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Abstract—Non-intrusive load monitoring (NILM) uses electri-
cal measurements taken at a centralized point in a network
to monitor many loads downstream. This paper introduces
NILM Dashboard, a machine intelligence and graphical platform
that uses NILM data for real-time electromechanical system
diagnostics. The operation of individual loads is disaggregated
using signal processing and presented as time-based load activity
and statistical indicators. The software allows multiple NILM
devices to be networked together to provide information about
loads residing on different electrical branches at the same
time. A graphical user interface provides analysis tools for
energy scorekeeping, detecting fault conditions, and determining
operating state. The NILM Dashboard is demonstrated on the
power system data from two United States Coast Guard (USCG)
Cutters.

Index Terms—Condition-based maintenance, energy efficiency,
fault detection, non-intrusive load monitoring

I. INTRODUCTION

Improving energy efficiency of buildings, industrial sites,
and military facilities such as Army bases or Coast Guard ships
starts with information and insight into the processes involved
[1]. Information on the operational patterns and behavior of
individual loads often reveals wasteful practices, allowing for
effective demand-side energy management vital for emission
reduction [2]. Further, faulty mission-critical equipment may
operate marginally for extended periods until abruptly failing
even though symptoms are often visible in the electrical
system weeks before a failure occurs [3]. Thus, monitoring
the electrical system for individual load information also
allows condition-based diagnostics and prognostics which can
minimize the impact of equipment malfunctions or failures in
the power system [4].

Non-Intrusive Load Monitoring (NILM) is a rugged, low-
cost sensing platform that can fill these needs, providing
actionable information in real-time for energy management
and equipment diagnostics. NILM sensors are installed at the
main power entry or at a subpanel. These sensors measure
currents and voltages with either conventional voltage and
current transducers or with non-contact sensors that do not
require ohmic contact [5], [6]. Measurements are sent to
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Fig. 1. US Coast Guard Cutter ESCANABA [13] and Non-Intrusive Load
Monitoring installation onboard the ship

a NILM computer where data is stored in a high-speed
time-series database [7] and converted into harmonic power
envelopes to facilitate analysis [8]. The NILM computer uses
signal processing to detect the operation of individual loads
from the aggregate power data and post-processes the electrical
measurements for energy score-keeping and diagnostics [9].

Current NILM research is largely focused on developing
increasingly accurate disaggregation techniques using various
accuracy metrics [10]. However, gaining user support for
smart-metering techniques such as NILM requires more than
just accuracy. A successful NILM system must have the
ability to provide real-time monitoring and diagnostic analysis,
presented in an accessible, easy-to-use format for the end user
[11].

The NILM Dashboard introduced in this paper provides a
framework for a complete NILM system that captures data,
accurately dissagregates load events, analyzes the equipment
for potential faults, and presents useful information to end-
users in real-time. This dashboard combines novel system
architectures, algorithms, and user interfaces to solve not just
the technical challenge of accurate load disaggregation, but
also several technical challenges more commonly considered
in the development of smart meter analytics [11] and in-
dustrial internet of things (IIoT) devices and networks [12].
Specifically, the NILM Dashboard simultaneously addresses
the challenges of:

• Efficiently collecting, managing, and processing large
volumes of raw electrical data

• Accurately disaggregating individual load operation
• Incorporating advanced algorithms for real-time monitor-

ing and diagnostic focused analytics
• Providing users actionable insight into the operation of

the electrical system and its individual loads through
easy-to-understand visual displays

The NILM Dashboard’s utility at addressing these chal-
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Fig. 2. NILM sensors installed at six locations in the electrical network on
a USCG Cutter

lenges is demonstrated through its incorporation into NILM
systems installed aboard US Coast Guard Cutters (USCGC)
ESCANABA and SPENCER, two 270-ft (82-m) US Coast
Guard ships (Fig. 1). On each ship, the NILM system in
place consists of four non-contact meters [5], [6] monitor-
ing the overall power consumption of the vessel and two
contact meters (featuring conventional current and voltage
transducers) monitoring two electrical subpanels (Fig. 2).
The contact meters on the subpanels provide high resolution
measurements of equipment crucial to the proper operation
of ship propulsion, power generation, and auxiliary services.
The NILM Dashboard combines data from these meters to
act as a Shipboard Automatic Watchstander (SAW), delivering
maintenance and fault data to Coast Guard personnel in real-
time, ultimately optimizing operations and reducing equipment
failures [14], [15]. The system retains favorable aspects of
NILM – low sensor count, easy installation, high reliability
– but the Dashboard expands capability to provide support
for energy scorekeeping, condition-based maintenance, fault
detection, and diagnostics. This paper describes the algorithms
and structure of the NILM Dashboard and its application on
mission critical systems.

