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Abstract—Nonintrusive load monitoring, i.e., the process
of identifying individual load information from aggregate
electrical measurements, is useful for a variety of smart
grid applications including energy scorekeeping, condition
monitoring, and activity tracking. Numerous load disaggre-
gation algorithms have been used for nonintrusive moni-
toring. Many of these perform well only on certain datasets
or load types, because transient electrical events can oc-
cur on vastly different time-scales and operating schedules
with significantly different regularities. This paper presents
a nonintrusive load monitoring framework that allows mul-
tiple algorithms to be used across multiple time-scales,
with their outputs combined to enhance load recognition.
Results are demonstrated with power system data from a
United States Coast Guard Cutter (USCGC), demonstrating
the utility of the framework for developing applications for
condition-based maintenance, among other applications.

Index Terms—Condition-based maintenance (CBM),
energy efficiency, fault detection, nonintrusive load
monitoring.

|. INTRODUCTION

ESEARCH on nonintrusive load monitoring tends to focus
R on disaggregation techniques aimed at incrementally im-
proving various accuracy metrics, often a percentage of load
operation or power consumption identified in an aggregate
power stream [1], [2]. Fundamentally, nonintrusive monitoring
is ad hoc and conjectural. A nonintrusive load monitor (NILM)
will not be perfect under all conditions because load classi-
fication algorithms depend on the type and number of target
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loads in the data set, and the features associated with the load
transients [3], [4]. Additionally, nonintrusive monitoring sce-
narios present uncertainties in load composition over time due
to changing load mix, abnormal load behavior, or other dis-
turbances. No single load disaggregation algorithm will best
serve every application. There is also no “correct” way to assess
accuracy that is significant for all applications [4].

The application matters. Different approaches for nonintru-
sive disaggregation allow a trade-off between computational
complexity in monitoring, accuracy in determining necessary
information for a given application, and flexibility in dealing
with changing load compositions. For example, energy score-
keeping in residential homes differs substantially from system
diagnostics in an industrial manufacturing center. Accurate iden-
tification of a subset of loads with a reasonable computational
complexity may be more important than total consumption
characterization [5], [6].

This paper presents a multiscale, multialgorithmic framework
for organizing the signal processing for nonintrusive monitor-
ing. Our goal in this paper is not to compare methods on a
particular set or sets of power data. The utility of the framework
presented here has been assessed with field demonstrations and
results for various applications, including on US Coast Guard
ships [7]-[9], ata school [10], and on a US Army microgrid [11].
The framework presented and reviewed in this paper represents
the distilled effort of years of field testing of different signal pro-
cessing approaches for nonintrusive load monitoring. The way
a load consumes energy is a reflection of the physical task the
load is performing. Thus, the framework appropriates the signal
processing tools for finding these features in the observed data.
The framework is an example and a guide that permits orderly
application of computing resources for a nonintrusive load mon-
itoring problem. It can be tailored to any specific application;
it easily incorporates different disaggregation techniques while
remaining focused on fundamental physical features of the en-
ergy consumption of each load. Do transients vary over time
and duration? Are they randomly distributed or repeatable? Do
they present harmonic content to the utility? These features and
others form the foundation for nonintrusive load identification.
New statistical analysis techniques are introduced here as part
of this framework, to improve identification of loads which do
not have a repeatable load transient.

The details and results of this framework are demonstrated
on a 270 ft (82 m) United States Coast Guard Cutter (USCGC),
SPENCER. In environments such as the microgrid of a ship,
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signs of impending failure in mission-critical equipment are
often visible in the electrical system weeks before an abrupt
fault occurs [12]. Thus, information provided by a NILM system
can provide invaluable feedback for aiding in optimizing oper-
ations and reducing equipment failures [7], [8]. Disaggregated
load events are used in conjunction with the NILM dashboard
[13] graphical platform, to deliver a timeline of load activity
and diagnostic metrics to Coast Guard personnel for real-time
monitoring and diagnostic focused analytics.

The rest of this paper is organized as follows. Following a
literature review in Section II, Section III presents the signal
processing framework for organizing nonintrusive event detec-
tion, organizing a full suite of deterministic and statistical tools.
Section IV describes the use of the framework and presents
results as applied to a case study on SPENCER. Section V con-
cludes this paper.

