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Chasing the Cut: A Measurement Approach for
Machine Tool Condition Monitoring

Fukasz Huchel™, Thomas C. Krause

Abstract— Often, the condition of a machine tool is detected
indirectly in the reduced quality of manufactured parts upon
visual inspection. Reliable and efficient machine tool condition
monitoring is indispensable for manufacturing. Furthermore,
issues affecting machine tools are closely related to pathologies
associated with many other industrial electromechanical systems.
An instrumentation and measurement solution for tool condition
monitoring is presented in this article. A signal processing
algorithm and instrumentation hardware are proposed to avoid
intrusive sensor installations or modifications of the machine
under test. The cyclostationary properties of machine vibration
signals drive fault-detection approaches in the proposed sensing
hardware and signal processing chain. A sample of end mills
from an industrial facility is used to validate the tool condition
monitoring system.

Index Terms— Cyclostationarity, diagnostics, integrated elec-
tronic piezoelectric (IEPE), Internet of things (IoT), spectral
coherence, tool condition monitoring (TCM), WiFi.

I. CUTTING TO THE CHASE

ACHINED material is the backbone of humankind’s

most impressive and useful innovations. Manufactured
goods ranging from keys to ships are still primarily assembled
with parts created by removing raw material with cutting tools.
For example, end mills remove material radially and axially.
They are used in face milling, peripheral milling, and slot
milling. Cutting tool condition directly affects finish quality
and safety, e.g., the likelihood of tool breakage or kickback [1].
Currently, human operators rely on heuristic techniques, visual
inspection of the tools, bits, or machined parts, and experience,
to decide when tools have reached the end of their life-cycle.
Computer-based tool condition monitoring (TCM) systems
provide the opportunity for more accurate condition diagno-
sis. These systems are increasingly important as machining
processes transition to fully autonomous operation. Tool con-
dition monitoring enables the Industry 4.0 revolution and the
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potential application of the Internet of things (IoT) devices
in many manufacturing operations. This article introduces a
robust condition metric based on spectral coherence in easily
acquired vibration signals. Results are demonstrated using end
mills from real manufacturing operations, but the approach
presented in this article applies more generally to any cutting
machine tool and other industrial electromechanical systems
with the periodic operation, including lathes, compressors,
a variety of pumps, and other machines.

Monitoring systems that permit accurate fault detection
and diagnostics (FDD) with easy installation remote from
the direct machining area would enhance safety, reliability,
and flexibility in gathering actionable process information.
References [2]-[5] analyze the examination of acoustic and
vibration signatures for tool condition monitoring (TCM).
These methods are useful for TCM, but they employ invasive
measurement setups that are not always practical. For example,
the setup presented in [2] requires an acoustic emission sensor
to be mounted very close to the workpiece. In [6], three
accelerometers are mounted directly on the vice that clamps
the workpiece, a serious limitation in industrial environments
that expect flood cooling, quick workpiece changes, and highly
automated procedures. Force and tool position measurements
have been utilized in [1] and [7] for the diagnosis of tool wear.
Lins et al. [8] use image analysis for drilling machine TCM.
All of these methods may be stymied by the use of coolant or
a requirement for distanced sensor installation from the cutting
area.

Generally, approaches for cutting tool diagnostics fall into
one of two categories. The first approach uses analytical
signal processing algorithms to obtain condition metrics.
The second approach identifies tool diagnostics as a classi-
fication problem and uses machine learning tools. Both time
and frequency domain signal processing have been used for
TCM [5], [9], [10]. Frequency domain signal processing is
attractive because of the rich harmonic content and associ-
ated modulation components of measured signals in many
machining operations. Many spectral or related decomposi-
tions have been applied, including various Fourier methods
and also wavelet analysis [5], [11]. Short time or windowed
decompositions like the short-time Fourier transform and the
wavelet transform provide time localization [11], potentially
valuable for analyzing nonstationary signals such as cutting
scenarios with small work pieces or intermittent cutting.
Cepstrum analysis presents great potential for the separation
of system response and excitation [12], [13]. The properties of
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the complex logarithm make cepstrum-based TCM approaches
less sensitive to sensor placement but more susceptible to
noise [14]. The spectral correlation (SC) function can be
used to explore the cyclostationary features of signals asso-
ciated with milling [6]. Periodic excitation at the cutting
frequency, amplitude modulation due to tool symmetry, and
other phenomena related to material removal create multiple
cyclostationary signals [15]. In [16], the authors apply cyclo-
stationary analysis to monitor chatter in high speed milling.
Calleecharan [17] investigates the effect of force modulation
of the boring bar in a lathe. The performance of cyclo-
stationary analysis is compared with conventional spectral
analysis. Application of SC for TCM is described in [6].
SC provides powerful opportunities for finding faults in peri-
odic operations, e.g., the rotation of a mill cutter. However,
these methods are usually applied to synchronously sampled
data in order to align spectral frequency “bins” with the
periodicity, e.g., rotation of the cutting tool. A quadrature
encoder is attached, for example, to the machine spindle
to synchronize sampling, a costly and invasive installation
technique.

