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A 3-D Field Solution for Axially Polarized Multi-Pole Ring
Permanent Magnets and its Application
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Axially polarized multi-pole ring permanent magnets are industrially valuable in the construction of sensors and actuators.
Available analytic field solutions for these magnets typically provide spatially incomplete or imaginary-valued results that do not
reflect real-world measurement. This article presents simplified and real-valued 3-D field solutions for axially polarized ring magnets.
The individual components are expressed in terms of elementary functions and incomplete elliptic integrals for easy evaluation with
standard scientific computing libraries. These models are employed to analyze the effects of nonidealities in magnetic position
systems. Demonstrations are offered through simulation and experimental measurement of two real-world ring permanent magnets,
along with comparisons to prior models.
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I. INTRODUCTION

CYLINDRICAL permanent magnets find wide use
in electromechanical and mechanical applications.

Commercially important systems such as permanent magnet
motors, magnetic couplers, and position sensors use axially
and diametrically polarized cylindrical magnets. Multi-pole
magnets, comprising alternating polarity cylindrical sectors,
produce magnetic fields convenient for coupling to other mag-
netic fields and space-alternating field components useful for
position and angle sensing. Analytical field solutions for these
magnets can be used for optimizing parameters and estimating
performance characteristics of the design or measurement of
systems. For position measurement, analytical solutions can
be used to estimate the effects of misalignment or magneti-
zation asymmetries when designing and using measurement
systems.

The field solution for such magnets has been extensively
studied in 3-D space, with a wide range of solution tech-
niques. As examples of the body of work examining axially
polarized ring magnets, consider [1]–[9]. Ravaud et al. [1],
[2] provide a solution for axially and radially polarized cylin-
drical ring sectors using magnetic pole surface densities and
the Coulombian model, ultimately producing field solutions
in complex-valued elliptic integral and inverse hyperbolic
form that encompasses the entire space around the magnet
but results in imaginary-valued numerical error that does
not reflect real-valued lab measurements. Ausserlechner [7]
employed the equivalent current sheet method and assumptions
about the geometry of an axially polarized ring magnetic
encoder (ME) to calculate simpler analytic expressions that
are approximately correct only in the near-field and then used
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them to provide insights into the designing of magnetic posi-
tion sensing systems. Furlani and Knewtson [8] also presented
a numerical 3-D field solution for axially polarized disks using
the equivalent current sheet method and Simpson’s method
for numerical integration of the magnetic vector potential [9].
This model is then extended for use in axial-field permanent-
magnet motors using the method of magnetic images for
compensating for high-permeability materials in the motor
construction [8]. These models are compared against finite-
element analysis (FEA) techniques for a variety of magnetic
disk configurations. Relatedly, although not constrained to
permanent magnets, Urankar [10] presented real-valued ana-
lytic solutions to current-carrying arc segments and provided
simplified solutions for thin-sheet cylinders which may be
used for computing the field from a single-pole pair magnetic
ring.

This article seeks a closed form and physically accurate
solution that covers the entire space around such a magnet.
Such a solution provides an avenue for near real-time appli-
cations, such as in situ parameter estimation for calibration,
measurement, or control applications, as well as other analytic
optimization techniques that may not be easily or accu-
rately achieved with FEA alone, especially in computationally
constrained systems.

Specifically, this article presents a simple, closed form, and
real-valued form of the 3-D field solution for axially polarized
ring permanent magnet sectors that can be accurately and
quickly evaluated using widely available scientific computing
libraries for the applications mentioned above. It is then used
to analyze the characteristics of the field and how they may be
exploited in measurement applications and is verified against
real-world measurements and previous results.

II. ANALYTICAL FORMULATION

An axially polarized ring permanent magnet with large
coercivity and homogeneous magnetization may be modeled
as a collection of surface currents using the equivalent current
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Fig. 1. Cylindrical magnet sector geometry (surface currents for axial
polarization indicated with arrows).

sheet method [7]. The ring is divided into cylindrical pole-pair
sectors and modeled as a set of surface currents running
along the bounds of the sector parallel to the polarization
direction. The field contribution from these surface currents
can be calculated using the Biot–Savart law and superimposed
to compute the complete field solution in 3-D space.