II. SYSTEM ARCHITECTURE

The NILM Dashboard software stack runs on a typical
Linux-based computer. The four layers shown in Fig. 3 are
responsible for obtaining measurements, identifying loads,
analyzing behaviors, and communicating results. This software
stack is designed to address the technical challenges outlined
in the introduction, including the ability to work with a large
volume of data, accurately disaggregate electrical load events,
provide real-time monitoring and diagnostic focused analytics,
and the availability of an easy to understand visual display of
information [11].

The Dashboard processes information about load events,
which occur when equipment transitions between ON and OFF
states. The event data is classified as a specific load and then
mapped to an operating schedule of its activity. This time-
based information enables detailed comparison of loads and
provides a record of operation. To highlight trends over time,
the platform also maintains load metrics, which are statistical
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Fig. 3. System architecture of the NILM Dashboard. Rectangular blocks
represent software layers, and cylinders represent storage databases. Lines
between entities have arrows in the direction of data flow.

conclusions that expose anomalies and patterns.

A. Data Capture and Pre-Processing

The NILM system captures currents and voltages from
metering hardware at a sampling frequency of 3 kHz for non-
contact sensors and 8 kHz for contact sensors. These high
sampling rates are necessary for capturing transient shapes
as loads change state [16] and the higher harmonic content of
non-linear loads, e.g. variable frequency drives [17]. Sampling
at these rates presents a data volume challenge in terms
of processing, storage, and network bandwidth. To reduce
this data volume while maintaining the relevant shape and
harmonic information, these measurements are pre-processed
into harmonic power envelopes using the Sinefit algorithm [8],
effectively compressing the high-rate raw current and voltage
data into real, reactive, and harmonic power components at a
rate congruent with the power system line frequency (60 Hz for
the ships). This promotes space-efficiency while maintaining
the richness of the original signals. NilmDB is specially suited
for storing this time-series data, making it available for high-
speed and low-bandwidth access throughout the Dashboard
platform [7].

B. Load Identification

The load identification block disaggregates the operation
of individual loads from the power data in real-time. The
NILM systems installed on the ships feature neural network
architectures to achieve highly accurate load disaggregation,
described in greater detail in Section IV. The resulting load
events encode the type of state transition, as well as the change
in real and reactive power levels. NilmDB records these sparse
events at the times they occur. The Joule data processing
framework [18] is used to streamline the capturing, pre-
processing, and identification stages. This robust tool models
the data pipeline as a series of processing “modules”, with
formally-defined “streams” of information passing between
them. Data flows between modules through efficient memory
pipes, without needing to access the database as an intermedi-
ary. This modular processing framework allows for efficient,
real-time monitoring of load events.
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Fig. 4. Timeline interface displaying the status for the Diesel Oil Purifier (DOP), Graywater Pumps (GW) and Ship’s Service Diesel Generator Lube Oil
Heater (SSDG LO). Colored blocks represent periods when each load was energized.

C. Metrics Generation

To provide actionable insight and diagnostics, the Dash-
board must be able to assess the health of equipment in real-
time and alert the user to anomalies. This crucial functionality
makes the Dashboard an analytic tool, rather than simply a
data collection device. To accomplish this, the metric gener-
ation block reads event streams from NilmDB and calculates
operational metrics correlated to the health of systems and
loads [3], [19]. Relevant metrics for a load may include the
average power consumption or the number of operations per
day. Calculated metrics and their associated metadata, such
as type, load, and encompassed time range, are stored in
MetricsDB for rapid query from the Dashboard. For the NILM
systems on the Coast Guard cutters, six metrics are calculated.
However, the MetricsDB must be able to adapt and expand for
different NILM systems. The MetricsDB must also have the
ability to save large data segments at full resolution, allowing
for an anomalous load transient to be stored alongside its
respective metrics. To meet these requirements, a NoSQL
database structure is employed for MetricsDB [20], [21] due to
its easy expandability and flexible size boundaries compared
to traditional SQL alternatives.