[I. NONINTRUSIVE LOAD MONITORING

In an electrical system there are four main behaviors of loads:
ON/OFF, Finite State Machine (FSM), continuously variable, and
continuously oN [3]. Both ON/OFF loads and FSM loads have se-
quences of changes of state that are clear step changes in power,
and consume a constant amount of power at each state or operat-
ing mode. An ON/OFF load has only two states, ON or OFF, while
a FSM load has several operating states due to its complex oper-
ation. The load transient acts as a load signature allowing NILM
algorithms to identify the state of the loads. A continuously oN
load consumes a constant power draw for days, or even weeks at
a time. These loads can be identified if the initial ON event is ob-
served or with the use of optimization techniques [14]. Finally, a
continuously variable load has a variable power draw, and does
not have a fixed number of states. This means there may not be
repeatability in the power draw characteristics and it will be dif-
ficult to detect these loads using identification approaches that
rely on steady state. One subset of continuously variable loads
are those controlled by power electronics, including variable
speed drives (VSDs) and dimmable lighting. The use of power
electronics enables many loads to operate over a wide variable
power range; thus there may not be a unique power consumption
pattern. However, the power electronics contribute to significant
higher order harmonics and a waveform based estimator can
be used to estimate the real and reactive power consumed by
variable power loads [15]. In contrast, another subset of contin-
uously variable loads are not controlled by power electronics
and do not have significant higher order harmonics, but have a
power draw that appears practically stochastic. These loads may
reach a steady state, but the time it takes to reach the steady state
is highly variable and the load may not remain in steady state
for the full operation. In order to correctly identify this subset
of loads, referred to here on as “statistical loads,” a statistical
based method for load identification is presented in this paper
as part of the identification framework.

A. Previously Reported Disaggregation Techniques

There have been many disaggregation techniques proposed
in nonintrusive monitoring research. Disaggregation techniques
can be broadly categorized into event based or nonevent based

approaches, depending on whether load signatures are extracted
from the power signals or not. Nonevent based techniques in-
clude optimization, such as linear programming, which attempts
to minimize the error between an extracted feature vector and
a database of known loads [14]. For event-based approaches,
some commonly used load features include steady state step
changes in power [16], harmonic frequency content [17], tran-
sient shapes [18], and voltage—current trajectories [19]. The
load signatures that can be extracted from power data depend
on the frequency of the sensors. Low frequency meters are
lower cost, but typically limit features to steady state signatures.
High frequency meters, in the range of kHz, allow for increased
resolution.

Disaggregation techniques can also generally be divided into
supervised or unsupervised techniques, based on whether or
not a training process with labeled data is required. Supervised
learning often uses pattern recognition to map detected events
to a specific load. Some examples include artificial and deep
neural networks (NN) [20], [21], and support vector machines
[22]. In contrast, unsupervised approaches do not require la-
beled training data, such as independent component analysis
[23]. Recently, approaches to combine classification techniques
have been proposed, such as the use of committee decision
mechanisms, a technique that incorporates both optimization
and pattern recognition [24].

Most NILM research has been focused on absolute accuracy
of total load disaggregation, but not deployment cost, usability,
or concrete applications [25]. Our experience is that most facil-
ities managers and operators are primarily interested in subsets
of information that do not necessarily require flawless disag-
gregation and a maximum computation effort. The framework
presented here distills successful methods we have deployed in
the field for over a decade, and assists in guiding the organiza-
tion of signal processing algorithms suitable for any particular
nonintrusive monitoring application.

[ll. MULTISCALE, MULTIALGORITHMIC FRAMEWORK

The multiscale, multialgorithmic framework organizes the
application of useful feature extraction and signal processing
for load identification, targeted for specific applications. It is
structured around three foundations of nonintrusive load iden-
tification: data acquisition, scale, and variability of power con-
sumption. First, time-series electrical signals are collected that
give insight into the physics of the loads. Second, scales of tran-
sient events are examined, since transient events can occur on
different time-scales. Finally, transients and steady-state power
consumption can be variable, ranging from almost deterministic
in their predictability to practically stochastic, which leads to
differing approaches for load detection.

Fig. 1 outlines the framework for load identification, using ex-
ample inputs and features. The main stages of the identification
process are labeled, and include:

1) Data Acquisition and Preprocessing extracts the
physical characteristics of energy consumption.

2) Event Scale Separation determines the scales for events.

3) Event Detection determines load “signatures” for
detected events.
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Fig. 1.  Diagram for multiscale, multialgorithmic framework.

4) Event Mapping matches events to loads.
5) Event Confirmation checks constraints between load
events.

