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ABSTRACT Significant electrical loads such as HVAC systems can be made “aware” of the operation
of other loads nearby in the electric grid. Local examination of the utility voltage waveform can provide
this awareness without the need for a dedicated communication network. This is particularly true in low-
inertia microgrids and ‘“‘soft” sections of a utility network. This paper presents techniques for extracting
frequency and voltage harmonic transients corresponding to individual load events. With data collected from
a microgrid energized by diesel generators, we demonstrate the ability to identify the operation of HVAC
units and generator dispatch events from their transient effects on the voltage using a cross-correlation
based scoring algorithm. Ultimately, incorporating such awareness into load controllers allows loads to
autonomously meet system-level objectives in addition to their individual requirements. For example, HVAC
units could maintain occupant comfort while also reducing the utility’s peak aggregate electrical demand by
consuming electricity on a schedule interleaved with the operation of other nearby HVAC units.

INDEX TERMS Microgrids, smartgrids, autonomous systems, monitoring, load management, current-
voltage characteristics, correlation, classification algorithms.

I. INTRODUCTION

Electric loads typically operate with uncoordinated sched-
ules. For example, an environmental control unit (ECU) pro-
viding heating and cooling to a building (or section of a
building) operates independently from other ECUs in neigh-
boring buildings (or other sections of the building). The local
temperature conditions determine the activation time for each
ECU. ECU activation times can align, resulting in many
ECUs operating simultaneously, with a maximum demand on
the utility [1]. This schedule of operation is unfortunate and
unnecessary. Generally, ECU operation could be interleaved
to minimize peak demand while still maintaining occupant
comfort. Many electric loads, including ECUs, could receive
information to become ‘“‘aware” of the operation of other
loads [2]-[4]. This information could be exchanged through
a dedicated wired network, radio-frequency communications,
or power line communications [5], [6].

The associate editor coordinating the review of this article and approving
it for publication was Dongbo Zhao.
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Intriguing possibilities exist for the autonomous collec-
tion of operational information from neighboring loads
through analysis of voltage measurements local to a load.
Measurements of grid voltage have been used to track
power quality [7], determine when emergency load shed-
ding is required to maintain microgrid stability [8], and
to detect microgrid islanding events [9]. This paper intro-
duces new techniques for identifying load operation ‘“‘signa-
tures” strictly from measurements of utility voltage. These
techniques are particularly applicable in low-inertia micro-
grids or “‘street-level” distribution networks where the utility
may not be ““stiff,”” due to generator limitations or impedance
from a local distribution transformer. Among other uses,
this information could be used for autonomous control of
cyclically operating loads [1], [10].

Techniques proposed here are demonstrated with voltage
meter data [11] collected in the control panels of several
ECUs at the U.S. Army’s Base Camp Integration Laboratory
(BCIL) at Fort Devens, MA. The BCIL is an archetypal
forward operating base (FOB) with an islanded microgrid
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powered by a bank of 60kW synchronous diesel generators
under dispatch control [1], [10]. The responses of the line
voltage to ECU turn-on/off events, generator dispatch/secure
events (hereby referred to as generator turn-on/off events,
respectively), and the turn-on/off events of other loads were
observed under a variety of base load and generator con-
figurations. Data collected for several days over a period of
months showed good repeatability. This data was analyzed
to extract operation signatures. A cross-correlation based
transient identification technique presented here showcases
the potential for algorithmic load event recognition using the
extracted signatures.

Il. SIGNATURE EXTRACTION FROM VOLTAGE

Relatively few references have looked at the recognition of
voltage-only transient identification for nonintrusive moni-
toring. In [12], the authors present an analog front-end for
examining voltage transients. This approach did not examine
frequency variation on the utility as a potential data stream,
and assumed frequency to be quasi-static over an estima-
tion period. We demonstrate here that frequency variation
and a direct digital examination of higher harmonics are
both critical for effective transient identification in practical
applications.

Relatively small grids or subsections of a larger grid are
more likely to display voltage distortions, e.g., frequency
deviations and harmonic content, that can be used as infor-
mation for load control. Such distortions can be especially
noticeable on islanded microgrids, where generation capacity
and individual load demand may be comparable. This is the
case at the BCIL, where the ECU heaters (10kW rating)
consume approximately 17% of the rated power of a single
60kW diesel generator.