The classification approach to condition monitoring has
grown in popularity with the increased interest in machine
learning methods. Growth in computational power, data stor-
age, and interest for machine learning methods have con-
tributed to this rise in popularity. For example, in [18],
continuous wavelet transform scalograms of vibration signals
from rotating machinery are fed to a convolutional neural net-
work (CNN) to produce good fault signatures and diagnostic
indicators. In [19], a CNN and images of machining tools
are used to diagnose tool wear. CNNs have been used to
predict important parameters such as the remaining useful life
of a mechanical tool [20]. These techniques require subject
experts to train models and tune parameters. These methods
produce heavy computation burdens in training and operation.
It is always difficult or impossible to guarantee the response
to situations that were not considered or “covered” by the
training data.

This article proposes an instrumentation and measurement
solution to condition monitoring for periodic operations like
milling. The custom embedded hardware interfaces with com-
mon industrial accelerometers. The signal processing approach
employs cyclostationary analysis tools to reveal hidden fea-
tures of the vibration signature. Cyclostationary analysis
is one of the analytical TCM methods that has presented
high potential and gained acceptance [6], [16]. Despite the
great characteristics of analytical methods, they are under
explored. A recent survey of milling TCM approaches [10]
showed a disproportional interest in classification methods.
As a result, cyclostationary-based TCM lacks a normalized
figure of merit and statistical verification. To address these
shortcomings, a new normalized indicator is considered. The
proposed tool condition indicator is demonstrated on a sam-
ple of end mills from an industrial facility. The impact
of end mill mounting conditions and cutting parameters
are also investigated. A discussion of this new figure of
merit and its variation over multiple tests summarizes this
work.
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II. CHASING THE CUT

Mechanical processes such as milling operations generate
acoustic, vibration, and visual signals, all potentially useful
for diagnostic indicators. Vibration sensing is a useful choice
because of the availability of high bandwidth and high-quality
sensors. They provide signals that are directly useful for
fault and wear detection. Vibration signals do not demand
the computational burden of image analysis or suffer from
acoustic miscues. In this work, vibration signals drive the
signal processing algorithm. However, other sensed signals, for
example, acoustic signals, could serve as inputs to the methods
developed here.

A. Cyclostationary Analysis

Most mechanical systems generate periodic vibration sig-
natures [21]. The vibration content can be divided into a
so-called “predictable part,” caused by fundamental actions
such as shaft rotation and gear meshing, and also a “random
part,” i.e., content hard to describe analytically with a deter-
ministic model [15]. Oftentimes, the predictable part of the
signal imposes various forms of modulation on the random
part. An example is shown in [22], where modulation is
caused by the pumping frequency of a positive displacement
pump. The nonstationary stochastic nature of the signal arises
from the interaction between the predictable and random
parts [15], [23]. Powerful signal processing tools exist to deal
with a class of nonstationary stochastic signals called cyclo-
stationary signals. Cyclostationary signals have periodically
time-varying statistical properties.

In machining applications, periodic modulation in the vibra-
tion signal arises as a cutting tool that removes material.
The vibration produced by an end mill cutting operation,
for example, is periodic due to the rotating spindle. For a
given number of flutes, a cutting edge engages the material
multiple times per spindle rotation. The resultant vibration
in the machine presents both a predictable and random part.
Cyclostationary analysis is a valuable signal processing tool
for relating the periodicities to the cutting physics.