A. Data Acquisition and Preprocessing

Any data stream that captures the electrical nature of the loads
and reflects how the load consumes energy can be used as input
to the framework. Examples include voltages and currents, the
the real (P) and reactive (()) power, higher order harmonics,
or even impedances. For our applications, the raw voltages and
currents waveforms are typically sampled at 3 or 8§ kHz. How-
ever, there are applications that may only need a low sampling
rate (i.e., 120 Hz), or a higher sampling rate, in the order of MHz
[3]. Any useful form can be an input to the framework, such as
raw voltage and current waveforms, or the rms voltage and cur-
rent. The voltage and current can be further processed into real
(P) and reactive (Q)) power, using the Sinefit algorithm [26]. P
and @ correspond to the envelopes of in-phase and quadrature
current drawn by the load relative to the voltage [17]. Sinefit ef-
fectively compresses the high-rate raw current and voltage data
into real, reactive, and harmonic power components (third, fifth,
and seventh order harmonics in our case) at a rate congruent with
the power system line frequency (60 Hz). This promotes space-
efficiency while maintaining the richness of the original signal.
In [26], the accuracy of the Sinefit algorithm is demonstrated. It
is also compared with other methods, such as the Kalman filter,
for extracting envelopes of real, reactive, and harmonic content.
The example presented in this paper uses P and () as inputs.

B. Event Scale Separation

Following data preprocessing, a multiscale filter bank sepa-
rates out loads that operate on different scales, e.g., in time. For
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Fig. 2. Pump (top) and condenser fan (bottom) real power.
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Fig. 3. Diagram for separating short-scale versus long-scale loads, for

N different length median filters, M F'. Py, is the residual stream and P,
is the median filtered stream.

instance, Fig. 2 shows an observation of real power (P) of a
shipboard graywater pump and the turn-ON transient of a
commercial condenser fan with a soft-start variable frequency
drive. In this comparison example, the graywater pump is short-
cycling, so it turns off a few seconds after turning on. It is
necessary that the turn-ON and turn-OFF are properly detected in
order to diagnose the fault condition. For comparison, the turn-
ON transient of the condenser fan takes about 15 s while it spins
up from a slow rpm to a fast rpm. The condenser fan has a single-
phase variable speed motor drive, which ramps up when the set
point changes in order to avoid power spikes. It would be diffi-
cult to detect both the pump event and the condenser fan event
using an event detector on a single time-scale. It is very likely
that the observation of the longer transient will be interrupted by
other load events. To detect both events, a rolling median filter
is used on the power stream. A median filter eliminates small
fluctuations while preserving sharp edges [27]. Thus, a long me-
dian filter preserves the longer transient, but removes the events
that occur at a smaller time-scale, such as the graywater pump.
Subtracting the medianed stream (P;;) from the original data
stream (P) results in the residual stream (Pg),

Pr=P—Py. (D

Now the medianed stream contains the longer-scale events and
the residual stream contains the smaller-scale events. Various
length median filters can by employed if there are multiple
time-scales present in a data stream. At each time-scale, there
are median streams and residual streams. This decomposition
is represented in Fig. 3.
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Fig. 4. Signature features extracted from a (a) turn-ON transient and a
(b) turn-OFF transient.

C. Event Detection

1) Geometric Methods: Geometric features include some
commonly used load characteristics, such as steady-state power
levels and transient shapes for fundamental and higher order
harmonics. An edge detector or change of mean detector [28]
can detect load ON and OFF events. A median filter can be ap-
plied to the power streams prior to edge detection in order to
preserve sharp edge events, while removing noise [9], [27]. The
edge detector applied in this research uses the apparent power
(S) stream. From the P and () streams, apparent power (.5) is
calculated as, S = /P? + @?. Converting to apparent power
simplifies load detection to a single data stream. This stream is
convolved against the Laplacian of a Gaussian [29] kernel to
compute the smoothed second derivative. This effectively maps
step changes in apparent power to zero-crossings (ZC) for easier
detection. An empirically-determined threshold is set to remove
zero-crossings that are due to small variations of the resulting
convolution. A zero-crossing detector is then used to find the
location of the steps.

After an ON or OFF event is detected, the P and () streams for
each phase are examined to calculate a set of features. An ON
event produces a change in steady state, and a transient which
can be characterized by its peak, duration, and shape. The peak
is due to the in-rush current as a load turns ON. Fig. 4(a) provides
a reference diagram for these features for a conceptual turn-ON
transient. The duration of the transient, or the time it takes for
the load to reach steady state, is defined as

Attran = tend — ton (2)

where t,,, is the time the load turns ON and t.pq is the end of
the start-up transient. Changes in steady-state real and reactive
powers after a load turns ON are defined as the difference be-
tween the median values over At,; length windows, before and
after the transient. The length of Aty is determined empirically
based on the rate of event generation at the site to establish a rea-
sonable steady-state time. These windows are shaded in Fig. 4.
The changes in steady state are calculated as

Tg on = median(zy[tend < t < tend + Atar])
—median(zy[ton — Aty <t <tpn]).  (3)

Here, x can represent either the real or reactive power streams,
and ¢ represents the phase (A,B,C). The transient real and re-
active peak values are calculated as

T peak = max(:% [ton <t< tendD
— median(x¢ [tend <t < teng + AtM]). 4)

