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M odern power monitoring systems record vast 
amounts of equipment operational data. For 
these systems to improve efficiency and perfor-

mance, the data must be presented as an intuitive decision aid 
for watchstanders. The Nonintrusive Load Monitor (NILM) 
dashboard provides actionable information for energy score-
keeping, activity tracking, and equipment condition-based 
maintenance (CBM). Using a NILM to present metrics that 
track changes in equipment signature and equipment behavior 
allows for effective CBM. Electrical monitoring through the 
NILM dashboard can identify both “soft” faults (the gradual 
degradation of equipment performance) and “hard” faults 
(the complete failure of a piece of equipment). This paper pres-
ents metrics and visualizations that have proven useful for 
CBM. Analysis from case studies of fault conditions identi-
fied aboard two United States Coast Guard cutters (USCGCs), 
SPENCER and ESCANABA, are discussed.

Goals of Condition-Based Maintenance
As the complexity and criticality of power systems increase, 
so does the need for condition- based maintenance (CBM). 
Condition-based maintenance conducts maintenance activ-
ities based on data gathered from condition-monitoring of 
equipment, as opposed to the traditional scheduled or break-
down maintenance [1]. Data is used to provide advance 
warning of failure so that equipment repair or replacement 
can be scheduled [2]. For deployable units, where the im-
pact of a single equipment failure can severely limit mission 
effectiveness, CBM aims to minimize sudden failure when 
deployed and maximize the maintenance conducted during 
scheduled availabilities. Many power monitoring systems re-
cord vast amounts of equipment operational data, but users 
are not able to understand the relationship between the data 
and equipment failures [3]. However, both the data and the 
understanding of the data are fundamental to any CBM pro-
gram. Extracting actionable information from the raw data 

requires pattern analysis and an understanding of the underly-
ing physics. One power monitoring option, nonintrusive load 
monitoring, is a low-cost solution for extracting device-level 
information from aggregate power data at a central location 
[4]. For a Nonintrusive Load Monitor (NILM) to be an effective 
CBM tool, both anomalous load behaviors and load signa-
tures have to be detected and identified. Furthermore, the data 
should be presented as an intuitive decision aid for users.

This paper uses case-studies of faults observed with non-
intrusive load monitoring aboard two United States Coast 
Guard cutters (USCGCs), SPENCER and ESCANABA, to 
present metrics and visualizations that have proven use-
ful for CBM. First, the NILM installations aboard SPENCER 
and ESCANABA are described. Then some common faults in 
electromechanical systems are explained. Some useful met-
rics, or diagnostic indicators, for diagnosing those faults are 
presented. Finally, the paper discusses how to determine the 
proper fault warning levels and detect degrading equipment 
signatures, in order to use the described metrics for diagnos-
ing fault conditions.

Nonintrusive Load Monitoring Onboard 
US Coast Guard Cutters
The USCGCs SPENCER and ESCANABA are 270 ft (82 m) me-
dium endurance cutters (MECs) based in Boston, MA. The 
ships each maintain a 100-person crew, performing a host of 
Coast Guard missions, including environmental stewardship, 
law enforcement, fisheries protection, and national security. 
On legacy ships, such as these MECs, watchstanders man-
ually record readings from equipment at local gauges and 
panels throughout the ship. Machinery control and monitor-
ing systems (MCMS) are either installed in limited areas or 
not present at all. Even though these legacy cutters lack a fully 
integrated MCMS, they still contain many closed-loop, auto-
mated systems. Closed-loop systems are actuated by sensor 
feedback, such as tank-level indicators or temperature sensors. 
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These sensor feedback systems are crucial to equipment op-
erations, but they make equipment anomalies difficult for 
watchstanders to detect.