Metric generation is implemented as a Python-based script
that runs automatically every ten minutes. Every time the
generator runs, it calculates rolling metrics over the past 24-
hour window. These values are used to update the gauges in the
metrics interface (Section III-B) to reflect current conditions.
The metric generator also calculates daily load metrics if event
data is available in NilmDB for the previous day, which ends
at midnight. This information is used to populate the historic
view (Section III-C) of the user interface, which shows the
daily progression of a chosen metric for a given load.

D. Graphical Interface and Network

The final step is to transform load schedules and metrics
into an interactive visual display that is user-friendly, easily-
accessible and provides operators with actionable information.
This interface is described in detail in the next section. The
Dashboard user interacts with a web-based application [22],
[23] that can be accessed on the NILM computer or from any
computer connected on the same network. The user interface
operates exclusively in the client’s browser, conserving pro-
cessing power and network bandwidth. The data visualizations
are implemented with a data-driven graphical framework [24].

The browser must retrieve event and metric data to populate
the interfaces. NilmDB has external web endpoints, so the
client can directly communicate with this database to down-
load event data for a particular load. The MetricsDB, however,
cannot be accessed outside of the NILM computer. The web
server proxies requests to the MetricsDB by exposing its own
web endpoints for the client to reach. Many power systems
are sufficiently complicated that more than one NILM system
is required to track an entire electrical plant. The Dashboard
software provides database access on a local network for
NilmDB and MetricsDB, allowing a user to access all the
NILM nodes on the local network from one place.

III. USER INTERFACE

Providing the information generated by NILM quickly and
clearly is paramount to creating a diagnostic tool capable
of preventing failures to mission critical equipment. Even
after processing, most NILM data is not intuitive to operators
unaccustomed to analyzing equipment power streams and
transients. The NILM Dashboard addresses this problem with
an on-site interface that provides real-time and historic equip-
ment information. To further aid operators in tactical decision
making, the Dashboard generates useful metrics on system
health. This information is made available to operators through
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Fig. 5. Gauges indicate whether the metrics pertaining to the selected load
are within an acceptable range.

an interface containing four interactive tools: Timeline, Metric
View, Historic View, and Loading View.

A. Timeline

The “Timeline”, as shown in Fig. 4 provides a live view of
the equipment status, allowing the user to see loads activated
and secured in real-time. The user can monitor the entire plant
or hide certain equipment from view, allowing for increased
attention on select loads. The time window can be adjusted to
the user’s choosing, either through zoom/pan functions or by
selecting one of four pre-set time periods. The Timeline tool
provides the user with a compact picture of plant operations
and the ability to easily investigate any apparent anomalies.

B. Metric View

The “Metric View” shown in Fig. 5 is a user’s first stop
when a fault is suspected. It provides the user with a set
of diagnostic indicators for a selected piece of equipment.
The metrics available are real power, apparent power, power
factor, average run duration, total daily run time and daily
number of actuations. Each metric is displayed as a gauge
with green, yellow and red sections. The colored sections
are derived from equipment nameplate data, known usage
patterns and statistics from previous normal operation. Green
indicates normal operations, while yellow and red indicate
increasing likelihood of a fault. The gauge needle position
is the average metric value for the last 24 hours and is
refreshed every ten minutes. The Metric View provides an
analysis of individual equipment health and helps direct initial
troubleshooting efforts.

C. Historic View

The “Historic View” shown in Fig. 6 provides short and
long-term trend data to supplement the analysis from the
Metric View. This tool allows users to select a single load and
any one of the six metrics listed above. The Historic View is
presented as a bar graph that gives the user the ability to track
equipment behavior over a period of up to 6 months. While
the Metric View is intended for a watchstander to quickly
detect a possible fault, the Historic View is designed for the
plant manager to assess trend data, track behavior and make
decisions on condition-based maintenance.