The theory of cyclostationary random processes can be
understood from at least two perspectives, either using time
averages and statistical spectral analysis or ensemble averages,
i.e., a probabilistic approach [24]. In this article, the time-
average-based approach is used. The time-variant mean M, (¢)
of a signal and the time-variant autocorrelation function
R.(z, 7) are defined as

N
M.t = lim — — T 1
L (t) NiTm2N+1i;vx(t+’ 0 ()
R.(t,7) = lim ——
N~>+002N+1

N
xiz_;vx(t—}-l%l—i-i-To)

-x(t—m—f-i-T) 2)
) 0

where Tj is the fundamental period and 7 is a lag parameter.
Computing the time-variant mean is commonly referred to
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as synchronous averaging, also known as superposed epoch
analysis [25]. Signals exhibiting a periodic time-variant mean,
M, (1) = M,(t+Tp), are called first-order cyclostationary [15].
Signals with a periodic time-variant autocorrelation function
are called second-order cyclostationary [15]. Fourier series
analysis can characterize the periodicity of the time-variant
autocorrelation function. The Fourier series synthesis equation
can be written as

—+00

Z Tﬂ 0 (r)e 2mm/ ot 3)
m=—0Q

where R"/™ (¢) is the mth Fourier coefficient, also known as
the limit cyclic autocorrelation function. Equations (2) and (3)
conclude that IQ’,(C'"/ To) (7) describes the periodic components of
the lag-product time-series x(t + (|z]/2)) - x(t — (|z|/2)). The
Fourier series analysis formula is applied to x(z + (|z]/2)) -
x(t — (|z|/2)) to define as

o 1 7]
Ty _ -
Rx (T)_TETOOT/TTx(t—i_ 2)
x(t - —|;|)e—f'2’”"/T0’dz. ()

The periodogram—correlogram relation is applied to the limit
cyclic autocorrelation function, and substituting a = (m/Tp),
the limit cyclic spectrum is obtained as

1) = F(Ri (). )
Equation (5) is represented as a bifrequency map, where the
first axis is the cyclic frequency a and the second axis is
the center frequency f [26]. The cyclic frequency a reveals
modulation in the signal of interest, an extremely valuable
feature in mechanical system diagnostics. However, in such
applications, an alternative interpretation of the limit cyclic
spectrum is used. The SC function is defined using the fol-
lowing signal definitions: v () = x(¢)e/™*, u(t) = x(t)e /7
and statistical spectral analysis [25], [27]:

11
8¢(f)= lim li
= AT

At/2 o o

x/ X(u,f+—) X*(u,f— —) du  (6)
—A1)2 2/7 277

where X (¢, f)r is a time-variant finite-length Fourier trans-

form of x(¢) [27]. Equation (6) provides temporal correlation

values for frequency components shifted by «. For example,

the SC function presents high values due to sidebands from

modulation with frequency o.

The SC function exposes potential modulation and hidden
periodicities in random signals. It also has the benefit of noise
immunity. For a stationary noise signal, the time-variant auto-
correlation function R, (¢, 7) has no ¢ dependence, R.(, 7) =
const V¢. Consequently, values of I?jj (), the Fourier series
coefficients of R,(z, 1), are zero for all frequencies other
than dc, i.e., a # 0. In other words, contributions to the
SC function due to stationary noise are limited only to the line
o = 0. Based on this observation and (5), SC presents high
immunity to stationary noise [23]. In conventional spectral
analysis (e« = 0), additive stationary noise can mask the
potential signal of interest.
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B. Spectral Coherence

Different types of mechanical systems generate vibration
signals at very different energy levels, but often the signals
contain similar modulation features. It is of great interest to
develop a condition indicator that is agnostic to energy scaling
effects. A normalized indicator avoids false triggering due to
varying energy levels, e.g., due to different loading condi-
tions or system size. To address this, the spectral coherence
coefficient y ?(f) is applied as

o
e (f) = Si(/) )
- 980 +5)

In general, y“(f) is a complex quantity with magnitude
l[yZ(f)l < 1. The coefficient provides a measure of cyclo-
stationarity and is agnostic to scaling effects. For example,
two time-varying processes with different energy levels can
be reliably compared. In [22], authors introduce a spectral
coherence-based indicator for diagnostics. The mean envelope
spectrum (MES) S,ﬁf ) () is defined as follows:

. 1
SN () = T /F lyE(Hldf (8)

where | F| is the range of integration over center frequencies.
The MES is a vector quantity and serves as the input to a new
figure of merit described in Section VI.