NILM systems are installed upstream of two 440 V sub-pan-
els in the main engine room. These panels, STBD and PORT, 
supply a variety of mission-critical systems, crucial to the 
proper operation of ship propulsion, power generation, and 
auxiliary services. These panels supply the loads that support 
the main propulsion diesel engines (MPDE) propelling the 
ship, as well as the two ship-service diesel generators (SSDG) 
providing power to the ship’s microgrid. The NILM sys-
tems installed on these vessels serve two primary objectives: 
first, to identify equipment operating schedules to improve 
watchstander situational awareness; then, once the operat-
ing schedules have been accurately identified, to analyze 

the gathered data for CBM 
and fault detection to im-
prove system operational 
availability. Information is 
presented to the crew on-
board SPENCER through 
the on-site NILM dash-
board [5].

A NILM system con-
tains a NILM meter that 
uses a data acquisition 
unit (DAQ) to sample cur-
rent and voltages at 8 kHz 
and then transmits the 
data via Ethernet to a host 
computer. The computer 
converts the current and 
voltage data into 60 Hz real 
power (P), reactive power 
(Q), and higher harmonic 
content using the Sinefit 
algorithm [6]. P and Q cor-
respond to the envelopes 
of in-phase and quadra-
ture current drawn relative 
to the load voltage [7]. The 
power information directly 
corresponds to the physics 
that governs load behav-
ior, producing distinct 
signatures for each piece 
of equipment. The NILM 
is trained to recognize the 
signatures from previous 
shipboard observation. 
This allows the NILM to 
detect load events, which 
occur when equipment 
transitions between on and 
off states, thus generating 
the operating schedules of 

individual equipment [8]. The operating schedule is commu-
nicated to the crew through the NILM dashboard “Timeline 
View,” as shown in Fig. 1. Then, a NILM system can determine 
load metrics, or diagnostic indicators, which are statistical con-
clusions that expose anomalies and patterns to be used for 
CBM. These metrics are displayed in Fig. 2 through the NILM 
dashboard “Metrics View” and are subsequently described.

Faults in Electromechanical Systems
Electrical monitoring through a NILM system can be used 
to monitor deviations from acceptable behavior or standard 
condition of equipment. The cause of these deviations are of-
ten “soft faults” or the gradual degradation of equipment 
performance. With the aid of automatic controllers and feed-
back control, system operability is maintained; however, this 

Fig. 1. The Timeline view of the NILM dashboard displays equipment status over a day of at sea operation. Colored blocks 
indicate periods where equipment is energized.

Fig. 2. NILM dashboard Metrics view indicating healthy graywater pump operation.
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often leads to increased wear and if left undetected, it eventu-
ally leads to a “hard fault,” or the complete failure of a piece of 
equipment. Condition-based maintenance aims to detect soft 
faults, before they turn into hard faults. These faults are of-
ten invisible to watchstanders but clearly visible in the electric 
power readings.

Case Study: Main Propulsion Diesel Engine 
System
A main propulsion diesel engine (MPDE) jacket water (JW) 
heater failure from SPENCER and ESCANABA is presented 
here as an example of a soft fault failure that was invisible to 
watchstanders but clearly visible in the electrical readings. The 
MPDE JW heater consists of two 4.5 kW heating elements on 
either side of the engine block. The heaters appear to the NILM 
as a single electrical load, a 9 kW resistive load with 3 kW per 
phase. The MPDE JW heater is run by a controller and runs 
automatically based on 90° F and 120° F setpoints. The con-
troller configuration results in the MPDE JW heater frequently 

turning on and off simultaneously with the MPDE lube oil 
(LO) heater and MPDE prelube (PL) pump. Fig. 3 shows the 
electrical transients for a healthy MPDE JW heater operating 
alone and in tandem with the other MPDE system loads. On 
both ships, the NILM detected a slow change in the heater’s 
electrical signature, with the real power decreasing in a series 
of degradation events. During the same period, the heaters 
showed an increase in reactive power on different phases of 
power. Fig. 4 shows the power draw as the MPDE JW heater 
on ESCANABA port-side starts at healthy operation, then goes 
through degradation for about a minute. During this process, 
the MPDE JW heater decreases about 800 W on two phases of 
real power and splits in reactive power of about 450 VAR of op-
posite signs on two phases. 