A. Geometry and Approach

The study begins by dividing the ring’s geometry into single
pole-pair cylindrical sectors with constant surface currents
running around the perimeter of the sector and parallel to the
axial direction ẑ, as shown in Fig. 1. A cylindrical sector i
spans (r1 ≤ r ≤ r2; θi,1 ≤ θ ≤ θi,2; z1 ≤ z ≤ z2) and is
composed of six bounding segments. In cylindrical coordi-
nates, the surface currents point in one constant direction: r̂
along the radial segments and θ̂ along the arc segments. Taking
these surface currents into account and the appropriate form
of the Biot–Savart law produce surface integrals representing
the field contribution from each type of the segment. For a
radial segment at θ = θi , the field solution can be found by
integrating

�Bseg
i,rad(�r)= μ0

4π

∫ z2

z1

∫ r2

r1

· �frad(�r; �r �)G(�r; �r �)3 dr � dz�
∣∣∣∣
θ �=θi

(1)

where μ0 is the vacuum magnetic permeability and �frad(�r; �r �)
is the result of taking the vector product between the modeled
surface current and the displacement vector

(�r − �r �) in a
cylindrical coordinate basis, leading to

�frad(�r; �r �) = −ζ sin ϕ r̂ − ζ cos ϕ θ̂ + r sin ϕ ẑ (2)

with ϕ = (θ − θ �), ζ = (z − z�) and G(�r; �r �) being Green’s
function for cylindrical coordinate input vectors, or the inverse
magnitude of the displacement vector

G(�r; �r �) = 1

|�r − �r �| = 1√
r2 + r �2 + ζ 2 − 2rr � cos ϕ

. (3)

For an arc segment i at r = r j and spanning θi,1 ≤ θ ≤ θi,2,
the field solution is similarly found by solving

�Bseg
i, j,arc(�r) = μ0

4π

∫ z2

z1

∫ θi,2

θi,1

· �farc(�r; �r �)G(�r; �r �)3r � dθ � dz�
∣∣∣∣
r �=r j

(4)

with

�farc(�r; �r �) = ζ cos ϕ r̂ − ζ sin ϕ θ̂ + (r � − r cos ϕ) ẑ. (5)

By taking integrals along the arc of an ellipse, the field con-
tributions from arc segments will contain incomplete elliptic
integrals (IEIs) that must be computed numerically. The three
kinds of IEIs employed in the results of this study are repre-
sented as Legendre’s forms with amplitude z, parameter m,
and characteristic n. Legendre’s first IEI form used here is

F(z|m) =
∫ z

0

dt√
1 − m sin2 t

. (6)

Legendre’s second IEI form is

E(z|m) =
∫ z

0

√
1 − m sin2 t dt . (7)

Finally, Legendre’s IEI of the third form is

�(n; z|m) =
∫ z

0

dt

(1 − n sin2 t)
√

1 − m sin2 t
. (8)

Much of the literature concerning IEI defines them with
the parameter m bounded to 0 ≤ m ≤ 1 [11]–[13], [14,
Sec. 19.2(ii)]. The field solutions presented below, however,
contain negative parameters. By using the imaginary modulus
transform, one may extend the domain of m to the entire
negative axis [14, eq. 19.7.5]. Several scientific-computing
libraries that implement this and other argument trans-
forms, allowing these IEIs with negative m to be accu-
rately computed while still returning real-valued results, are
available (see [15], [16]).

B. Radial Segment Solution

Our solution for a radial segment is similar in form to
[7] but simple and accurate, in general, not simple in the
near-field

�Bseg
i,rad(�r) = −μ0

4π
V (�r; �r �)

∣∣∣∣
θ �=θi

∣∣∣∣z2

z�=z1

∣∣∣∣r2

r �=r1

(9)

where the radial component of V (�r; �r �) is given by

r̂ · V (�r; �r �) = sin ϕ log(G(�r; �r �)−1 + r � − r cos ϕ) (10)

the azimuthal component is given by

θ̂ · V (�r; �r �) = cot ϕ (̂r · V (ϕ, ζ, ρ)) (11)

and, finally, the axial component is given by

ẑ · V (�r; �r �) = tan−1
(

ζ(r � − r cos ϕ)G(�r; �r �)
r sin ϕ

)
. (12)