IIT. DIAGNOSTIC HARDWARE

The noise-rejecting properties of the SC ease the burden
of sensor placement. For example, for a mill cutter, as flutes
become damaged, a periodic component is introduced or
enhanced in the vibration signature of the machine. Examina-
tion of the SC and the associated MES indicator relieves the
burden of attempting to make physically close, synchronized
measurements directly on the cutting process. We have devel-
oped custom instrumentation to exploit these benefits. The
wireless data-acquisition device is compatible with integrated
electronic piezoelectric (IEPE)-based accelerometers, state-of-
the-art high bandwidth current-loop piezoelectric vibration
sensors. Remote processing power and nonvolatile memory
enable selective measurement and storage of raw vibration
time-series data.

The custom instrumentation offers benefits in data acqui-
sition, detection, and nonintrusive sensing. There are four
simultaneously sampled differential channels that can serve
IEPE accelerometers, the de facto industry standard for high
fidelity vibration measurement. A A~ ADC supports sampling
rates up to 128 kHz and a programmable resolution of 16 or
24 bits. The wireless connection is used for data transfer and is
compatible with IEEE 802.11. The device can operate as either
an access point (AP) or a WiFi station (STA). A wired serial
connection is also provided for basic device configuration and
diagnostics. Nonvolatile memory and a real-time clock enable
a lightweight data management system. Files are stored using
the standard FAT file system to comply with most modern
operating systems. The device operates as a server, clients can
check files in the remote memory, download files, delete files,
and ask for new data to be acquired.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 31,2022 at 16:16:31 UTC from IEEE Xplore. Restrictions apply.



3509610

Fig. 1. View of proposed embedded system.
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Fig. 2. Sample vibration signal.

Sensitive instrumentation and small device footprint per-
mit flexible mounting conditions and the detection of sub-
tle, early diagnostics in machine tools and similar mission
critical machinery. Fig. 1 presents a view of the proposed
industrial monitor, the small size is evident. A temporary,
nonintrusive mounting scenario is shown by the experimental
setup in Fig. 2. Magnets embedded in the case hold the
device to ferromagnetic materials, e.g., the body of a milling
machine. The data acquisition device can be powered from a
conventional 5-W wall adapter or 3.7-V battery for temporary
deployment. The compact custom instrumentation supports a
nonintrusive measurement approach that preserves environ-
mental barriers and safety.

As an example of the benefits offered by the custom
instrumentation, a comparison with an IEPE acquisition plat-
form built according to the guidelines in [28] is shown in
Figs. 2 and 3. IEPE devices are excited by a dc current source.
Comparisons presented in Figs. 2 and 3 reveal that the current
source implementation of the reference design introduces
significant high frequency noise into the measurements. The
noise contribution is large enough to have a visible effect on
the vibration and acoustic signals even in the time domain
representation.

The results shown in Figs. 2 and 3 present the vibration
and acoustic signals emitted by a speaker excited at a pure
tone, respectively. The noisy measurements from the reference
hardware are shown in blue and measurements from the
custom instrumentation are shown in red. Both measurements
were performed with the same sampling frequency and bit
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Fig. 3.

Sample acoustic signal.

Fig. 4. View of experimental setup.

resolution. The improvements enable full utilization of the
high sampling rate and resolution of the device for TCM.