D. Loading View

The “Loading View” shown in Fig. 7 allows a user to
detect phase imbalances and loading discrepancies within the
electrical system. The user can select a monitoring point and

Fig. 6. The Historic View shows the daily trend for a given metric over a
period of time.

Fig. 7. The Loading View displays the current per-phase levels for a source
of power data. With the shown configuration, the port and starboard subpanel
are being compared.

view the per phase power and total electrical load. In this case
study, the Loading View allows the user to compare the total
loading of the two generators or the two monitored subpanels.
This information can be used for energy-scorekeeping and to
optimize power generation.

IV. LOAD IDENTIFICATION

Load identification is a key step in the four-stage pipeline.
Load identification can be accomplished by many different
algorithms, such as artificial neural networks (NN), k-nearest
neighbors (k-NN), and correlation-based algorithms [7], [25].
This is where the core of NILM research is focused today.
For this application, a neural network approach is taken.
Since the two monitored subpanels have a fixed number of
loads, a supervised learning approach is used in which data
is hand-labeled in order to perform training. As described by
Hart [26], there are three main categories of appliances that
may be monitored by a NILM system: ON/OFF, Finite State
Machine (FSM), and continuously variable. On the studied
subpanels there are ON/OFF loads and one FSM load, the
Diesel Oil Purifier. An ON/OFF load has only two states, ON
or OFF, while a FSM load has several states due to its complex
operation. Table I lists all the monitored loads which are to
be displayed on the Dashboard.
Load identification occurs in the following three stages:

• Event Detection determines when transients occur in the
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power stream.
• Event Classification matches identity of transient to a

load.
• Load Confirmation checks constraints between load

events.

A. Event Detection

After pre-processing, Real (P ) and reactive (Q) power are
outputted at every line cycle (60 Hz) for each phase. From
the fundamental P and Q streams, apparent power (S) is
calculated as,

S =
√
P 2 +Q2 (1)

The S stream is then smoothed using a 101-point median
filter, which eliminates small fluctuations while preserving
edges. The S stream is used to detect turn-on and turn-off
times by detecting where the stream abruptly changes in value.
Converting to apparent power simplifies load detection to
a single data stream. The filtered data is convolved against
the Laplacian of a Gaussian [27] kernel to compute the
smoothed second-derivative of this stream. This effectively
maps step changes in apparent power to zero-crossings for
easier detection. An empirically-determined threshold is set to
remove zero-crossings that are due to small fluctuations of the
resulting convolution. A zero-crossing detector is then used to
find the location of the steps. Fig. 8 shows several ON and
OFF events as detected by the edge detector.

After an ON or OFF event is detected using the S stream,
the edge detector examines the P and Q to calculate a set of
features to be used as an input vector to the NN. For each
phase (A,B,C), represented here as x, an ON event produces
four features, the transient-peak (Pon,x,peak, Qon,x,peak) and
the steady-state level changes (Pon,x,ss, Qon,x,ss). Because
there is no transient peak when a load turns off, an OFF
event has only two features per phase (Poff,x,ss, Qoff,x,ss).
The steady state level change is calculated by taking the
difference in the median power level for a defined window

TABLE I
MONITORED LOADS IN ENGINE ROOM

Power Delta Power Port StbdLoad Rating Phases Factor Panel Panel
Main diesel engine (MDE) keep-warm system

Lube oil heater
(MDE LO) 12 kW 3φ 1.0 x x

Jacket water heater
(MDE JW) 9.0 kW 3φ 1.0 x x

Prelube Pump
(MDE PL) 2.2 kW 3φ 0.82 x x

Ship service diesel generator (SSDG) keep-warm system
Jacket water heater

(SSDG JW) 7.5 kW 3φ 1.0 x x

Lube oil heater
(SSDG LO) 1.3 kW 1φ 1.0 x x

Additional engine room loads
Controllable pitch
propeller hydraulic

pump (CPP)
7.5 kW 3φ 0.82 x x

Graywater
pumps (GW) 3.7 kW 3φ 0.85 x

Diesel oil
purifier (DOP) 5.6 kW 3φ 0.85 x

Oily Water
separator (OWS) 6.7 kW 3φ 0.90 x

Fig. 8. ON-events and OFF-events for graywater pump runs.

