the transient types that could appear. There are 
three scale steps, and a scale step variable M is initialized 
to the value of 3 to count down the search. First the finest 
sampled scale step is inspected, followed by the middle and 
coarse scales. 

f 
(2) I Decomposition1 

(8) GI V-Section I 
Re ort 
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Figure 6: The NILMscope Event Detection Algorithm 

4. Initiate Pattern Search: A loop in the program flow a t  this 
point in the NILMscope software controls the search for pat- 
terns over all three scale steps. 

5. Hierarchical Pattern Search with V-Section Lock Out on Scale 
M: During each pass through the  pattern search loop, the 
DSP system searches for the v-sections associated with the 
known transient events on a single scale. The  pattern search 
is hierarchical, in that the DSP system searches first for the 
patterns with the most v-sections. When all of the v-sections 
for a pattern are found with both the shape and amplitude 
transversal filtering operations, the complete transient pat- 
tern is presumed to be present in the input data,  and an event 
is recorded. 
A v-section lock out is performed a t  each scale. If a com- 
plex pattern is found in the input data,  the location of the 
v-sections of the pattern are recorded. The  identification of 
any subsequent, less complex patterns will not be permit- 
ted baaed on the detection of v-sections at  the previously 
recorded, “locked out” locations. 

6. Report Generation for Scale M: If all of the v-sections are 
found for a particular pattern, the transient pattern is pre- 
sumed to be present in the da ta  a t  the current scale M, and 
an event type and time is communicated to the interface com- 
ponent of the NILMscope software running on the PC. 

7. Decrement Scale Step: The scale counter M is decremented, 
and the pattern detection loop is repeated until all remaining 
coarser scales have been searched. 

8. V-Section Lock Out Over All Scales: The  P C  component of 
the NILMscope software performs a final check to ensure that 
v-sections from a complex but coarse scale pattern were not 
used to  match a less complicated, finer scale pattern. 

9. Final Report Generation: The P C  component of the NILM- 
scope software collates a final report of the type and time of 
occurrence of all positive event detections. 

10. Standby: After reporting any contacts, the P C  waits for the 
user to issue an arming command. 
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V. Prototype Testing and Performance ually with the turn-on events of the instant and rapid 

The prototype event detector consists of three compe 
nents: an analog preprocessor, a DSP card, and a per- 
sonal computer. The event detector monitors the voltage 
and current waveforms on a three phase electrical service 
that powers a collection of loads representative of impor- 
tant load classes in typical, medium to  large size com- 
mercial and industrial buildings. The prototype event 
detector is used to  identify the turn-on time and type 
of the various loads. The event detector has, of course, 
no a priori knowledge of the operating schedule for the 
loads. 

Four loads were selected for inclusion in the test f& 
cility: a bank of instant start fluorescent lamps, a bank 
of rapid start fluorescent lamps, a horsepower induc- 
tion motor, and a 5 horsepower induction motor. The 
electrical hookup to  the loads is routed through an elec- 
tronically switched circuit breaker panel that activates 
loads with flexibility in relative timing. The pattern 
templates for the loads were captured during a onetime 
"walk through" of the test stand. However, no data a t  
all was collected from the large motor. Because the large 
and small induction motors are members of the same load 
class, a single transient template, appropriately scaled in 
amplitude and duration, was expected to prove satsifac- 
tory for identifying both motors. 

Figures 7 through 11 show screen prints from the PC 
running the NILMscope user interface software during 
five of the experiments conducted with the test stand. 
The graph windows in each figure show estimates of the 
envelopes of real and reactive power on one phase of the 
three phase service. For example, the windows in Fig. 7 
display the data collected during the turn-on of the in- 
stant start lamp bank in the test stand. 

In the lower left-hand corner of each screen, any tran- 
sient events that the event detector has been able to iden- 
tify appear under the heading Contacts. Events or con- 
tacts are reported by identity, time of occurrence, and 
scale. There are three scales listed in the contact win- 
dow: fine, mid, and coarse. Any event that was identified 
by a known v-section set at the initial, highest sampling 
rate, i.e., at the first coder stage in the tree-structured 
decomposition, will be listed directly under the heading 
Fine Scale in the contact window. By design, it is an- 
ticipated that events associated with the small motor and 
both lamp banks will be listed as fine scale events when 
they appear, assuming that the event detector functions 
properly. Events found at the next two coder stages in 
the tree-structured decomposition will be listed under 
the headings Hid Scale or Coarse Scale. For example, 
any events recognized by the properly working detector 
which are caused by the turn-on of the large induction 
motor should appear under the coarse heading. 

The three tests shown in Figs. 7 through 9 record the 
performance of the prototype when challenged individ- 

start lamp banks and the small induction motor, respec- 
tively. In each case, the observed event has been properly 
identified in the contact window. Figure 10 shows an ex- 
ample where both lamp banks and the small motor turn 
on so that all three transient events overlap. No key v- 
sections overlap with each other. All three events are 
correctly recorded at the finest time scale in the contact 
window. 

In the final experiment shown in Fig. 11, the small 
induction motor turns on and completes its transient, 
followed by the turn-on transient of the large induction 
motor and the instant start lamp bank. No key v-sections 
overlap with each other. All of the events are correctly 
identified at the appropriate time scales. Recall that the 
template for the turn-on transient of event type Motor 
was generated from a single example of the s m d  motor 
only. Nevertheless, the event detector correctly classified 
both the s m d  and large motors. 

VI. Conclusions 

The examples reviewed in the previous section are 
representative of several hundred experiments conducted 
with the test stand. Provided the assumptions made in 
the development of the event detection algorithm are sat- 
isfied, the prototype detector performs remarkably well. 
This performance is perhaps more impressive in light of 
the fact that fairly little effort was made to  "tune" the 
detector for the loads in the test stand. 

In practice, the robustness of the detector could be 
enhanced by working with more complicated v-section 
pattern sets for each load. Employing more complicated 
sets of interesting v-sections will enhance the reliabil- 
ity of the event detection algorithm but will also require 
more computational capability. Fortunately, the search 
for different v-sections could be conducted in parallel. 
This suggests that a commercial NILM based on the 
event detection algorithm could be constructed around 
a parallel processing architecture composed of inexpen- 
sive microprocessors or microcontrollers. 
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Figure 7: NILMscope Contact Report 

Figure 8: NILMscope Contact Report 
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Figure 9: NILMscope Contact Report 

Figure 10: NILMscope Contact Report 

Figure 11: NILMscope Contact Report 
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