C. Arc Segment Solution

Algebraically manipulating the surface integral components
into elliptic integral forms leads to our solution for arc
segments

�Bseg
i, j,arc(�r) = μo

4π
W (�r ; �r �)

∣∣∣∣
r �=r j

∣∣∣∣z2

z�=z1

∣∣∣∣θi,2

θ �=θi,1

(13)
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where the radial component of W (�r; �r �) is given by

r̂ · W (�r ; �r �) =
√

(r − r �)2 + ζ 2

r

×
(

E
( ϕ

2

∣∣∣ m
)

− 2 − m

2
F

( ϕ

2

∣∣∣ m
))

(14)

the azimuthal component is given by

θ̂ · W (�r ; �r �) = 1

r
G(�r; �r �)−1 (15)

and, lastly, the axial component is given by

ẑ · W (�r; �r �) = ζ√
(r − r �)2 + ζ 2

×
(

F
( ϕ

2

∣∣∣ m
)

− r + r �

r − r � �
(

n; ϕ

2

∣∣∣ m
))

(16)

with a common parameter m for the IEI of

m = −4rr �

(r − r �)2 + ζ 2 (17)

and a characteristic n of

n = −4rr �

(r − r �)2 . (18)

D. Total Solution

The field contribution from a ring’s sector i is derived
using the superposition principle as in (19) and scaled by a
magnetization factor Mi . This includes two arc and two radial
segments. For a disk magnet, only one arc segment and two
radial segments must be included to form the bounds of the
sector

�Bsec
i = Mi

( �Bseg
i,1,rad + �Bseg

i,2,arc − �Bseg
i,2,rad − �Bseg

i,1,arc

)
. (19)

The total field solution from a permanent magnet
ring or disk is the superposition over all p sectors, or pole-
pairs, as

�B(�r) =
p∑

i=1

�Bsec
i (�r). (20)

For systems evolving in time, this magnetization factor
may be used to account for the constitutive law of magnets
and effects such as changing magnetization and hysteresis in
the presence of a homogeneous external field. For example,
using the discretized Preisach or differential Jiles–Atherton
hysteresis models, one may evolve the magnetization of each
sector in time as a function of an applied external field that is
homogeneous over the sector.

E. Similarities and Deviations From
Prior Closed-Form Models

Ausserlechner’s assumptions about ME geometries resulted
in small contributions from arc segments, and so they were
ignored in this article. The ẑ component from a radial segment
that is presented here, however, is the same [7]. The r̂
component from a radial segment, as well as the θ̂ component
from both segment types are found in portions of the solution
presented in [1]. r̂ and ẑ components from arc segments

introduced here avoid physically unrealistic solutions with
imaginary-valued components and produce values that directly
correspond to other real-valued results that were numerically
derived in the previous work. Furthermore, the case of a single
pole-pair cylindrical magnet of the solutions presented here
agree with the special case solution for a cylindrical current
sheet presented in [10].

F. Notes on Computation

The proposed implementation of the field solution takes
around 1 s on a single core of an Intel Core i7-7600 CPU
running at 2.8 GHz for 40 points of simulation. Computation
of (8), using the Carlson symmetric form and duplication
method [16], [17], is the major contributor to this time, taking
one-to-two orders of magnitude longer than the computation of
the other IEI and elementary functions. Recent investigations
into the computational methods for the IEI in Legendre’s
forms have introduced new methods for simultaneously com-
puting arbitrary linear combinations of the three forms with
significant speed increases [18], and all portions of the solu-
tion lend themselves well to parallelization, introducing the
possibility of implementing these solutions in near-real-time
applications.

Since magnetization is a scaling factor on the individual
sectors, the field for a ring magnet’s sector can be precom-
puted over a desired range of space and arbitrarily scaled
to quickly estimate or explore the effects of magnetization
asymmetries. Avoiding extraneous computation of (8) helps
save considerable time when iterating over designs.