After this degradation event occurs, any time the MPDE 
JW heater turns on or off, it is operating in the degraded state 
with reduced heating capability. The MPDE JW heater went 
through several more degradation events similar to Fig. 4 over 
the course of observation. By plotting the real (P) and reactive 
(Q) power step change at each on or off event, the changes in the 
power draw after each degradation event is evident. Using ES-
CANABA port-side events from April 2018 to May 2019, Fig. 5 

Fig. 4. Power draw as the MPDE JW heater degrades over the course of 
about a minute, decreasing about 800 W on two phases of real power and split 
of about 450 VAR in reactive power of opposite signs on two phases.

Fig. 5. The PQ space shows how the MPDE system cluster moves as the 
jacketwater heaters continue to degrade over time.

Fig. 3. On transient of MPDE: (a) pre-lube pump, lube oil heater, and jacket water heater, (b) lube oil heater and jacket water heater, and (c) jacket water heater 
[17]. Used with permission, (©IEEE, 2019).
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plots the PQ space for on events, as a sum of the three phases, 
of the MPDE JW heater in tandem with the LO heater and PL 
pump. Over this time period, the MPDE went through three 
degradation events, as indicated with the different clusters. 
The plot shows that with increasing degradation, the power 
draw continues to decrease. The power factor (PF) can also 
provide an indication of a fault. Normally a purely resistive 
load with a PF of 1, over the course of degradation the PF on 
various phases also decreases. This is shown in Fig. 6 for one 
phase of the SPENCER port-side heater as it degrades (using 
data from November 2016 to November 2018).

For a variety of reasons, this fault was nearly impossible to 
detect without the assistance of the NILM. Despite the holes in 
the heaters shown in Fig. 7, there was no ground detected. The 
stray current flowed into the jacket water and did not reach 
the ship’s hull. The heater controller showed that the heaters 
were online, and the thermostatic controller continued to ac-
tivate the load. After the fault condition was made visible by 
the NILM, the ships’ crews were alerted and the heaters were 

subsequently removed and inspected. This revealed severe 
corrosion of the heating elements. Fig. 7 shows the physical 
condition of the heaters after their electrical signature de-
cayed. Upon removal of the enclosure covers, the wiring was 
degraded and one of the heaters was lightly smoking. In addi-
tion to identifying a failed heating element, analysis detected 
a potential shock hazard and likely prevented an electrical 
fire in the engine room. There is currently no preventative 
maintenance action that prompts the crew to check the heater 
enclosures for damage or circuit continuity. Like most soft 
faults, detecting this issue with normal watchstanding efforts 
is an unrealistic expectation.

Diagnostic Indicators for Fault 
Detection
Nonintrusive load monitoring records the electrical signature 
and the operating schedule for a piece of equipment, allow-
ing for a broad range of fault diagnostic methods. It is crucial 
to select the appropriate parameters for condition-monitor-
ing to create a useful tool that provides actionable information 
for watchstanders. An effective CBM program using a NILM 
should track changes in equipment signature, as demonstrated 
by the MPDE JW heater fault presented above, as well as 
changes in equipment behavior, demonstrated with the exam-
ples in [9].

For this study, the following five parameters were selected 
for equipment diagnostics:

◗◗ Power: Steady-state real power.
◗◗ Power Factor: The ratio of real power to apparent power.
◗◗ Average Run Duration: Time between activation and 
shutdown.

◗◗ Total Run Time: Total time the equipment is online over a 
24-hour period.

◗◗ Daily Actuations: Number of discrete operations per day.
These parameters work well for the equipment monitored 

onboard the MECs, but other metrics may be useful in other 
environments. The equipment in this work consists largely of 
pumps and heaters, each with a consistent steady-state power 
signature. Power, power factor and average run duration track 
the equipment signature. These metrics can detect material 
degradation of equipment, such as mechanical wear and cor-
rosion. A change in power demand may indicate a worn motor 
bearing [10] or a change in power factor could be a sign of cor-
roded heating elements, such as the MPDE JW heater example 
presented. Many of the heaters and pumps monitored by the 
NILM on the MECs are controlled by closed-loop automated 
systems such as tank-level sensors or thermostats. Thus, the 
average run duration, total run time, and daily actuations track 
equipment behavior and are useful for finding sensor and 
automation faults that might cause equipment to run too fre-
quently or not enough. A broken tank level indicator or failed 
thermostatic controller can, for example, cause equipment to 
activate in repeated short-cycles or run for excessively long 
periods [9].