On such microgrids, electrical transients result in grid
frequency deviations due to the finite bandwidth associated
with synchronous generator field controllers and speed gov-
ernors, as well as the frequency control of power electronic
inverters connecting renewables or energy storage devices.
These sources have finite output impedance and bandlimited
control. They often exhibit load-dependent harmonic voltage
distortion. This distortion is exacerbated by modern nonlinear
loads demanding non-sinusoidal currents through the grid
impedances [13]. Frequency and harmonic deviations also
occur when generators come on-line or go off-line to match
load demand. All of these deviations can serve as signatures
to identify the load and generation status of the grid.

Frequency and harmonic distortions have been used
previously as signatures for current-based nonintrusive load
monitoring (NILM) [14]-[17]. Here, we propose a signal pro-
cessing pipeline similar to the Sinefit spectral envelope pre-
processor [17] originally designed for current-based NILM.
The preprocessor employed here looks strictly at voltage
waveforms, and includes signal processing modifications
that improve harmonic extraction accuracy. Harmonic dis-
tortions in the voltage waveform can be small compared to
harmonic content in current, and the new voltage waveform
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preprocessing algorithm discussed below provides critical
resolution for identifying transients in the utility voltage
waveform.

Fig. 1 depicts the signal processing pipeline for transient
signature extraction. The processor takes a single-phase volt-
age, v [n], sampled with frequency, f;, and produces time-
series “‘streams’ of frequency estimates, f [m], and voltage
harmonic coefficient estimates, ‘>k [m]. Streams are provided
at a sample rate double the line frequency, i.e., the rate of
zero-crossings in the line voltage. From v [n] the algorithm
first locates voltage zero-crossings in time (ZCD module)
by linearly interpolating between the voltage data points just
before, v [”;1_1]’ and just after, v [n,‘;], the m™ zero crossing,

ey

Uy (1]

Spectral analysis

Signature Streams: f [m] Vi, [m]

FIGURE 1. Signature extraction process from raw voltage measurements.

With this zero-crossing stream, the section interpolator mod-
ule estimates the average frequency across the m™ data
section of length N, voltage periods as,

fml= N
B [m N =B [m = N]

@

The module then resamples the voltage waveform section at
the rate,

. N'[m],
Sy Im] = N, f [m], 3)
where
, s
N'[m] = [N A——‘ 4)
"f Im]

is the number of new samples over the N, period-length
section. Here, [-] represents the ceiling function meaning
that N’ [m] is the integer value larger than the “prorated”
number of samples between voltage zero-crossings, m — N,
and m + N,,. In this way, f; [m] is the smallest sample rate
higher than f; that results in an exact integer number of
samples in the data section. This process reduces the variance
of the spectral leakage errors by aligning the frequency bins
of the spectral analysis with the fundamental and harmonic

123129



IEEE Access

S. C. Shabshab et al.: Voltage Waveform Transient Identification for Autonomous Load Coordination

frequencies of interest. The coefficients for these components
are calculated via the discrete Fourier Transform (DFT):

N'—1
Vi [m] = Z Vin [n/] e~i2mhkn' [N' 5)
n'=0

Il. FIELD TESTING & OBSERVATIONS

To assess the potential for identifying microgrid events
through voltage monitoring, measurements were taken at the
BCIL during a series of ECU and generator turn-on and
turn-off events on the microgrid illustrated in Fig. 2. During
testing, either one or both of two 60kW diesel generators
provided 120/208V, 60Hz service to the microgrid. The ECUs
each provide heat to a section of a tent complex (Fig. 3). The
ECUs receive power via radial connections from a common
point of coupling with the generators. In addition to the
ECUs, a three-phase variable-resistive load bank capable of
adding base load from zero watts to approximately 25kW
was connected to the grid in order to widen the base load
variation during testing. Other camp loads, e.g., lighting, plug
loads, and notably a latrine sewage pump, were present and
operating. However, with the exception of the latrine pump,

Gen. 1 Gen. 2
L] LIT
(L
Other ECU 3 ECU 1
Loads [ Complex 2 Complex 1
Section 1 Section 1
Load
Bank
Complex 2 Complex 1
Section 2 Section 2
ECU 4 ECU 2

FIGURE 2. Test setup for voltage measurements at the BCIL. Voltage
meters measuring at terminals of ECUs one and three are labeled “V".

|

FIGURE 3. Tent complexes consist of two adjoined tents each with a
dedicated ECU.
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these lighting, plug load, and transformer loads draw much
smaller transient currents than the ECUs and therefore did
not create significant voltage transients.