G. Analysis

The solutions presented here allow for the analysis of
non-idealities in magnet construction related to asymmetric
sector magnetization and geometry. It is important to note that
the equivalent current sheet approach used here, however, does
not easily allow for evaluation of more complex non-idealities
including, but not limited to, low permeability materials,
magnetization angle variation, or inhomogeneous magnetiza-
tion. Nevertheless, the non-idealities that can be covered are
useful for modeling major characteristics of the field as they
change in space around the magnet. Furthermore, although this
method cannot directly account for highly permeable materials
in the vicinity of the magnet, the method of magnetic images
may be used to approximate the effects of highly permeable
materials in the space [8].

Simulations were carried out for a p = 4 pole-pair ring
with symmetric sector widths and geometric parameters that
closely correspond to the real-world magnet extracted from a
standard residential water meter measured in Section III-B

r2 =11.1 mm, r1 = 2.73 mm, z2 = 4.57 mm, z1 = 0.0 mm.

(21)

Measurement positions were chosen to analyze cases where
near-field assumptions presented in previous works [7] no
longer hold and can be found in Table I, except for θ which
was simulated over the entire range 0 ≤ θ ≤ 2π for all cases.
Thus, these simulations are directly applicable as a tool for
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TABLE I

ANALYSIS SIMULATION PARAMETERS

Fig. 2. Magnetic-flux density versus rotational angle in S1 with symmetric
magnetization.

the design of a far-field retrofit measurement system for an
existing magnetic mechanical system.

A magnetization of 4.3 × 105 A · m−1 is used for all
simulations, with a scaling factor for each pole-pair of
[−1.05, 1.1,−0.8, 1.1] when plotting asymmetric magneti-
zation. For the purposes of this analysis, we will consider
the variance of the magnitude difference between adjacent
pole-pair magnetizations

Var(�Mi ) = Var(|Mi − Mi−1|) (22)

to be a metric for magnetization asymmetry.
Figs. 2 and 3 show the field solutions over S1 and two

rotations of the ring, with symmetric and asymmetric magneti-
zation, respectively. Particularly visible in the asymmetric case
are two major harmonics occurring at periods of π and of 2π .
We will refer to harmonic with a period of 4π/p or a spatial
period of 2/p magnet revolutions as the field fundamental (FF)
since it corresponds to the major harmonic content of the
sinusoidally varying field. The harmonic with a period of 2π
corresponds to the major harmonic over an entire revolution
of the magnet, and so will be referred to as the mechanical
fundamental (MF). The symmetrically magnetized case still
contains frequency content at the MF, but it is smaller relative
to the FF than in the asymmetric case.

In general, the lower-frequency MF at the spatial period of
the physical disk is the second largest harmonic in the field
and is amplified in the presence of asymmetric magnetization.
Higher order harmonics in the field occur at multiples of the
FF and grow in magnitude relative to the FF and MF, as one
moves nearer to null points in the field where the FF and MF
are canceled out.

Because the θ̂ component peaks near the sector’s azimuthal
boundaries, the other components peak near the azimuthal
center of the sector. The FF of the θ̂ component is nearly

Fig. 3. Magnetic-flux density versus rotational angle in S1 with asymmetric
magnetization.

in quadrature with the FF of the r̂ and ẑ components. As
the simulated waveforms and nonlinear solution of the field
components demonstrate, however, the separate components
are not truly in quadrature. Nevertheless, using a magnetic
field sensor and a ring permanent magnet have proven to be
a valuable technique for constructing ME rotary position sen-
sors, using either two magnetic field sensors at the orthogonal
positions [19]–[21] or a single magnetic field sensor able to
measure fields in at least two orthogonal directions [22], [23].

Since sampling the field in one direction but at two positions
offset by a quarter field period, or in two directions at one
location, gives two sinusoidal signals Vs and Vc with a
phase offset close to π/2 rad, the arctan2 of the field
measurements can be used to estimate the rotational position
of the disk. After removing dc bias and scaling the amplitudes
of measured waveforms, arctan2 produces a reasonable
estimate of the phase of the field ϕb and thereby the rotational
position of the magnet θd . For the purposes of this analysis,
we will only consider the latter case of sampling the field at
one position, but in two directions. θd will correspond to ϕb

by

θd = 2

p
ϕb = 2

p
arctan2

(
Ṽs

Ṽc

)
(23)

where Ṽc and Ṽs are the dc bias and amplitude corrected field
measurements in the leading and lagging component directions
of a designers choice, respectively.