(∆twindow) before and after an ON/OFF event. The ∆twindow

is chosen to be 0.5 sec, which is 30 samples given a line
frequency of 60 Hz. Fig. 9 illustrates these features for the
real power stream on one phase. Features for reactive power
are calculated using the same process. Equations (2)-(6)
generate the features and the input vectors.

ON event steady state change in power:

Pon,x,ss = median(Px[tend], ..., Px[tend + ∆twindow])

−median(Px[ton − ∆twindow], ..., Px[ton])
(2)

ON event transient peak:

Pon,x,peak = max(Px[ton], ..., Px[tend])

−median(Px[tend], ..., Px[tend + ∆twindow])
(3)

OFF event steady state change in power:

Poff,x,ss = median(Px[toff ], ..., Px[toff + ∆twindow])

−median(Px[toff − ∆twindow], ..., Px[toff ])
(4)

Here, ton is the time the load turns on, tend is the end of
the start-up transient, toff is the time the load turns off, and
twindow is the length of the window for taking steady state
calculations.
The feature input vector for ON events is:

(Pon,A,ss Qon,A,ss Pon,A,peak Qon,A,peak

Pon,B,ss Qon,B,ss Pon,B,peak Qon,B,peak

Pon,C,ss Qon,C,ss Qon,C,peak Qon,C,peak)

(5)

The feature input vector for OFF events is:

(Poff,A,ss Qoff,A,ss

Poff,B,ss Qoff,B,ss

Poff,C,ss Qoff,C,ss)

(6)

There are a fixed number of loads on the panels and the
normal real and reactive power draw of each load is known.
Therefore the total change in steady state should not be less
than the smallest load on the panels. False event detections
are reduced by comparing the magnitude of the calculated
change in steady state values to a threshold. Events with power
value changes beneath this threshold are discarded. In one
month (September 2017), there were a total of 2946 events on
the USCGC Spencer port panel. The described edge detector
correctly found 2936 of those events and incorrectly detected
32 non-events.



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2843770, IEEE
Transactions on Industrial Informatics

6

Fig. 9. ON/OFF load features for a single phase

B. Event Classification

To classify each event as an individual load, a fully-
connected neural network (NN) using stochastic gradient
descent (SGD) is applied [28]. Separate NNs are utilized for
ON events and OFF events for each panel. The input layer to
the NNs are the features for each load as previously described
in (5) for ON events and (6) for OFF events. Two hidden
layers of 10 nodes each are used, for which a weighted
sum of the inputs from the previous layer to each node is
passed through a ReLu (Rectified Linear Unit) [29] activation
function, f(z) = max(0, z), where z is the input to a node.
Back-propagation is used to find the set of weights and
biases to minimize loss. To allow multi-class classification,
the output layer is a softmax layer, [30], defined as,

f(z)i =
ezi∑k
j=1 e

z
j

for i = 1...k (7)

where z is the input to each node, and k is the number of
classes. Each ON/OFF load is a unique class. Additionally,
some loads often actuate together during normal operations,
as they are part of a combined system, creating a new class
representing multiple loads. Finally, the Diesel Oil Purifier has
a class for each state of operation.The output is a vector of
probabilities that sums to one and the classification is made
by selection of the class that has the highest probability.

The data was split into three sets: training, validation, and
testing. The prediction error of the validation set was used
as a stopping criterion during training [31]. To prevent over-
fitting, a third separate data set, the testing set was used.
Repeated random sub-sampling was performed on the data for
10 iterations, so that for each iteration the data was randomly
split by load class into training, validation, and testing data
and the performance was evaluated on the testing data.