The response of the line voltage to ECU, latrine pump,
and generator events was measured under a variety of base
load and generator configurations. Generator events occurred
according to their dispatch control rules. A second generator
comes online after load demand exceeds 48kW (80% single
generator capacity) for 10 consecutive seconds. This second
generator will go offline after load demand drops below
36kW (60% single generator capacity) for five consecu-
tive minutes. Over the course of testing, several hundred
ECU turn-on/off transients, eight generator turn-on tran-
sients, seven generator turn-off transients, and four latrine
pump turn-on transients were observed and analyzed for
event signatures in the voltage waveform.

The voltage meters [11] installed in ECUs 1 and 3 sampled
voltage at f; = 8 kHz with 10-bit resolution. This data was
analyzed over N, = 6 period-length windows, a length
we found to provide a good tradeoff between ‘‘smoothing”
measurement and process noise and capturing frequency and
harmonic features related to grid transients. This window of
six periods has proven useful in practice, but it could be varied
to tune performance of the voltage waveform estimator in
different locations. Spectral analysis was performed for the
fundamental and the 3¢, 5", and 7" harmonics, as these
odd harmonics are often-present artifacts due to load current
distortions [17] and generator or source harmonic distortion,
e.g., from space harmonics in the magnetic field of a syn-
chronous generator [ 18]. Other harmonics might be of interest
for loads with richer high frequency harmonic current distor-
tion and sources with different harmonic voltage signatures.
Of these harmonic streams, the 7 harmonic estimate, ‘77 [m],
proved most useful at BCIL because of the harmonic content
generated by the ECU loads and the harmonic signatures of
the generators. At BCIL, an examination of seventh harmonic
and also the frequency estimate stream, f [m], was sufficient
for identifying all major electrical events.

IV. EVENT TRANSIENT SIGNATURES

Field testing revealed that the voltage transients induced by
electrical events vary in character. The details of these tran-
sients depend on how many generators are operating and how
much base load power they are supplying. This makes sense,
as the energy stored in the inertia of the machines and the
armature reactances of the machines vary with load. Each
transient can be categorized as an “‘event type”’ based on the
load action that caused it, the number of generators running
prior to it, and the total base load prior to it. A few days
of observation proved suitable for providing a full suite of
transient exemplars for the base.

A. FREQUENCY SIGNATURES

ECU heaters are the largest loads at the BCIL [19] and
create larger frequency deviations than all other loads except
the latrine pump. Fig. 4 shows the maximum frequency
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FIGURE 4. With only one generator powering the BCIL microgrid, ECU
turn-on events triggered frequency transients ranging in magnitude
between approximately 0.65Hz and 1.1Hz depending on the base load.

deflection as a function of base load for all ECU turn-on
events with a single generator powering the grid. The fig-
ure reveals a moderate dependency between the size of the
frequency transients and the base load at the time of the ECU
event. A plot of ECU turn-off event maximum frequency
deflections looks similar in shape, but reflected about the
x-axis (as the turn-on and turn-off are essentially mirror
images) and shifted out approximately 10kW as events are
categorized by the base camp draw leading up to each event.

ECU transients take on one of two distinct shapes when
only one generator is running. Fig. 5 plots each ECU turn-
on transient with a camp base load of approximately 13kW.
Here, the faint lines are the individual transients, and the black
line is a time-averaged composite waveform or “exemplar”.
Most transients look like the exemplar on the left, where
the frequency deviation is arrested and brought smoothly
back to its nominal value over the course of 1.5 seconds.
Occasionally, the frequency is arrested and ‘““‘aggressively”
brought back near its nominal value in less than 0.5 seconds,
as shown on the right. ECU turn-off events create similar
transients, but opposite in sign. These differing behaviors
may be a result of time-varying and/or nonlinear control in
the generators’ frequency regulators.
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FIGURE 5. Both “slow” and “fast” transients were observed for
ECU turn-on events at some load levels.

With both generators operating in parallel, the peak fre-
quency deviation of an ECU turn-on or turn-off transient is
generally smaller. In this case, base load variations become
more significant, as illustrated in Fig. 6. A single transient
exemplar similar to the left plot in Fig. 5 represents these
transients.