Considerable attention has been paid to methods for
characterizing and correcting the errors resulting from this
method, either with lookup tables and careful calibration
[19]–[23] or through automatic means limited to nearly ideal
and/or continuously excited systems [24], [25]. These cor-
rected position estimates find use in a variety of applications
including motor control, process monitoring, and equipment
diagnostics.

The types of error impacting ME position estimation reduce
to amplitude imbalance, nonorthogonal phase, dc field offsets,
and extraneous field harmonics in the measured signals [20].
This section explores the contributions to these types of error
by sensor positioning and magnetization asymmetries using
the solution presented in this article.
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Fig. 4. Sinusoidal field amplitude versus radial distance r in S2 and axial
distance z in S3 (amplitude balance points indicated by arrows).

1) Amplitude Imbalance: Amplitude imbalance refers to
the difference in sinusoidal amplitude over an entire rotation
of the quadrature fields produced by an ME. The individual
components of the solution contributed by radial and arc
segments are different in magnitude, so the superposition over
an entire real-world magnet will produce orthogonal field
components with inherent amplitude imbalances everywhere
in space, except in specific near-field geometries [7] or a few
ideal points in the field.

Simulations S2 and S3 were carried out over sweeps along
the r̂ - and ẑ-directions, listed in Table I, and their sinusoidal
amplitudes over a full rotation were calculated. Fig. 4 shows
regions of measurement in which the quadrature pairs come
into and out of amplitude balance. The (θ̂ , ẑ) quadrature pair
has two points along the axes of simulation that minimize the
amplitude imbalance while maximizing individual component
amplitude. The (̂r , θ̂ ) pair, however, has only one such point
along each axis of simulation, as the closer of the two points of
balance occurs near a null in the field. All these balance points
are relatively close to the magnet and may not be valid sensor
positions for some applications. In this case, designers must
use different metrics for optimization and signal processing
for compensating amplitude imbalances to reduce error in an
angle estimation algorithm.

Asymmetric magnetization will slightly shift the amplitude
balance points in space; however, the overall trends and
regions of balance will remain the same. In particular, asym-
metric magnetization will play a larger role near null points
in the field, as the FF is canceled out and the higher order
harmonics play a larger role in total amplitude, but these points
are less suitable for measurement applications.

Since multiple-axis, magnetic field sensors may have differ-
ent sensitivities per axis, this model also presents an avenue
for balancing their amplitudes with the geometry of the setup,
avoiding reliance on signal processing and calibration. A
sensor with a stronger sensitivity in r̂ than θ̂ may benefit from
moving out from the z ≈ 18 mm crossover point to balance
the measured amplitudes.

2) Nonorthogonal Phase: The angle estimation technique
described above relies on the two signals being separated

Fig. 5. Negative frequency content versus r- and z-axis rotation in S1 with
symmetric and asymmetric magnetization.

in phase by π/2 rad. Any phase difference on top of this
is considered the nonorthogonal phase and contributes to
second-order harmonic error in phase estimates [20]. Forming
an analytic signal with the two measured signals allows one
to use negative frequency content as a measure of nonorthog-
onality.

The nonorthogonal phase is inherent to the field, considering
its nonlinear solution, but sensor rotation has been found to
be a larger contributor. As a sensor’s Cartesian axes deviate
from the cylindrical coordinate axes of the magnet, mixing of
the separate components causes the phase difference between
the field components to decrease.

Fig. 5, resulting from simulation S1, demonstrates
increasing negative frequency content as the sensor’s basis is
rotated relative to a magnet’s cylindrical basis. This presents
an opportunity for correcting sensor rotation using negative
frequency content as a metric for reducing the nonorthogo-
nal phase between quadrature field components. Correction
for this rotation may be accomplished using standard linear
algebra rotation matrices [26]. Asymmetric magnetization con-
tributes to the minimum achievable negative frequency content
but does not shift the minimum point.