Some loads have short runs, in the range of minutes, and
thus have many events. Other loads have run durations in
the range of hours or even days, and thus have far fewer
events. To prevent the NN from simply predicting the most
common class, the training data had to be better balanced. This

TABLE II
ACCURACY OF CLASSIFYING ON-EVENTS

Load TP ± σTP precision ± σP recall ± σR

Main diesel engine (MDE) keep-warm system
LO Heater 8 ± 0 0.92 ± 0.07 1 ± 0
JW Heater 1 ± 0 0.95 ± 0.16 1 ± 0

Prelube Pump 4 ± 0 0.80 ± 0.19 1 ± 0
Ship service diesel generator (SSDG) keep-warm system

JW Heater 65 ± 0 0.97 ± 0.02 1 ± 0
LO Heater 95 ± 0 0.98 ± 0.01 0.99 ± 0.01

Additional engine room loads
CPP Pump 4.2 ± 1.5 0.88 ± 0.14 0.84 ± 0.15

Graywater Pump 268.3 ± 1.06 0.99 ± 0 1 ± 0
DO Purifier 26 ± 1.05 0.98 ± 0.04 1 ± 0(Centrifugal)
DO Purifier 7 ± 0 1 ± 0 1 ± 0(Feed Pump)
DO Purifier 13.9 ± 0.32 0.95 ± 0.04 1 ± 0(Flushing Sequence)

was accomplished by random under-sampling of the majority
classes on the training and validation data.

It is not sufficient to focus only on the total percentage
of correctly classified loads when verifying the accuracy of
the identifier. If a load only turns on and off a few times
over a month, incorrectly identifying it will not have much
effect on the total classification accuracy, but it is still vital
that the load be correctly identified. Thus, the accuracy of the
model for each class is evaluated by considering the following
parameters [32]:

• True Positive (TP ): a load event occurs and is correctly
identified

• False Positive (FP ): a load event is classified, but that
event did not occur

• False Negative (FN ): a load event occurs but that event
is not classified

These parameters are used to determine the classifier’s recall
and precision, which answer two fundamental questions:
(1) What is the likelihood that a load event is reported?
(recall)
(2) What is the likelihood that a reported event is correct?
(precision)

recall =
TP

TP + FN
(8)

precision =
TP

TP + FP
(9)

Table II shows the results for each load from the 10
iterations. The results presented are the average number of
true positives, the precision, and the recall for each load, as
well as the standard deviations of each (σTP , σP , and σR re-
spectively). Precision and recall values of one with a standard
deviation of zero indicate perfect performance in identifying
a specific class. For true positives, a small standard deviation
shows that performance between iterations is consistent and
that the model is not overfitting.

C. Confirmation and Implementation

Load identification is implemented into the NILM Dash-
board architecture through two modules, classification and
confirmation. The classification module runs the previously
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Fig. 10. Load events are shown over a 2-day interval. All the transients
present in the origin signals (above) have been detected and are shown in the
timeline (below).

Fig. 11. The MDE system loads displayed with the Timeline over a 5-day
period

described detection and classification algorithm on 10 second
windowed power stream data. Since there may be events that
occur at the edges of an interval, the intervals are overlapped
to ensure that no events are lost. For each iteration, the
classification module output is piped to a confirmation module.
For each load, the confirmation module stores the most recent
state (ON or OFF) outputted to NilmDB, to ensure two ON
events or two OFF events are not output consecutively. If
two consecutive ONs are detected, the confirmation module
removes the first occurrence from the NilmDB. If two consecu-
tive OFFs are detected, the second occurrence is not outputted
to the NilmDB. This reduces the possibility of the Dashboard
incorrectly displaying that a load is energized.

V. EXPERIMENTAL RESULTS

The identification techniques implemented for the NILM
Dashboard permit two new applications of nonintrusive power
monitoring. First, the experimental results demonstrate the
application of these algorithms to provide automatic “watch-
standing.” The operation of equipment on mission critical
systems can be automatically logged to produce activity
records normally collected manually by operators. Second, the
algorithms presented above are applied in NILM Dashboard to
provide immediate real-time indication of system faults based
on irregular patterns of power consumption. To validate each
layer of the NILM Dashboard architecture, the system was

Fig. 12. Healthy graywater pump behavior captured on the Dashboard.