Because there is no transient peak when a load turns OFF, an
OFF event is only characterized by its change in steady state.
Fig. 4(b) provides a reference diagram for the features of a
conceptual OFF event. Changes in steady-state real and reactive
powers after a load turns OFF are defined as the difference
between the median values over Aty; length windows, before
and after the OFF event. The steady-state changes in real and
reactive power for an OFF event are calculated as,

Zy.off = median(xy[torr < t < tofr + Atar])
— median(x¢ [toff — Aty <t< tof-f]). 5)

In addition to using (3)—(5) to calculate the features illustrated
in Fig. 4, the ON events and OFF events can be characterized
using a correlation algorithm. The correlation algorithm matches
the shape of the input data to known exemplars, and is fully
described in [9], [30]. Consider two sampled waveforms f and
g, where f is an observation or input signal and g is a load
exemplar or example waveform. The correlation metric, M, is

yoU=Ds-9) ©

lg—al’

where f and g are the mean of f and g, respectively, and are
subtracted from the original signals, f and g in order to remove
the dc offsets. When M approaches one, this indicates that the
exemplar and observation match in both shape and amplitude.
Fig. 5 shows example observation data, an exemplar, and the re-
sulting correlation metric as the exemplar window slides across
the observation data.

2) Statistical Methods: For many, but not all loads, a high
classification accuracy can be achieved by the previously de-
scribed geometric features. However, statistical loads, which do
not have consistent behavior during turn-ON or turn-OFF, are
hard to identify with geometric methods. Unlike ON/OFF loads
with clear step changes in steady state, the time it takes the
load to reach steady state is highly variable and it may devi-
ate from steady state during operation. For example, the ballast
pump (BP) from the SPENCER often does not draw its rated
power when the pump starts up or shuts down. This behavior is
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depicted in Fig. 6. In order to correctly classify the BP, statistical
methods are added to the load identification framework. Statis-
tical loads are distinguished from loads with variable power due
to power electronics, as described in the next section. If the
variability is due to power electronics there will be substantial
higher order harmonics due to the nonsinusoidal current wave-
forms. In contrast, statistical loads do not exhibit significant
higher order harmonics, and the variability in power draw are
consequences of the physical task the load is performing. Two
statistical measurements are used for the analysis. The first is
a zero-crossing metric, and the second uses the empirical cu-
mulative distribution function (ECDF) to measure distribution.
First a relatively wide window rolling median filter preserves
the edges due to load ON or OFF events, but removes variations
that occur on smaller time-scales. Since the smaller time-scale
variations are of interest for the statistical analysis, the residual
stream (P ) is computed as the difference of the observed power
minus the medianed filtered stream (1). Multiple size median
filters can help distinguish activity that occurs on different time-
scales (See Fig. 3). Fig. 7 shows P and Py for two loads: the
controllable pitch propeller pump (CPP) and BP.

125

J—

10.0 P

—_—

7.5 P

5.0
ol Ml
0.0

t1 t

Power (kW)

-5.0 CpP

CPP BP BP
s ON OFF ON OFF
0 10 20 30 40 50 60
Time (mins)
Fig. 7. Two loads that exhibit behavior in the residual stream at this
time-scale.
Py LPF — |k Detrend — Poonded
Decimation wln]
Fig. 8. Block diagram for preprocessing before ECDF and ZC analysis.

The residual stream is then processed as shown in Fig. 8.
First, Pr is decimated and windowed. The windowed stream
is detrended by subtracting out the mean, which allows for
analysis on the variations around zero. The zero-crossing metric
is the number of zero-crossings for each detrended waveform
normalized by the length of the signal IV, i.e.,

# of zero-crossings
i .

ZC =

(N

For the ECDF statistic, two nonparametric, distribution-free
tests to measure the equality of one-dimensional probability
distributions are considered: 1)The Kolmogorov—Smirnov (KS)
test; and 2) The Cramer-von Mises (CvM) test [31]. Both
tests compare the distance between the ECDF of a sample
and reference ECDF distribution. An ECDF can be denoted as
E,(z) = B,(X < z), where n is the number of data samples,
or length of the signal. This is given by

Fn(x) = %ZI(:&; <x) 8

i=1
where [ is the indicator function, given by
1

Iei < @) = O, ifz; >z

ife, <z

C))

For each data window, the ECDF is estimated by creating a
histogram of the data values, and then applying a cumulative
sum. As an example, the histogram and ECDF for the Peyended
stream are shown two different loads in Fig. 9. The histogram
and ECDF both show that Pyetrendeq for Load 2 has a larger spread
of values then Load 1. The KS test statistic, D,,, represents the
least upper bound (or maximum) of the point wise difference
between the sample distribution function, F,, (x) and the known

Authorized licensed use limited to: MIT Libraries. Downloaded on May 31,2022 at 16:10:38 UTC from IEEE Xplore. Restrictions apply.