Finally, it is important to note that a single extended pump 
run or even a few frequent runs is not necessarily a cause for 

Fig. 6. The P-PF space shows how the MPDE JW cluster moves as the 
jacketwater heaters continue to degrade over time.

Fig. 7. (a) Bare wiring found in SPENCER port inboard jacket water heater. 
Jacket water heaters removed from engines after electrical degradation was 
observed, revealing severe corrosion: (b) from ESCANABA port inboard heater, 
removed April 2019 and (c) from SPENCER port inboard heater, removed 
December 2018.
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concern. These may occur during manual operation or main-
tenance. This is accounted for by tracking the average over 24 
hours for averaged parameters, i.e., power, power factor, and av-
erage run duration, and the total over 24 hours for summated 
parameters, i.e., total run time and daily actuations. The 24-hour 
window serves to help prevent falsely displaying an alarm as 
the result of a brief anomaly. The 24-hour period can easily be 
adjusted for different applications where loads activate less or 
more frequently, or tighter controls are required.

Determining Fault Warning Levels
Condition-based maintenance parameters are communicated 
on the NILM dashboard via “green- yellow-red” diagnostic 
gauges, as shown in Fig. 2 [11]. The green region represents 
healthy operation, while the yellow region can be considered 
analogous to a trouble warning, and the red region is a more 
definitive fault alarm. Determining the proper threshold for 
each region on the gauges is crucial to making it a useful, ac-
tionable tool for the ship’s crew. A variety of methods have 
been proposed to determine fault thresholds for industrial ap-
plications [12]. For this study, a statistical process control (SPC) 
method is implemented. Effective SPC attempts to differenti-
ate between natural variations and variations that are due to 
process failure [13].

Historical data collected by the NILM was used for SPC 
analysis. Metrics were calculated for the NILM data collected 
from the SPENCER and ESCANABA sub-panels dating back 
to 2016. Equipment nameplate information and the ship’s logs 
were used to exclude any data that may have been from a pre-
vious fault condition. Deviation from the historical data for 
any parameter is evidence of a possible fault. SPC provides a 
method to determine exactly how much deviation is accept-
able and when a deviation should trigger a fault warning. The 
SPC method consists of determining a centerline, an upper 
control limit (UCL) and a lower control limit (LCL). Warnings 
are issued when a parameter reaches the upper or lower con-
trol limits.

First consider a continuous variable, in which the variable 
can fall anywhere within a particular range of values, such 
as power, power factor, average run duration, and total run time. 
Considering the standard normal distribution, SPC uses the 
arithmetic mean (θ) of the parameter as the centerline [13]. The 
UCL and LCL are defined as:

	   UCL k 	 (1)

	   LCL k 	 (2)

where σ is the standard deviation and k is an integer that sets 
the distance of the control limits.

For a parameter with a normal distribution, k = 3 is the 
accepted industry standard for a fault warning [12] and corre-
sponds to the red region on the gauges. The choice of control 
limits affects the risks of Type I or Type II errors, where Type I 
errors refer to incorrectly reported faults and Type II errors re-
fer to missed faults. By widening the control limits, the risk of 

Type I errors decreases; however, there is an increased risk of 
Type II errors as more data points will fall within the control 
limits and viewed as normal. Contrarily, if the control limits 
are narrowed, there is an increased risk of Type I errors and 
decreased risk of Type II errors, as more data points will fall 
outside the control limits and classified as fault conditions. 
The “3-sigma” rule is conservative and designed to minimize 
the risk from false alarms. However, analysts often suggest us-
ing two sets of limits; action limits at “3-sigma” and warning 
limits at “2-sigma” [13]. For this application, the intermediate 
control at k = 2 corresponds to the yellow region on the gauge. 
Addition of the intermediate control limit provides more rapid 
detection of faults [14]. Fig. 8 shows how SPC maps the prob-
ability density function (PDF) of a normal distribution to the 
green, yellow and red regions of the gauges. The percentages 
in each region correspond to the likelihood that the variable 
falls within that particular range of values. The quantile values 
displayed at the bottom of Fig. 8 correspond to the probability 
that some variable (X) is less than or equal to some value (x), 
where x is the centerline and control limits. This can be written 
as a cumulative distribution function (CDF):