3) DC Field Offsets: For a magnetized ring with symmetric
geometry and an average magnetization of 0, the r̂ and ẑ
fields’ dc bias will cancel out. The θ̂ field will have a small
amount of bias that scales with asymmetric magnetization,
but it will be at least one order of magnitude less than its
amplitude.

DC bias, normalized by the remainder of the frequency
spectrum, in the r̂ and ẑ components will grow as asymmetry
increases. For the θ̂ field, certain forms of asymmetric mag-
netization result in decreased amplitude-normalized dc bias
and no magnetization configurations were found where dc bias
exceeds 10% of the amplitude.

Similar trends were found for positions increasing along r̂
and ẑ so only the former is presented in Fig. 6 using S4 as
an example. These plots can be used for determining optimal
places of minimum dc bias for a given direction. For example,
r ≈ 12 mm contains a local minimum in the dc bias in the r̂
field that also reduces dc bias in the θ̂ field and is conveniently
near a point of amplitude balance in Fig. 4.
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Fig. 6. Normalized dc bias versus radial distance r in S4 with asymmetric
magnetization (bias minimization and amplitude balance points indicated with
an arrow).

DC field offsets may lead to sensor saturation in the
extreme but lead to second-order harmonic errors in smaller
quantities [20]. Barring extreme cases, they can be com-
pensated with careful offset calibration of the sensor and/or
software correction at the time of construction. There are
already sensor temperature and external field compensation
techniques, but asymmetrical demagnetization from thermal,
mechanical, or electromagnetic effects will contribute to errors
stemming from this bias over time.

4) Extraneous Field Harmonics: Apart from the inher-
ent sensor and field nonlinearities, any present magnetiza-
tion or geometric asymmetries will contribute to extraneous
harmonic content (EHC) in measured signals. Taking the fast
Fourier transform (FFT) of the field over a full rotation,
the magnitude of the FF and MF can be found at frequencies
p/2 and 1, respectively. The EHC is defined as the sum of
the spectral content at all other frequencies, excluding dc,
which can be compensated for in software. The MF is not
included in the EHC because the MF may be used by certain
estimation techniques to further improve angle tracking. Prin-
cipally, magnetization asymmetries shift the peaks and nulls
of the field produced by individual tiles so that they vary in
amplitude and phase relative to each other. This space-varying
amplitude modulation adds harmonics to the field and
leads to a similar harmonic modulation of angle estimation
error [20].

Fig. 7 shows the FF, MF, and EHC content as a function
of position in S2. Significant non-zero FF content always
exceeds the MF and EHC content, making it by far the most
pronounced and useful signal harmonic for angle estimation.
Fig. 8 shows the ratio of the FF harmonic content to the total
harmonic content, also in S2. It shows how the FF harmonic
content ratio, however, drops considerably at certain points,
in particular, for the r̂ and ẑ components.

For methods tracking the FF and the other present har-
monics, these harmonic content metrics provide an avenue
for increasing overall harmonic content. For angle estimation
methods tracking the FF directly, the normalized FF metric
may be used to minimize extraneous harmonic modulation in
the estimates. Sensor rotation mixes the effects between the

Fig. 7. Field harmonic magnitude versus radial distance r in S2.

Fig. 8. FF harmonic magnitude ratio versus radial distance r in S2.

components and asymmetrically changing magnetization will
contribute to increasing error in the angle measurement as the
harmonics deviate from any available calibration data.

III. RESULTS

This section first verifies the solution against the work in
previous literature by direct comparison to reported results.
The fields from two magnetic rings were measured as
a secondary confirmation of the solution’s accuracy and
usefulness as a design and verification tool for realistic,
e.g., asymmetrical, magnets.

A. Previous Works Verification

Furlani and Knewtson [8] and Furlani [9] provided
FEA-verified numerical solutions for various magnetic ring
configurations. We simulated two of their example geometries,
which cover all field component directions, using our field
solutions and plotted the results against digitized results from
their simulation and FEA analysis in Figs. 9 and 10. As
the first example geometry is a single pole-pair ring magnet,
we also used the simplified arc segment solution from [10]
as a comparison. Its parameters can be found under Ds,1
in Table II. The second example ring’s geometric parameters
can be found under Ds,2. For both geometries, we used
a magnetization of 4.3 × 105 A · m−1 for each sector.
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Fig. 9. Ds,1 simulation versus reference data from (a) Fig. 3 and (b) Fig. 4 in
[9] and the arc segment solutions in [10] (+ = reference data, x = arc segment
solution).