IV. EXPERIMENTAL SETUP

A vertical Bridgeport-style milling machine was used as a
testbed. CNC capability was necessary to achieve desired and
repeatable cutting parameters. Three different types of cutting
tools were used in the experiment: 4-flute 6-mm, 8-mm, and
0.25-in carbide end mills. The acquisition device and sensor
mounting points are marked in Fig. 4. The sensor is mounted
on the bottom of the table. This sensor position is fixed for
all of the experiments presented here. Note that this or a
similar sensor location, isolated from the cutting action, is very
practical for production environments. Experimental results
confirm that the remote sensor location can provide data to
successfully diagnose bit condition. Experimental setup details
are provided in Table I. Peripheral cuts with a varying axial
depth of cut (ADOC), radial depth of cut (RDOC), and feed
rate were considered. Two different tool mounting conditions
were tested: R8 collets and ER16 collets.
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TABLE I
SETUP DETAILS

Parameter Value
Mill ACER EVS-3VKH
Accelerometer Wilcoxson 728T
Stock material Aluminium
Stock grade 6061

WNT 54005060
WNT 54006080

6 mm end mill
8 mm end mill

Spectral Coherence

0
Carrier Frequency f (Hz) Cyclic Frequency a (Hz)

Fig. 5. Spectral coherence map for sample vibration data.

V. ARTIFICIAL BIT DEGRADATION

To provide an illustrative application, as a demonstration,
the MES was developed for vibration signatures of 0.25-in end
mills in a peripheral cut scenario. A spectral coherence map
for a 0.25-in end mill is presented in Fig. 5. The ordinate corre-
sponds to carrier frequency f, while the abscissa corresponds
to cyclic frequency a. In this experiment, the spindle speed
was set to 2150 rpm. It can be seen that spectral coherence is
a discrete function of frequency a, and a continuous function
of frequency f. The continuity of the spectral coherence in
f reveals the presence of random content in a wide frequency
range [15]. Cyclic components are present at multiples of the
spindle frequency, with spacing Aa = (2150/60) ~ 36 Hz.
Evaluation of the MES involves the integration of spectral
coherence along frequency f, (8), the direction of integration
is marked in Fig. 5 with Af. The integration will convert the
2-D spectral coherence map into the 1-D quantity of MES.
However, as observed in Fig. 5, only a discrete set of frequen-
cies o are meaningful, i.e., there are countable components due
to cyclic operation. The MES will be represented with a bar
plot.

To provide more intuition for the MES, a numerical experi-
ment is conducted and compared with laboratory results. Four
cases are considered: a new end mill and three degraded end
mills. The degraded end mills are characterized as follows: one
flute removed, two adjacent flutes removed, and two opposite
flutes removed. Fig. 6 presents an axial view of the end mills.
The red outlines highlight the artificial degradation imposed on
the tools. The simulated vibration signal for each scenario is
presented in Fig. 7. The red envelope represents the amplitude
modulation signal applied to the random carrier. The symmetry
of the modulation signal in each case corresponds to the

3509610

L @
D @

Fig. 6. Artificial end mill degradation.
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Fig. 7. Simulated signal for the artificial degradation experiment: (a) new

tool, (b) one flute removed, (c) two adjacent flutes removed, and (d) two
opposite flutes removed.

(a)

0.15

0.1

0.05

0

6 1
MES Order

1 2 3 4 5 2 3 4 5 6

Fig. 8. MES for simulated data: (a) new tool, (b) one flute removed, (c) two
adjacent flutes removed, and (d) two opposite flutes removed.

engagement of the end mill cutting surface. The scaling of the
signal is not important, the temporal features are of interest.
The time period T corresponds to the modulation period of the
healthy four flute tool. Other modulation periods are expressed
in terms of 7. The MES for each simulated case is presented
in Fig. 8. The horizontal axis is modified from Hz to orders.
The first order corresponds to an event that occurs once per
spindle revolution, which rotates at a frequency of 36 Hz.
Orders correspond to cyclic frequencies, i.e., frequencies
of modulation. Therefore, an inherently related and easily
observable quantity, the period of modulation, is analyzed.
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Fig. 9. Vibration signal for artificial degradation experiment: (a) new tool,

(b) one flute removed, (c) two adjacent flutes removed, and (d) two opposite
flutes removed.