GREEN et al.: MULTISCALE FRAMEWORK FOR NONINTRUSIVE LOAD IDENTIFICATION 997

Histogram

== Load1l ] 1.0{ == Load 1 b ————
—— Load 2

12
— Load 2 [

10 n

Q.
©

o
o

Counts
o

Cumulative Probability
o
'S

0.2

0.0
-1000  -500 0 500 1000

-1000  -500 0 500 1000
X

Fig. 9.
statistic.

Histogram and ECDF for two example loads, and the KS

exemplar distribution function, Fy(x)

D, = max |F,(z) — Fy(z)|. (10)
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The ZC and ECDF metrics are used together to identify loads

such as the ballast pump, an example of which will be explained

in Section IV.

3) Continuous Methods: Tracking the operation of continu-
ously variable loads that demand ever-changing power arises for
VSDs, light dimmers, and other loads controlled by power elec-
tronics. These loads can not be strictly identified by turn-ON and
turn-OFF transients because they do not always have a repeatable
power consumption pattern. However, the current waveforms
of these loads consist of structural features that can be identi-
fied in both the time and frequency domains [15]. The power
electronics contribute to nonsinusoidal current waveforms, and
thus higher order harmonics for these loads. A waveform-based
estimator described in [15] uses the fundamental and higher
harmonic current waveforms to disaggregate the power con-
sumption of variable power loads with harmonic signatures.

Y

D. Event Mapping and Event Confirmation

The features for each event are then mapped to a specific
load, using one of various pattern recognition approaches. This
can be one of the many approaches described in Section II,
including supervised or unsupervised techniques. After an initial
mapping, constraints need to be checked to ensure a correct
output. The first check is to ensure that two consecutive ON
events or OFF events are not outputted for a given load. This
would indicate that either an event was missed, an event was
misclassified, or a nonevent was classified as an event. In the
case of misclassification, the process goes back to the event
mapping and reclassifies or determines that it is not an event.
This is represented by the feedback arrows in Fig. 1. In the
case of a missed event, a decision is made about which event
to display. Depending on the application, the decision can be
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Fig. 10.  Modified multiscale, multialgorithmic framework for shipboard
application.

made to either reduce the possibility of incorrectly displaying
that a load is energized or to reduce the possibility of incorrectly
displaying that a load is secured. Constraints are also checked
to be used for procedural oversight. The operation of FSM loads
and interdependent loads are checked for standard operating
procedures (SOP), ensuring that equipment or systems that go
through multiple stages of operation are sequenced properly.
In addition, if the number of loads and their expected power
draw is known, optimization methods such as linear integer
programming [ 14] can be integrated to aid in ensuring the correct
output.

IV. SHIPBOARD CASE STUDY

Typically, “customers” for nonintrusive monitoring seek an-
swers in one or more of three categories of information: en-
ergy scorekeeping, operator activity tracking, and inputs for
condition-based maintenance (CBM). Based on the load mix at a
site and the customer’s monitoring needs, we use the framework
as a guide to prepare specific NILM installations for different
applications. An installation on the USCGC SPENCER serves
as an example here. The SPENCER crew cares primarily about
fault detection (CBM) and activity tracking. The specific needs
of the SPENCER crew and the characteristics of the known set
of loads lead to specific modifications of the overall framework
to provide monitoring with a minimal computational burden.
This modified framework is shown in Fig. 10.

For example, none of the loads in the SPENCER engineering
space exhibit a slow spin-up compared to the other loads in
the space. Thus, a single time-scale provides an adequate time
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TABLE |
MONITORED LOADS IN ENGINE ROOM
Load Poner Delta PF Port | Sthd
Rating | Phases Panel | Panel
Main diesel engine (MDE) keep-warm system
Lube oil (LO) heater 12 kW 3¢ 1.0 X X
Jacket water (JW) heater 9.0 kW 3¢ 1.0 X X
Prelube (PL) Pump 2.2 kW 3¢ 0.82 X X
Ship service diesel generator (SSDG) keep-warm system
Jacket water (JW) heater 7.5 kW 3¢ 1.0 X X
Lube oil (LO) heater 1.3 kW 19 1.0 X X
Diesel oil purification (DOP) system
Separation chamber motor | 9.5 kW 3¢ 0.89 X
Feed pump 2.6 kW 3¢ 0.80 X
Additional engine room loads
Controllable pitch propeller

hydraulic pump (CPP) | /> KW | 3¢ | 082 x X

Graywater pumps 3.7 kW 3¢ 0.85 X

Auxillary saltwater

cooling pump (ASW) 7.5 kW 3¢ 0.85 X

Ballast pump (BP) 6.7 kW 3¢ 0.90 X

series for geometric event detection, and the computational bur-
den of computing multiple time-scale streams can be deferred
to a later stage of the framework. The SPENCER contains
no continuously variable loads from power electronics, thus
avoiding the need for continuous load tracking. Two SPENCER
loads of interest (CPP and BP) require statistical methods
employed on a fine time-scale for complete identification.
These two loads exhibit geometric initial transients. Hence,
the median-filtered fine time-scale is only computed when
necessary, after observing a startup transient that potentially
indicates the need, as indicated by the switch in Fig. 10.