Generator turn-on events were not found to create
significant frequency transients, with maximum frequency
deflections smaller than 200mHz regardless the base load.

VOLUME 7, 2019

02 ‘
=
< e bo
5 -04p of8 g -
31
< g
2 -06F 8 i
: g
: 8o ¢
~ -0.8 - 8 b
g
= e e R
0 5 10 15 20 25 30 35 40 45
Base Load (kW)

FIGURE 6. When both generators power the BCIL microgrid, the ECU
turn-on event related frequency transients varied more significantly with
base load than when only one generator is powering the microgrid.
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FIGURE 7. The frequency transient produced by a generator turn-off
event. Note that at low base loads the transient is nearly undetectable,
and that the ECU turn-on frequency transient closely resembles that of a
generator turn-off around a base load of 25% of the generation capacity
of two generators (30kW).

Generator turn-off events, however, did induce significant
frequency transients at larger base loads, but not at smaller
ones. Fig. 7 depicts example frequency deviations for base
loads of 4kW (left) and 31kW (middle). At low loads,
the transient is small and difficult to identify. However,
at higher loads, generator turn-off events produce easily
detected frequency transients. These transients closely resem-
ble those induced by some ECU turn-on events when two
generators are operating, e.g., the ECU turn-on event shown
on the right in Fig. 7. Similarly, latrine pump turn-on events
produce frequency transients easily confused with some ECU
turn-on events, even though the pump consumes less than half
the steady-state power of an ECU heater. However, due to its
sizable inrush current, it still creates a frequency deviation of
comparable size as shown in Fig. 8. The pump was the only
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FIGURE 8. The large inrush current of a latrine pump turn-on event
makes its transient difficult to distinguish from that of some

ECU turn-on events, despite the fact that it is a less powerful load.
These similar-looking transients were captured with one generator
running under a base load between 21kW and 24kw.
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load on the BCIL grid found to create transients comparable
to the ECUs.

Frequency transients as event signatures cannot, on their
own, provide unambiguous indication of each electrical event
type on the BCIL microgrid. While frequency transients pro-
vide strong indications of all ECU event types, under some
conditions ECU turn-on event signatures can be very similar
to generator turn-off events or latrine pump turn-on events.
Further, the frequency signatures corresponding to generator
turn-on events and those corresponding to generator turn-off
events under low base loads are weak indicators of these
events. Therefore, at least one additional event signature
stream must be observed for unambiguous electrical event
monitoring at BCIL.

B. SEVENTH-HARMONIC VOLTAGE TRANSIENTS
The in-phase seventh-harmonic  voltage content,
ie., \77,r[m] = ?)i{\77[m]}, proved particularly useful for
resolving the ambiguities associated with the frequency
transients. Examining both streams (frequency and seventh-
harmonic voltage) together permits unambiguous electrical
event identification at BCIL. More generally, some combina-
tion of harmonic and frequency streams is likely to provide
unique identification of key loads on many microgrids, and
leads to an interesting and useful machine learning problem
for load identification from voltage waveform transients.
Fig. 9 presents an approximate seventh-harmonic circuit
model for the microgrid of Fig. 2 that is useful for under-
standing the effects of electrical events on the grid’s seventh-
harmonic content. Here, line impedances are ignored as we
found load and generator turn-on and turn-off events to be
reasonably uniform across all measurement points. Variable
resistor Ry, represents the controllable load bank, and all ECU
heater impedances and seventh-harmonic current injections
are lumped into Rj and I, 7, respectively. Source 7, 7 in the
model is the sum of all the ECU ventilation fan seventh-
harmonic currents, and Ry, varies with the number of ener-
gized ECU heaters such that,

1

S1 $2 53 S4

Rh=<—+—+—+—> . (6)
Ry Ry Rw3s  Rpm

Here, s, is a binary variable equal to one when the n ECU
heater is energized and zero when it is not.