The fundamental period varies between cases (a)—(d) and has
a distinct impact on the MES bar plots. For a healthy tool,
the modulation period occurs four times per spindle rotation.
Thus, the fundamental MES component in Fig. 8(a) appears
in the fourth order. However, for one flute removed and
two adjacent flutes removed, the modulation period occurs
once per spindle rotation. In those cases, the fundamental
MES components in Fig. 8(b) and (c) appear in the first
order. For the tool with opposite flutes removed, Fig. 8(d),
the modulation period occurs twice per spindle rotation. The
nonsinusoidal nature of modulation contributes to higher order
MES components at integer multiples of the fundamental MES
order. The above discussion provides necessary insight for
further analysis of laboratory results.

Laboratory measurements were conducted on one new
and three artificiality degraded end mills. For each case of
“damage,” the end mill flutes were hand ground on a
bench grinder. Measured vibration signals for each of the
cases (a)—(d) are presented in Fig. 9. Time domain inter-
pretation of the signal content is difficult, i.e., the damage
signatures in the measured signals are subtle and difficult
to detect visually. In cases (c) and (d), some periodicity is
visible as bursts in the vibration signal; however, any general
modulation trend is hidden.

The MES presents exceptional and intuitive insight. The
MES plots for each case are given in Fig. 10. It can be seen
in Fig. 10(a) that for the new tool, the fourth order is dominant.
However, contrary to the simulated case, the first order and its
integer multiples are present. The lower orders appear due to
imperfections in the original tool and the imposed degradation.
The first order is dominant for cases (b) and (c), one flute
ground and two adjacent flutes ground, respectively. This
matches the observation from the simulation. Even orders are
dominant for case (d), two opposite flutes ground. However,
there is a distinct dominance of sixth order when compared
to the simulation data. The exact replication of relative mag-
nitudes between the simulation and the experiment is not
expected. However, the trend of the MES indicator reveals
the changes in degradation.

To further emphasize the benefits of the MES as a tool
diagnostic indicator and justify the signal processing approach,

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021
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Fig. 10. MES for artificial degradation experiment: (a) new tool, (b) one
flute removed, (c) two adjacent flutes removed, and (d) two opposite flutes
removed.
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Fig. 11. Comparison of the average deviation for real cepstrum and MES.

a comparison with cepstrum is developed. The cepstral analy-
sis is a valuable tool in the diagnostic of mechanical systems
and speech processing [5], [13], [14]. For a given signal,
the MES values of the first six orders contain important
information. Similarly, for the cepstrum of a signal, the six
lowest dominant frequency components are informative [13].
The average deviation of the first six MES values and six
lowest dominant frequency components of the same vibration
data of a milling process corrupted with noise is considered.
White Gaussian noise with variance designed according to (9)
is used in the analysis. By inspection of (9) the deviation from
the case with no added noise is expected to approach zero
with increasing SNR, e.g., a case with infinite SNR becomes
the reference case. The results of the comparison are shown
in Fig. 11. Each point in Fig. 11 corresponds to the average
deviation of MES and cepstrum quantities
o T ©)
10%0
where o2 is the noise variance, Py is the average power of
the reference vibration data. The average deviation of MES
is uniformly better across the SNR range. For SNR values
below —10 dB, the deviation for cepstrum becomes exces-
sively big, in fact, the frequency components cannot be
distinguished from the noise floor. In this scenario, the
MES continues to provide correct dominant components.
Simulation and experiments with intentionally damaged
end mills, with flute surfaces marred to present a known

o
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Fig. 12.  Good and bad 8-mm carbide end mills.
O
@)
(a)
<
RDOC
Fig. 13.  TIllustration of ADOC and RDOC.

pattern, demonstrate the utility of the MES for finding diag-
nostic indications in cyclic and carrier frequencies. Section VI
extends this demonstration to end mills damaged by wear in a
normal industrial environment. High noise immunity justifies
the choice of MES as the diagnostic metric.

VI. INDUSTRIAL SAMPLES

The TCM system was tested with industrial end mill
samples. Tools used in the experiment were retired from a
CNC-based production line due to poor finish. A side by side
comparison of new and worn samples is shown in Fig. 12. The
distributed nature of the degradation is evident. Realistic wear
is a complicated combination of multiple defects, including
the simple cases from Section V. A useful condition indicator
has to perform well in the complex realistic scenario. The
vibration signatures of cuts with new and worn, 6- and 8-mm
diameter industrial end mills were analyzed.