The ship has two NILM meters monitoring two electrical
subpanels [PORT and STARBOARD (STBD)] in the engine
room. The current and voltages are sampled at 8 kHz, and con-
verted to 60 Hz P and () using Sinefit as described in Section
III. The 60 Hz P and @ are used as input to the load identifica-
tion framework for this case study. Data is stored in a high-speed
time-series database, NilmDB, allowing for high-speed and low-
bandwidth access to the data [30]. All of the monitored engine
room loads are listed in Table I. These monitored subpanels are
crucial to the proper operation of ship propulsion, power gener-
ation, and auxiliary services. For classification, additional load
classes are created for combinations of the main diesel engine
(MDE) system loads that frequently actuate or secure together.
For instance, the MDE lube oil heater, jacket water heater, and
prelube pump often actuate together, creating a repeatable on-
transient. Additionally, the diesel oil purifier (DOP) is a FSM
load so it has a class for each distinct state.

A. Geometric Methods

For the geometric features, all events were detected on a sin-
gle time-scale. First, 101-point median filters were used on the
60 Hz input P and @) streams, in order to remove small fluc-
tuations. The size of the filter was determined empirically so
that all the desired events would be preserved. A NN with two
hidden layers was used for classification. The inputs to the NNs
were the steady state, transient peak, and the correlation algo-
rithm output for ON events and the steady state and correlation

Controllable Pitch Propeller Pump (CPP) Ballast Pump (BP)
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Fig. 1. Pyetrended,6 @Nd Pyetrended,30 Show activity on the CPP and the

BP on different time-scales.

algorithm output for OFF events. For calculating features, Aty
for (3)—(5) was chosen to be 0.5 s. For the correlation algorithm,
each known load exemplar was matched to the input stream. As
input to the NN, the metric used was 1 — | M| (see Fig. 5). Using
this matching algorithm assumes that all loads are known, thus
the length of the input vector depends on the number of load
classes.

B. Statistical Methods

The distinctive transient peak when the BP turns ON permits
using geometric methods alone to classify BP turn-ON events.
Howeyver, due to the inconsistent turn-OFF behavior as shown in
Fig. 6, it is difficult to correctly classify the BP turn-OFFs using
geometric features. The use of statistical metrics aids in the cor-
rect identification of BP OFF events. However, since the STBD
subpanel has two loads with significant activity in the residual
stream, CPP and BP, the two must be distinguished from each
other. To do this, Pierendeds @S shown in Fig. 11 was calculated
on streams separated by 6 and 30 s median filters, represented
as P, detrended, 6 and P, detrended, 30> reSpﬁ‘«Ctively- Qdetrended,30 is also
calculated. As indicated in Fig. 8, the power streams, Pr and
Qr, were decimated from a 60 Hz to 10 Hz frequency, win-
dowed into intervals of 50 s, and detrended prior to calculating
statistical metrics. As the window moves across the data stream,
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a 80% window overlap is used. The statistical features were only
calculated for a window if the standard deviation of Pyegrended,30
was greater than a set threshold, because that indicates signif-
icant activity in the residual stream. CPP data is from October
2017 and BP data is from October 2016 to November 2017
(excluding January 20 to February 2017, which was part of the
testing dataset). For CPP and BP, there were 329 and 319 win-
dows that displayed significant activity in the residual stream,
respectively.

For this application, the CvM criterion was chosen over the
KS criterion because it considers the entire distribution within
the specified range. Contrarily, the KS criterion ignores every-
thing except the maximum difference, making it more sensitive
in the center of the distribution. To represent F{ from (11), av-
erage ECDF curves of past load actuations were used to create
ECDF models for each of the loads. Thus, for the STBD sub-
panel, ECDF curves Fi,, and Fy, are generated. The integration
was estimated by the Riemann left hand sum