Xg,? +
%Rw I,z Q} Rh§ Vs
Vo a

ECUs

Generators Load Bank

FIGURE 9. Equivalent seventh-harmonic circuit model of the BCIL test
setup.
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Source V, 7 in the model represents the combined seventh-
harmonic voltage of the two generators, and X, 7 repre-
sents their combined reactance at 420Hz (seventh harmonic
of 60Hz). With the two generators essentially identical, their
combined source characteristics can be described as

V, 2(PL, ng) =V, (PL ) (7
I, ng) = Vg7
8 8 8 nng,r
and
Xo1,7
X 7(ng) = = ®)
8

Here, V1,7 () is the seventh-harmonic voltage of a single
generator under the per generator normalized load (percent
capacity),
P
y = &)

ngPg.r

where Py, is the total fundamental power provided to the grid
by ng generators each with a capacity rating of Pg , (60kW).
Similarly, X1 7 is the output reactance of a single generator.
The combined contribution of these two bulk sources to the
seventh-harmonic voltage observed at each heater is

Rip || R

v, — (+)v,7+ R || Ri 1 7Xe7) B
oy ACR )

(10)

where the || operator indicates the parallel combination of
two impedances. At the BCIL, X, 7 < Ry || Rp. This is
likely to also be true for most practical grids, as generator
reactances at 60Hz need to be negligible to avoid significant
voltage droop in the system. Therefore, the seventh-harmonic
voltage at each heater can be approximated as

Vi &= Vo7 +jXe 7. an

That is, the seventh-harmonic voltage measurements at
each ECU depend on both the seventh-harmonic voltage dis-
tortion of the generators and the seventh-harmonic currents
injected by the three-phase rectifiers of the ECU ventilation
fans. Notably, X, 7 does not significantly affect the gen-
erators’ seventh-harmonic voltage distortion contributions.
Further, V, 7 is a function of normalized load when combin-
ing (7) and (9). These relationships were confirmed through
steady-state tests with all ECU ventilation fans off so as to
eliminate the contribution of 7, 7. Fig. 10 plots \771, which
was found to be a monotonically increasing function of the
normalized load, y . Both generators produce similar levels of
seventh harmonic distortion, as does their parallel combina-
tion, even though X, 7 decreases when the two are paralleled.

When the ventilation fans are operating, their seventh-
harmonic currents [, 7 interact with the generator reactances
to shift the in-phase seventh-harmonic voltages measured at
the ECUs as shown in Fig. 11. Here, all data points from
Fig. 10 are repeated for reference. This shift is more pro-
nounced when only one generator is operating, as X, 7 is
twice as large compared to when both generators operate
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FIGURE 10. In-phase seventh-harmonic voltage measured at the ECUs
when no ECU ventilation fans are operating.
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FIGURE 11. In-phase seventh-harmonic voltage measured at the ECUs
when the ECU ventilation fans are operating. These variable speed drive
fans impart seventh-harmonic currents which combine with the generator
reactances to shift seventh-harmonic voltages measured at the ECUs.

(assuming the generators are identical). The ventilation needs
of each tent dictate fan speed and vary with time. This vari-
ation is created by a power electronic controller that creates
seventh-harmonic currents. Therefore, the I, 7 contribution to
V7 is not necessarily constant. However, these variations gen-
erally occur slowly compared to the abrupt changes in V, 7
accompanying the steps in Py caused by a load turn-on or
turn-off event.

This seventh-harmonic voltage relationship with normal-
ized load resolves the ambiguities left over from the fre-
quency signatures. Specifically, generator turn-on events
(ng increases by one), which create relatively small frequency
transients, generate large step-down transients in \77,r due
to the corresponding decreases in X, 7 and y ((8) and (9),
respectively). In Fig. 11, this transient associated with a
second generator activation manifests as both a shift down
from a single generator curve to the two-generator curve and
a shift left in normalized load, further decreasing the in-phase
seventh-harmonic voltage.

Conversely, generator turn-off events generate large step-
up transients in f/”. Fig. 12 provides example V77r signatures
corresponding to the same generator turn-off events of Fig. 7.
Notably, the voltage transient on the left corresponding to a
generator turn-off at low load provides a clear event signature,
whereas the frequency transient did not. Further, the size of
the \A/” generator turn-off transient in the middle plot is easily
distinguishable from the ECU turn-on event transient of the
right plot, while the two corresponding frequency transients
are easily confused. Similarly, Fig. 13 reveals that the \771