	  ( ) ( )F x Pr X x 	 (3)

The inverse cumulative distribution function (ICDF), or quan-
tile function:

	  1( ) ,F p x 	 (4)

solves for the x value that would make F (x) return some prob-
ability, p.

The SPC process can be adapted if the normal distribution 
does not properly fit the data. For example, the Weibull distri-
bution is often used in machinery reliability applications [12]. 
The PDF for a two-parameter Weibull function is:

	  



 

  
 
   

   
  

1 xxf x e 	 (5)

where α is the scale parameter and β is the shape parameter. 
To create the gauge regions for a non-normal distribution, the 
probability quantiles (p) should match the red, yellow, and 
green regions of the normal distribution in Fig. 8. 

Fig. 8. Probability density function of a normal distribution showing 
progressive thresholds for fault detections. Colors correspond to the red, 
yellow, and green regions on the dashboard gauges [11]. Used with permission, 
(©MIT, 2019).
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The ICDF function for a Weibull distribution is:

	        
1

1 β|α,β α 1  x F p ln p 	 (6)

Therefore, the centerline can be found by setting p equal to 
0.50 and solving for x. The upper and lower yellow threshold 
levels can be found by setting p to 0.977 and 0.023, respectively. 
Similarly, the upper and lower red threshold levels can be 
found by setting p to 0.999 and 0.001, respectively. This ensures 
that the probability of an alarm detection is the same regard-
less of the PDF selected for modeling [11]. Each parameter 
monitored by the NILM dashboard can be analyzed individ-
ually and the gauges adjusted to provide diagnostic warnings 
at appropriate levels.

Next consider a discrete variable, in which the variable has 
finite values, such as the number of daily actuations. Because 
these can only occur as integer values, the CDF is not continu-
ous and increasing; thus, the generalized inverse distribution 
function will be used instead of the ICDF. The generalized in-
verse distribution function can be expressed as:

	        1 inf : ,x F p x F x p 	 (7)

where inf is the infimum, or the greatest lower bound. Simi-
lar to a continuous function, centerline and upper and lower 
limits can be determined by setting p to the appropriate values 
and solving for x.

The SPC method is visualized in Fig. 9 for the MEC CPP 
pumps. Histograms for each metric are created using his-
torical NILM data. Then, probability densities are fit to the 
data. The probability densities visualized in Fig. 9 are normal-
ized to match the total area of the histograms. For continuous 

functions, the histograms are modeled with multiple prob-
ability density functions (PDF), while a discrete function is 
modeled with probability mass functions (PMF), and the 
best fit function is selected. For continuous functions, the 
Anderson-Darling (AD) test returns a decision for the null 
hypotheses that the data is from a population with a specific 
distribution [15]. The test rejects the null hypothesis at the 
5% significance level. For the example shown in Fig. 9, the 
AD-test did not reject the null hypothesis for a normal distri-
bution for power and power factor, with p-values, or probability 
values, of 0.2446 and 0.6561, respectively. The AD-test did not 
reject the null hypothesis for a Weibull distribution for aver-
age run duration and total run time with p-values of 0.4430 and 
0.7205, respectively. To test the discrete models, the chi-square 
goodness-of-fit test was used since it is applicable for discrete 
distributions [15]. The chi-square test did not reject the null 
hypothesis for a Poisson distribution for number of daily actu-
ations with a p-value of 0.0511. Depending on the PDF or PMF 
selected, the fault detection thresholds are set as shown in Fig. 
8 or using a quantile function, as described in (6) and (7). This 
process was repeated to determine control limits for each of the 
monitored loads. 