Fig. 13. Dashboard Metrics View displays a fault condition

Fig. 14. Historic View of graywater fault condition

tested end-to-end on busy intervals of underway data from
the two US Coast Guard Cutters. This test demonstrates the
Timeline’s ability to turn a complicated stream into a clear
schedule of load events. A power signal and its corresponding
Timeline are shown in Fig. 10. The Timeline provides the
operator the state of all monitored loads and their recent
behavior.

The Timeline can be used to monitor the status of in-
terdependent loads, such as the equipment comprising the
main diesel engine (MDE) system (jacketwater heater, lubeoil
heater, and prelube pump). When the engine is secured, the
prelube pump and the lube oil heater should by cycling ON
and OFF together. Repeated activation of one without the other
may indicate a fault. A Timeline for five days of normal MDE
operation while the engine is secured is shown in Fig. 11. This
Timeline can be used to produce operational records normally
collected by hand, as discussed further below.

The next case-study uses eight days of data from the
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Fig. 15. Timeline view of graywater fault condition

Fig. 16. Load events used as FSM elements for the ship’s engines and ship’s
operational status (below).

SPENCER port-panel. During the first four days of this inter-
val, all equipment behavior was normal. However, during the
last four days the graywater pumps entered a fault condition,
running ten times more often than normal. The root cause
of this fault was later determined to be a broken checkvalve.
During normal operation, graywater drains from throughout
the ship to the holding tank and the monitored pumps transfer
this to a larger storage tank. The broken checkvalve allowed
water to flow backwards from the storage tank to the holding
tank. The pumps had to operate almost continuously to keep
the holding tank from overflowing, a condition that can quickly
result in pump failure and the loss of a crucial auxiliary
system.

The Dashboard provided clear diagnostic indicators of this
fault. Figs. 12 and 13 show the Metrics View from a day of
normal graywater pump operation and a day when the pump
was backflowing, respectively. For the day of normal behavior,
all of the dials are in the green region. On the day that the
pump failure occurred, the dials for total daily run time and
number of daily actuations jump into the red region due to
operation in excess of the pre-established system norms. Fig.
14 displays the total daily run time in the Historic View for
the eight days before and during this issue. This view shows a
clear trend that the total run time increased significantly after
the first four days. The Timeline in Fig. 15 displays precisely
when this fault began. With the assistance of a diagnostic tool
like the NILM Dashboard, the crew could have detected and
responded to the casualty in hours, not weeks.

VI. OBSERVATIONS AND CONCLUSION

The NILM Dashboard provides real-time diagnostics of
electromechanical equipment without the need for an extensive
sensor network. The platform was successfully tested on
power stream data from two Coast Guard cutters, accurately

Fig. 17. Automatically generated ship log from NILM data

recording machinery behavior and identifying error states.
The system is poised to be installed aboard the vessels to
assist operators in fault detection, behavior tracking and energy
scorekeeping.

For greater classification accuracy, there is further research
being done on integrating this NN method with other classifi-
cation methods such as an exemplar shape-matching algorithm
[7] and multi-scale median filtering. This would all be done
within the classification module, allowing the classification
algorithm to be updated without affecting the operation of the
user interface.

The next iteration of the NILM Dashboard will use the
known loads to directly infer the status of the propulsion
plant, or even the whole ship. For instance, the jacket water
heaters, lube oil heaters and pre-lube pumps can be used to
determine whether the main diesel engine is online, secured
or in standby. The main diesel engine essentially becomes a
finite state machine, with the stages of operations determined
by NILM monitored equipment. With the right indicators, even
the operational status of the entire ship can be determined
from NILM. For example, the controllable pitch propeller
(CPP) pumps are energized when the ship enters a higher
state of readiness known as the restricted maneuvering doc-
trine (RMD). The Timeline View can then display when the
ship enters RMD. Fig. 16 shows a Dashboard view with a
manually-labeled timeline depicting engine and ship underway
status. With insider knowledge of ship operations, NILM data
can be used to generate ship’s logs as shown in Fig. 17, further
reducing the workload of watchstanders.

The Dashboard platform can be adapted to any NILM
system, whether it be in a house, factory, or naval vessel, to
provide feedback on equipment behavior and energy usage.
The NILM Dashboard provides the framework and analysis
tools to turn power stream data into actionable information
for optimizing operations.
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