VOLUME 7, 2019

Gen Off, 4kW Load Gen Off, 31kW Load ECU on, 31kW Load
2 2 2

z
g 15 15 15
s
T 1 1
<
~
o 0.5 0.5 0.5 1
E B
= 0 0 0
8
0 5 10 0 5 10 0 5 10
Time (s) Time (s) Time (s)

FIGURE 12. P7 data gathered under generator operation loaded by the
load bank and ECUs. The current injected by the ECU ventilation fans was
observed to create significant additional seventh-harmonic voltage in the
circuit.
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FIGURE 13. The delta-connected power electronic rectifier in the ECU
creates a distinctively large turn-on transient in P7.

steps corresponding to the frequency transients of Fig. 8 help
to distinguish between an ECU turn-on and pump turn-on,
as the size of these steps is dictated by the steady-state power
demand of the loads rather than the in-rush power.

V. TOOLS FOR SIGNATURE IDENTIFICATION

When considered together, frequency and in-phase seventh-
harmonic voltage streams provide detectable and distinct
transients that indicate four important microgrid events: ECU
heater on, ECU heater off, Generator on, and Generator
off. Fully deployable identification systems might require
machine learning techniques for event detection and iden-
tification, e.g., the neural networks used in NILM applica-
tions [20]. More data might be needed as the model structure
increases in complexity [21]. Our data set collected at BCIL
was well analyzed with an approach, derived from convolu-
tional neural networks (CNN), to create an ad hoc correlation-
based transient identification algorithm using ‘‘fingerprint”
exemplars, i.e. representative transient signatures, to identify
events. Other classification schemes could also serve as a
transient pattern identifier.

A. EXEMPLAR CREATION

To generate signature exemplars, we manually labeled a set
of 512 ECU events and 15 generator events, each consist-
ing of 1601 m-samples (approx. 13.3s) of frequency and
7th-harmonic data containing each stream’s transient. From
this set of labeled data, we selected 268 ECU events and
11 generator events to create event exemplars from similarly
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shaped transients in this training set. Remaining data served
as test sets for cross-validation. Creating these exemplars
allowed the use of correlation methods for transient identifi-
cation. This approach also minimizes the number of exemplar
waveforms that must be saved by a local ECU controller,
easing local requiremens on data storage and analysis in
real-time.

Fig. 14 illustrates the exemplar formulation process. The
exemplar creation algorithm receives a transient signature
set with labeled events indicating the cause of the transient,
the number of dispatched generators leading up to the event,
and the base load just before the event. For each of the two
streams that comprise the transient signature, the algorithm
assesses whether the transient matches with any previously
generated exemplar for that event type, number of generators,
and base load. This matching is conducted by first align-
ing the transient signature, y[m], with the exemplar, x[m],
by index-shifting the transient by /, indices where,

lo = argmax » _ x[m]ylm +1]. (12)
1

Provide

f ~\,~— labeled
transients

,* @’ Evaluate match

to exemplary

»
I « I transients

L,
— N\

Freq. match, Freq. match, No. freq. match No. freq. match
7th harm. match No 7th harm. match 7th harm. match No 7th harm. match

Combi Combi Add Add
‘ombine ‘ombine add I R Add
Combine Add Combine Add

N T O A 1

FIGURE 14. The exemplar management algorithm compares a transient
labeled with event type and base load to all transients in the
corresponding exemplar for each stream. The measured transient will
either update an existing exemplary transient (+ sign) or be added as a
new one.

Vi

Here, [, is the lag corresponding to the maximum in the cross-
correlation of the two waveforms. The match is then scored
as
Y [m] = yim+1,])*
> x [mP?
i.e., the squared ‘“‘distance” between the transient candidate
and the exemplar normalized to the energy of the exemplar.
The lower the value of S, the better the match between
the two signals. As such, a threshold level for matching was
determined empirically. For all seventh-harmonic transients
corresponding to any event type, and all frequency transients
corresponding to ECU on-events and both ECU and generator
off-events, this threshold was set to S, = 0.2. For generator
turn-on events, where the frequency transients are less dis-
tinct, this threshold was S, = 0.45. If the algorithm deter-
mines that the transient matches an exemplar, it recursively

S

, (13)
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updates the exemplar as,
x[m] = ax[m] + (1 — ) y[m + 1,]. (14)

For this study, we set the recursive update factor, «, to 0.8.