Detection of Changing Load Signatures
If a user knows that a piece of equipment should be operating, 
but the dashboard Metrics View shows the load has not been 
operational, this would alert the user that a fault is present. 
There are several reasons the daily actuations parameter could 
drop to zero, even if the load should be operating. First, it could 
be indicative of a broken sensor, such as a tank-level sensor or 
temperature sensor, resulting in the load not turning on even 
when it should be. Second, it could be indicative of a complete 

Fig. 9. Different probability density functions fit to each parameter of the controllable pitch propeller (CPP) pumps.
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failure of a piece of equipment. Alternatively, it could be due 
to a degraded piece of equipment, resulting in a load signa-
ture that has changed to the point where load identification 
accuracy is reduced. However, as described, in order to help a 
user identify anomalous behavior, a CBM program using non-
intrusive load monitoring should track changes not only in 
equipment behavior, but also equipment signature.

NILM identification algorithms are trained on healthy 
signatures, and it is not practical to train on all anomalous 
signatures because the changes depend on the root cause of 
the anomaly. Also, it is generally not clear to what extent a 
load signature could change before affecting load classifi-
cation accuracy. Despite these challenges, knowledge of the 
equipment operation can aid in defining those boundaries 
and better identifying equipment, even in its degraded state. 
One way to identify degrading equipment is if it is part of a 
finite state machine (FSM) or an interdependent system. For 
example, in this work we were able to diagnose the MPDE JW 
heater fault condition even as its signature was changing, due 
to its simultaneous turn-on and turn-off with the other MPDE 
system loads and with knowledge of the MPDE system FSM 
behavior.

Next, knowledge of the actuation mechanism can aid in 
determining if changes in transient shape are due to natural 
variations or due to an underlying fault condition. When a 
load turns on it has an in-rush current, leading to a load tran-
sient that is often repeatable because the transient behavior 
of a load is related to the physical task the load is performing. 
However, because the in-rush current also depends on the time 
instant with respect to the voltage line-cycle that a load turns 
on, the variability in the turn-on transient also depends on the 
mechanism for turning-on [16]. Again, using the MPDE sys-
tem as an example, the PL pump has an in-rush current that 
has a peak value that varies greatly, as seen in Fig. 10. Here, Ppeak 
and Qpeak are the difference between the max power of the tran-
sient and the steady state power for real and reactive power, 

respectively. Because this load is activated with a mechanical 
switch, the load can turn on at any point in the voltage line-
cycle. Thus, even with the variability in the transient peak for 
the MPDE PL pump, it is still operating in a healthy condition. 
Contrarily, if the load were actuated with a solid-state relay 
with zero-crossing detection, the variability in the transient 
peak would become significantly smaller, and a large variation 
in the transient peak would be a sign of a possible anomaly. 

Although these are some examples of how anomalous load 
signatures can still be detected, it should be noted that it is 
still an open research question to resolve the balance between 
accurately detecting changing load signatures and not mis-
classifying loads.

Conclusion and Future Work
As this paper has shown, a NILM has proven to be a realizable 
tool for CBM. However, there are still avenues for improve-
ment. Methods for determining the boundaries in the load 
identification feature space would help determine to what 
extent a load signature could change before affecting load 
identification accuracy. For example, a method similar to the 
one implemented for creating metrics boundaries could be 
used to create green-yellow-red regions in the identification 
feature space, enabling more accurate fault detection. With ac-
curate detection of faults and anomalous behavior prior to the 
ship’s deployment, servicing and replacement of equipment 
can be better scheduled and operational availability can be 
maximized. Nonintrusive load monitoring represents a low-
cost method for the rapid implementation of a CBM and fault 
detection program for electromechanical equipment. Anal-
ysis of USCGC loads show that through careful selection of 
metrics and simple statistical analysis, a NILM can quickly de-
tect a broad range of system anomalies and assess individual 
equipment health. The NILM dashboard brings this crucial in-
formation to the field, ensuring that operators have real-time, 
actionable information on mission-critical systems.
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