In milling applications feed rates and cut parameters are
set to achieve optimal chip load, which is recommended by
tool manufacturers. There are two common milling strategies
that aim to achieve optimal chip load, traditional milling, and
high efficiency milling (HEM). Traditional milling uses low
ADOC, high RDOC, and slower feed rates. Contrary to that,
HEM uses low RDOC, high ADOC, and higher feed rates [29].
The definitions of RDOC and ADOC are presented in Fig. 13
in a peripheral cut setup.

For each end mill, four peripheral cuts were analyzed. The
cut parameters are listed in Table II. RDOC is expressed
in terms of the percentage of the tool diameter. ADOC is
expressed in terms of the percentage of tool cutting depth,

3509610

TABLE 11
OPTIMAL CUTTING PARAMETERS

Cut Number Parameter
RDOC (% @) ADOC (% 22) Feed Rate (IPM)
Cut 1 40 50 15
Cut 2 5 50 30
Cut 3 10 100 30
Cut 4 5 100 45
06 Cut 2 for 8mm End Mill

1 2 3 4 5 6
MES order

Fig. 14. Cut 2 comparison for 8-mm end mills.

which is typically twice the diameter. Feed rate is expressed
in inches per minute. For example, Cut 1 with a 6-mm
end mill results in the following values: 2.4-mm RDOC and
6-mm ADOC.

The parameters were chosen to achieve almost optimal chip
load for both 6- and 8-mm diameter end mills. The parameters
of Cut 1 are representative of a traditional milling strategy. The
parameters of Cut 4 are representative of a HEM strategy. The
parameters of Cut 2 and Cut 3 are not prime candidates of
either strategy, but all configurations maintain almost optimal
chip load.

The MES bar plot for Cut 2 with an 8-mm tool is presented
in Fig. 14. The height of the bars represents the average
value of MES for each order. The error bars represent two
standard deviations. The sample mean and sample variance
were evaluated with a sample of four independent cuts for each
tool. With the assumption of Gaussian distribution and treating
sample mean and sample variance as distribution parameters,
95.4% of possible MES values are located within the error
bars in Fig. 14. Even without this assumption, a valid bound
is provided using Chebyshev’s inequality (10). This inequality
can be applied to any distribution with defined mean and
variance

Pr(|X — 1| > 20) < (10)

Bl

Using (10), and treating sample mean and sample variance
as distribution parameters, 75% of possible MES values are
located within the error bars in Fig. 14.

The MES provides a valuable condition indicator, how-
ever, a scalar indicator is of bigger interest. A normalized
figure of merit was missing in previous cyclostationary-based
TCM literature. Simple threshold criteria can be applied to
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TABLE III
MES TABLE FOR 6-mm TOOL

Cut Number Worn New Ratio
MESbI o MESbI o
Cut 1 2.76 0.15 1.76 0.08 1.57
Cut 2 3.12 0.12 2.05 0.18 1.53
Cut 3 2.84 0.05 1.96 0.06 1.45
Cut 4 3.21 0.06 2.08 0.08 1.55
TABLE IV
MES TABLE FOR 8-mm TooOL
Cut Number Worn New Ratio
MESbI o MESbI o
Cut 1 2.34 0.02 1.23 0.03 1.90
Cut 2 2.71 0.09 1.79 0.05 1.52
Cut 3 2.88 0.06 1.71 0.11 1.69
Cut 4 2.80 0.05 1.93 0.08 1.44

a single numeric value. We define a MES-based indica-

tor (MESDI) as follows:

N
MESbI = > 5)(i Aa)

i=l1

Y

where N is the total number of cyclic frequencies to be
examined, Ao is the frequency spacing in the cyclic domain.
For an idea of the relative MESbI variation between tests,
the standard deviation of the MESDI is defined. Treating the
MES values of each order as independent random variables,
the standard deviation of the MESbI is defined in the following
equation:

OMESbI = (12)

Of course, independence in this scenario cannot be guaranteed
and is not necessarily expected. In general, a joint probability
distribution is necessary for variance analysis. Additionally,
without pair-wise independence a covariance matrix is neces-
sary to characterize the problem. The definition in (12) does
not survive rigorous mathematical scrutiny, however, it still
provides a useful indication of variability. Such information
provides the potential user more insight. According to Fig. 14,
very good separation of both cases can be achieved.