D-1

w* =Y (F[wi] - Folzi])* Az

i=0

where D is the number of points in the ECDF and Az is the
distance between x values. In this implementation, D = 1000,
and x ranged from 2000 to 2000 for the 30 s time-scale and
from 1000 to 1000 for the 6 s time-scale. The metric used for
classification was the difference in w values for the two possible
loads, given as, Wypg = Wepp — Wiy - Fig. 12 shows a scatter plot
of the wgyng metric for real power on the 30 and 6 s time-scales,
showing a clear distinction between the CPP and BP metric
values. These variations that occur at different time-scales are a
result of the physical task the load is performing. The oscillations
in power for the BP can likely be attributed to air pockets within
the bilge and ballast pumping system. When pumping out bilges
and ballast tanks, operators will try to get the tanks and bilges to
the lowest level possible, causing the pump to take in a mixture
of air and water at the inlet to the pump. When the pump is then
secured and suction is shifted to a new tank, this air remains in
the system and leads to a prolonged start sequence and rapid
variations in power draw. Contrarily, the oscillations in power
for the CPP are due to the manual operation of the pitch of the
propeller blades as the operator is steering the ship. The CPP
allows the operator to adjust the amount of thrust generated by

12)
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Fig.13.  Windows of Pgetrended for CPP and BP showing zero-crossings.

a propulsor while maintaining a fixed rotational speed. These
mechanical operations of the loads result in the BP having much
more activity occurring at the shorter time-scale compared to
the CPP.

For ZC, only the 30 s time-scale was considered, since the
6 s time-scale does not preserve the slow variations of the CPP.
The average ZC metrics for CPP and BP were 0.013 and 0.066,
respectively. Fig. 13 shows example windows of Petrendea and
detected zero-crossings for the CPP and BP. On average the BP
has more zero-crossings than the CPP, due to the rapid power
variations of the BP.

The CvM metrics and ZC metric were put in a feature vector
to be used for classification

(Wstbd, P,30 Wsibd, Q30 Wsibd, P,.6 ZCP 30)- (13)

For testing of the statistical methods for the STBD subpanel,
new data points of the form of (13) were labeled by using
a k-nearest neighbor (k-NN) classifier using £ = 3. To save
computation, the statistical metrics were only calculated after a
BP ONevent was detected. When the statistical metrics indicated
BP activity, the algorithm looked for an OFF event that may have
been misclassified as another load due to the nonrepeatable OFF
transient and relabeled it as the BP OFF event. It was not the
case in this case study, but if the two loads being compared had
similar geometric metrics, the statistical metrics could be used
for distinguishing both the ON events and OFF events of both
loads.

C. Procedural Oversight

After disaggregating load events, constraints were checked
to monitor the operation of FSM loads such as the DOP and
of interdependent loads, such as the loads that make up the
MDE system. The DOP has multiple states, but requires only
the push of a button for a watchstander to operate. Thus a NILM
can monitor the DOP for improper operation. Fig. 14 shows a
depiction of the power stream of the DOP and its finite states.
For the MDE system, normally when the MDE is started, two
distinct events should occur: (1) the LO and JW heaters turning
OFF once the “start” button is pressed; and (2) the prelube pump
turning off 1-3 s later, once the engine has reached 150 RPM.
The top and bottom plots in Fig. 15 show examples of proper
and improper operation of the MDE system, respectively. The
NILM can alert operators to deviation from SOP.
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D. Results

The described framework was tested on busy intervals of data
from SPENCER, using the Joule [32] data processing frame-
work. Joule is a robust tool that models the data pipeline as a
series of processing “modules” with “streams” of information
passing between them. Data flows between modules without
needing to access the database as an intermediary, allowing
for efficient, real-time monitoring of load events. Different ap-
plications require different accuracy metrics. For example, an
interface that gives users their appliance breakdown in real-time
is significantly different than determining which appliances are
using the most energy over a longer time-scale. The former
values instantaneous, real-time accuracy, while the latter per-
mits off-line analysis for greater accuracy [4]. For the given
application, since the crew aboard SPENCER cares about the
breakdown of loads being used at a given moment, it is crucial
that individual loads are accurately detected in real-time. Thus,
the accuracy for each class was evaluated by considering the
following parameters [33]:

1) True Positive (1T'P): a load event occurred and was cor-
rectly identified.

2) False Positive (F'P): a load event was classified, but that
event did not occur.

3) False Negative (F'N): aload event occurred but that event
was not classified.