The frequency and harmonics streams for each event are
evaluated independently. Therefore, they can both match their
exemplar and be combined as illustrated in the bottom left
of Fig. 14, or one can match and be combined (bottom
middle), or neither might match (bottom right). When a
transient does not match a previous exemplar or no previ-
ous exemplar exists, the algorithm sets the transient as a
new exemplar. Some events, e.g., a generator turn-off under
low loading (Fig. 7), do not create significant transients in
the frequency stream. For these events, only the seventh-
harmonic transient is used in exemplar creation. Using this
technique reduces the number of total frequency and in-phase
seventh-harmonic exemplars from 279 of each to 56 and 64,
respectively. This can provide a useful savings in memory
storage for each ECU load controller running an transient
identifier.

B. ON-LINE TRANSIENT DETECTION
These exemplars permit transient identification by first
detecting potential events in the frequency and seventh-
harmonic streams and then matching new events to known
exemplars. At BCIL, the rate of event generation and the
homogeneity of the large ECU loads allows a change-
of-mean detector to perform well as a transient detector,
although other choices are possible. In the frequency stream
the detector classifies a deviation exceeding 200mHz for
more than 4ms, or by more than 10mHz for more than 2s, as a
potential transient. These criteria were chosen based on the
observed noise variance and the magnitudes of the frequency
transients caused by events of interest.

In the seventh-harmonic stream, an edge corresponding to
a step greater than 0.1V is considered a transient for the BCIL
loads. To detect an edge, the transient detection algorithm
smoothes the ‘A/7,r [m] stream using a Gaussian low-pass filter
with a standard deviation of 0.3s, and then evaluates the first
difference of the result, s[m], as,

s[m] — s[m — 1]

d[m] =

T tfm] —t[m— 11 (1)

A local maximum in d[m] exceeding three times its standard
deviation evaluated across the exemplar window is empiri-
cally set to indicate an edge. The identification algorithm then
assesses the step size by averaging the values of \77, »[m] for
1.5s before and after the detected edge, and classifies the step
as a transient if the difference of these averages exceeds the
0.1V change in magnitude cutoff.

C. TRANSIENT IDENTIFICATION

Once an event has occurred, the identification algorithm
compares the measured transient to all event exemplars
corresponding to the estimated generator configuration and
base load. This estimation is based on previously identified
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transients and/or the level of ‘77’, (Figs. 10 and 11). This
matching algorithm, illustrated in Fig. 15, follows the same
process as that used in exemplar creation and uses the same
threshold values.

Measured transients are compared with the exemplar tran-
sients of each event type. As depicted in the ECU turn-on
event category in the top left of Fig. 15, event types can
contain multiple exemplars for one or both of the two streams.
In these instances, the match score of the measured tran-
sient is calculated for each exemplar transient and the best
score is taken. In the case of a generator turn-off under
low loading conditions, there is no frequency exemplar to
compare against, and the frequency transient score is instead
determined as the scaled RMS value of its deviation,

]2
S m S,. (16)
E,
ECU on ECU off Gen. on Gen. off
f T *M‘ T *TL T *T"\/\ T *T’\[_

oo e Tt T L

Squared error

calculation
ECU on ECU off Gen. on Gen. off
f S BCUON St ECUOfS Sf,Gen.on S Gen.off
f/mn Svi,ECUon | Svi,ECUff Svy,Gen.on Svy,Gen.of f

FIGURE 15. Overview of the transient-identification algorithm. The
observed transients in both streams (colored blue, on the left of each cell)
are compared with the exemplar transients for each event of interest.

Here, E, = 2.4, which is the signal energy of a fre-
quency deviation of 10mHz for 2 seconds (240 m-samples),
i.e., the larger energy value of the frequency transient detec-
tion thresholds described in the transient detection section.
S, is set to 0.2, the matching threshold for generator turn-
off frequency transients. If these match scores are below the
threshold values for both the frequency and seventh-harmonic
streams of a particular event type, the transient is identified
as that event type. If no event is identified after this process,
the detected transient is ignored.