Fig. 10. Ds,2 simulation versus reference data from (a) Fig. 5 and
(b) Fig. 6 in [9] (+ = reference data).

TABLE II

GEOMETRIC DIMENSIONS FOR SIMULATED RINGS

In all cases, our simulation results matched exactly, barring
manual digitization errors.

B. Experimental Verification

To validate the results with real-world data, two permanent
magnets’ fields were recorded on a test bed for measuring

Fig. 11. Normalized FF magnitude of measured fields (+, x = simulated
data).

Fig. 12. (a) D1 and (b) D2 annotated geometry, viewed through magnetic
viewing film.

the magnetic flux density at fixed (r, z) positions over a
full rotation 0 ≤ θd ≤ 2π of the magnet. The test bed
employs an MLX90393 three-axis Hall effect sensor produced
by Melexis [27], an example of a magnetic-flux density sensor
that is applicable for very cost-sensitive applications that
require high sensitivity, such as in retrofit of existing magnetic
structures for real-time position measurement.

The first magnet, D1, was a nearly uniform neodymium
ring magnet measured at an r of 27.9 mm over a sweep of
z-heights. The second magnet, D2, sourced from the magnetic
coupler within a standard residential water meter, diverged
considerably from our model’s geometry and was measured at
an r of 41.6 mm over the same z-height sweep. The geometric
parameters used for simulation were physically measured and
are listed in Table II.

As a figure of merit, we extracted the FF’s magnitude
from simulated and measured fields and plotted it against
decreasing z-height for each component in Fig. 11. The FF
is the major harmonic used in the angle estimation proce-
dure described in Section II-G and, thus, is a signal of
interest for these applications. To account for variations in
sensor sensitivity and other measurement errors, the magnitude
was normalized with respect to its maximum value over the
sweep.

1) Magnet Example D1: D1 features symmetric magneti-
zation boundaries, manufacturer provided geometric data, and
strong coercivity and magnetization. Although these features
make D1 an ideal candidate for measurement, it does not,
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in fact, have perfectly symmetric magnetization strengths
resulting in considerable spectral content outside the FF.
Furthermore, the measurement setup experienced slight eccen-
tricity in the magnet’s rotational axis. The effects of this are
magnified in the near-field, explaining deviations in our metric
as the sensor moved closer to the magnet. The trends, however,
still follow closely.

2) Magnet Example D2: D2 diverges more strongly from
our model. Its magnetization pattern can only be approxi-
mately modeled by cylindrical tile sectors, is less homoge-
neous near its center, and is formed from a material with less
coercivity. Thus, D2’s magnetizations and sector boundaries
were not considered to be uniform for simulation. Instead,
we used photo measurement software to approximate sector
widths from Fig. 12(b). Even with increasing sources of
error from measurement, fitting, and geometry nonideality,
the trends still closely follow, verifying the correctness of
field solutions presented here and demonstrating their use-
fulness in optimizing measurement position, even for per-
manent magnet disks with geometries that diverge from the
model.

IV. CONCLUSION

This article presents an easily computable, real-valued, 3-D
field solution for axially polarized multi-pole ring and disk
magnets. When combined with solutions for diametrically
polarized magnets [28], one now has access to a toolbox for
designing, evaluating, and measuring a wide range of electro-
mechanical structures. This approach avoids FEA, or other
highly application-tailored and numerical, analysis techniques.

There are many different quantities that may be derived
from this model, such as the torque and slip between the
magnet and an external field [3], [4], [29]. Furthermore, using
superposition, one may analytically model even more compli-
cated geometries composed of combinations of cylindrical sec-
tors, such asymmetrical skewed cylindrical sectors. Combining
these two techniques with the method of magnetic images
allows for the analyzing, designing, and optimizing of new
magnetic structures, e.g., asymmetrically skewed axial flux
permanent magnet motors, where computationally expensive
FEA over a large number of topologies was required before
[30], [31].
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