TABLE Il
ACCURACY OF CLASSIFYING STBD AND PORT PANEL EVENTS
Load I TP precision | recall
|| ON [ OFF [ ON | OFF | ON [ OFF
Main diesel engine (MDE) keep-warm system - STBD
JW Heater 44 44 1 1 1 1
LO Heater 44 44 1 0.978 1 0.978
Prelube Pump 40 40 1 0.976 | 0.930 | 0.909
Ship service diesel generator (SSDG) keep-warm system - STBD
JW Heater [ 18 ] B8 [ 1 [ 1 [ 1 ] 1
LO Heater [[ 353 | 353 [ 0997 | 1 [0.981 | 0.986
Diesel Oil Purification (DOP) System
Separation
Chamber Motor 55 55 0.965 | 0.965 | 0.965 | 0.965
Feed Pump 41 41 0.976 | 0.976 1 1
Additional engine room loads
Graywater Pump 1645 | 1645 | 0.999 | 0.999 | 0.999 | 0.999
CPP Pump - STBD 74 74 1 1 1 1
Ballast Pump 2 | 2 1 1] 0629 | 0.629
(only geometric)
Ballast Pump
(geometric and 32 32 1 1 0914 | 0914
statistical)

These parameters were used to determine the classifier’s recall
and precision, which answers two fundamental questions:
1) What is the likelihood that a load event is reported?

(recall)
2) What is the likelihood that a reported event is correct?
(precision)
y_ TP TP 14
recall = TP+ FN’ precision = TP+ FP’

The results of running the identification algorithm on one month
of SPENCER data from January 20 to February 20, 2017 are
presented in Table II. For training using the geometric features,
data from was October 1 to 20, 2016 (at sea) and December 14
to 18, 2016 (in-port) were used to train a NN. For the statisti-
cal features, the models described in Section IV-B were used.
To reduce the possibility of incorrectly displaying that a load
was energized, if two consecutive ON events were detected, the
first was ignored. Likewise, if two consecutive OFF events were
detected, the second was ignored.

To accurately classify the majority of the loads, use of geo-
metric methods was sufficient. The precision and recall values
are close to or equal to one, which indicates near perfect per-
formance in identifying a specific class. Because each load is
performing a different task and is operated through different con-
trols, there is a wide variation in the number of TP. For instance,
the graywater pump is operated automatically by a controller
that uses conductivity sensors to detect water levels and provide
feedback for pump control. In contrast, the DOP system is run
manually by an operator when diesel oil needs to be cleaned.
As a result, under normal operation the graywater pump runs
everyday up to a few times an hour, while the DOP does not run
everyday and only up to a few times a day. Because the MDE
system consists of interdependent loads, there are a similar num-
ber of actuations for each part of its system, including the lubeoil
heater, jacketwater heater, and prelube pump. The few FN and
FP across various loads are due to variations in the power data,
load failures, and because loads sometimes actuate or secure
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near each other. The only load that does not have good perfor-
mance with geometric methods is the ballast pump. For the BP,
geometric methods only accurately classified 63% of the OFF
events, leading to the ON events being ignored. With the addi-
tion of statistical methods, the classification accuracy increased
to 91%. Using geometric methods alone was unable to correctly
classify the BP, because the BP often turned OFF while it was
drawing less than the rated power. For some applications, such
as energy scorekeeping, the addition of the statistical method
would be unnecessary. However, for shipboard watchstanding
and maintenance applications a single missed event can lead to
a missed detection of failure in mission critical equipment. The
addition of the statistical method greatly improves the deploya-
bility of NILM in this case. These results are an example of an
application-centric use of NILM, tailoring both the identifica-
tion algorithms and assessments of their accuracy for a specific
application. This demonstration of the utility of the framework is
one of our most recent applications taken from over a decade of
field data testing the framework. Additional similarly successful
results and applications include onboard US Coast Guard ships
[7]-[9], at a public school [10], and on a US Army microgrid
energized by diesel generators [11].

V. CONCLUSION

In this paper, the application of the load identification frame-
work was demonstrated with power system data from the USCG
cutter SPENCER. The results demonstrate the applicability of
the framework for a variety of load types on the cutter, includ-
ing ON/OFF, FSM, and statistical loads. The geometric methods
were used for all of the ON/OFF loads and demonstrated near per-
fect performance in identifying loads, with precision and recall
values close to one. Procedural oversight aided in quantifying
the results of FSM and interdependent systems. Finally, the sta-
tistical methods and multiple time-scales were utilized for the
statistical loads.

Nonintrusive power monitoring enables access to information
that was previously unattainable. With flexible sensor solutions
such as noncontact sensors [34] and graphical platforms such as
the NILM dashboard [13], new doors are opened to apply non-
intrusive monitoring for energy scorekeeping, activity tracking,
fault detection, and CBM. Even with these new possibilities,
nonintrusive monitoring will only be successful if signal pro-
cessing approaches are tailored to focus on customer needs. For
example, an energy scorekeeping application may not require
100% identification of all loads in the system, just the critical
equipment. The framework presented in this paper is adapt-
able to any application. The framework’s applicability has been
demonstrated on various field demonstrations. By excluding or
including algorithms and scales, the multiscale, multialgorith-
mic framework is a guide for allocating the tools to balance
load disaggregation with computing effort for the application
at hand.
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