D. “COLLISION” TRANSIENTS

Simultaneous or near-simultaneous events create ‘“‘collision
transients.” Collision transients can be caused by the actions
of any device, including ECUs, generators, or latrine pumps.
They are not, in general, repeatable or distinct. The exact
timing of the events that cause them have a large effect on
the conglomerate shape and extent of the transient. Collision
transients, while rare, are therefore currently unidentifiable.
While reconciling these overlapping events is beyond the
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scope of this paper, we note its importance and point to
two possibilities for maintaining situational awareness in the
presence of collision transients. First, the “collision” may be
resolvable as the sum of known exemplars. Second, it may not
be necessary to resolve the exact details of the collision. For
an autonomous ECU control algorithm, it may be sufficient
to know that a collision has occurred, and develop a set of
operating rules for resolving and moving past the collision
with individual control efforts, as discussed in [10].

VI. ALGORITHM DEMONSTRATION

To demonstrate the functionality of the nonintrusive voltage
monitoring algorithm, the exemplar formation and transient
identification algorithms described in the previous section
were applied to the field data containing all 512 ECU events,
15 generator events, and several events corresponding to
other loads on the grid, e.g. the latrine pump. These events
include those used to create the exemplars and also the cross-
validation data set. During this process, the transient identifi-
cation algorithm maintained an estimate of the total base load
and the number of operating generators by identifying the
transients associated with changes to those parameters. The
identification algorithm correctly identified all 527 recorded
transient. Examples of this event tracking are provided in
Figs. 16-18, where the tallied events are provided in the
top plots and the frequency and in-phase seventh-harmonic
streams are provided in the middle and bottom plots,
respectively.

In Fig. 16, the transient identifier correctly distinguishes
the generator turn-off event at 189.2 mins and then a series
of ECU on and off transients occuring between 190.9 and
193.7 mins. Notably, the identifier ignores the event occurring
at 190.3 mins. At this moment, all ECUs cycled simultane-
ously to fully ““off,” causing the ventilation fans to turn off.
This in turn caused the abrupt drop in seventh harmonic and
the small frequency transient. At approximately 190.75 mins,
we restarted the ECU ventilation fans, which resulted in the
ramp up in seventh harmonic as the variable speed driven
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FIGURE 16. Transient-based detection of a generator turn-off event
followed by a series of ECU turn-on and off events at the BCIL.
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FIGURE 18. Transient-based detection of ECU and generator events, while
simultaneously ignoring latrine pump events.

fans return to rated speeds. Even though the first ECU turn-
on event occurs in the middle of this ramp up (190.95 mins),
the algorithm is still able to identify this event.

Fig. 17 demonstrates the ability of the algorithm to cor-
rectly identify a generator turn-on event, characterized by
the small frequency disruption but large seventh-harmonic
step at approximately 203.9 mins. Two ECU events follow
a few minutes later. Finally, Fig. 18 provides examples of the
algorithm ignoring a series of latrine pump events. Following
an ECU turn-off event at 292.75 mins while two generators
were online, the latrine pump cycled on and off twice, first
at 293.2 mins and then later at 294.2 mins. Later, after an
identified generator turn-off event at 295.2 mins, the latrine
pump again cycles twice, first at 297.9 mins and then at
299 mins. A few minutes later, the algorithm correctly detects
the final ECU turn-off event.

VIi. CONCLUSION

Most nonintrusive monitors, and power meters in general,
measure both current and voltage. This paper has demon-
strated an effective application of a nonintrusive monitor
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that can detect significant events and identify them strictly
from changes in the voltage waveform of the utility. Voltage-
only load identification means that any load on a local utility
network can, in principle, identify the operating schedule
of substantial loads in the network neighborhood. No cur-
rent sensors are necessary, and the utility itself effectively
doubles as a load-monitoring information exchange network.
The scheme could also be augmented or enhanced, where
appropriate, with other signals, including power-line carrier
signals, to confirm or ensure the detection of load operation.

Grids or sections of power grids may be resource con-
strained for different reasons [22], [23]. True microgrids on
land, such as the US Army FOBs, or elsewhere, e.g., on ships
or aircraft, are constrained by generation resources. These
constraints include absolute power limits and also a desire for
efficient operation. Sections of other grids may be effectively
constrained by distribution components like transformers.
This paper has demonstrated techniques that allow an individ-
ual load to recognize and react to the operation of other loads
on the local grid. This information could be used by “aware”
loads to self-schedule their operation to avoid power demand
peaks. In much the same way that a self-driving vehicle can
share a road with different owners operating with different
goals, this “aware’” approach to load operation permits loads
to share the grid while minimizing peak demand without
conflict or invasive networking requirements.
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