Tables III and IV provide MESbI, omgspr, and ratios of
indicators for new and worn cases. There is a significant
increase in the MESbI value for degraded end mills. A 90%
increase in the MESbI value is seen for Cut 1 of the 8-mm
end mills. For 6- and 8-mm end mills, there is at least a
40% increase in the MESbI value from new to worn end
mills.

The indicator proposed in this section is capable of diagnos-
ing degraded end mills. In Section V, the MES was used for
analysis of end mills with discrete and exaggerated damage.
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TABLE V
MES TABLE FOR ER16 COLLET AND 8-mm TOOL

Cut Number Worn New Ratio
MESbI o MESbI o

Cut 1 2.03 0.04 1.20 0.04 1.69

Cut 2 2.87 0.06 2.07 0.03 1.39

A single numeric MES indicator facilitates simpler analysis.
The MESDI proved to be a good indicator for industrially-worn
end mills with a complex combination of defects. The repet-
itiveness of separation between cases was validated with a
sample of experiments.

VII. INDICATOR SENSITIVITY

Results provided in Section VI validate the performance
of the proposed indicator. There are multiple factors that can
affect the indicator quality in an industrial environment. Stock
and tool mounting conditions, general stiffness of the machine
under study, cutting parameters, and tool size can impact the
overall machining process. Two major factors are addressed in
this section: tool mounting conditions and nonoptimal cutting
parameters, i.e., cutting speed, feed rate, RDOC, and ADOC.

A. Tool Holder

There are multiple types of tool holder systems for end
mills. An R8 tool holder system was used in the artificial
degradation and industrial sample experiment. Cutting opera-
tions were repeated using an ER16 tool holder system. The
MESDbI values for traditional milling and 8-mm end mills are
provided in Table V.

Results in Table V validate the performance of the MESbI
for an ER16 tool holder system. The proposed indicator
performed well with two widely used tool mounting solutions.

B. Nonoptimal Chip Load

Optimal chip load parameters are often tabulated by tool
manufacturers. For an RDOC less than the full radius of the
tool, the feed rate must be adapted to avoid chip thinning [29].
The adjustment of the feed rate avoids rubbing and maintains
the desired material removal rate (MRR) [29]. Although
nonoptimal cutting parameters are undesirable, the proposed
indicator is verified in such a scenario. Fig. 15 presents the
MES for six cutting scenarios of an 8-mm end mill. The
first row presents an analysis for cuts with traditional milling
parameters. The second row presents data for cuts with HEM
milling parameters. The last bar plot in the first row and the
middle bar plot in the second row in Fig. 15 correspond to
cuts with optimal chip load, Cut 1 and Cut 4 from Table II.
The other columns present data for cuts with nonoptimal chip
load. Presented results verify that the MES, and consequently
the MESbI, perform well for nonoptimal cutting configuration.

The failure to maintain optimal cutting parameters can cause
premature tool failure. A cutting scenario with RDOC of 10%,
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RDOC=5% ADOC=50% 15IPM

RDOC=20% ADOC=50% 15IPM
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RDOC=40% ADOC=50% 15IPM

MES

RDOC=2% ADOC=100% 45IPM

RDOC=5% ADOC=100% 45IPM

0.4
0.3
0.2
0.1

0

RDOC=10% ADOC=100% 45IPM

Fig. 15. Nonoptimal cutting configuration.
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Fig. 16. Tool damage with nonoptimal cutting parameters.

ADOC of 100% and 45 IPM feed rate resulted in the end mill
breakage. The instant of tool damage is marked in the vibration
data in Fig. 16.

VIII. CONCLUSION

An instrumentation and measurement solution with custom
hardware and tailored signal processing for machine condition
monitoring has been developed in this article. The specific
application was made to end mill condition monitoring, but
many other periodic electromechanical systems could be
tracked with the hardware and analytical approach presented
here. The methods developed in this article avoid synchronous
sampling. The approach presented here is highly sensitive to
periodicities and modulation, and can pick up these signatures
when sensing is mechanically distanced from the cutting zone.

The state-of-the-art hardware, IoT connectivity, and sig-
nal processing algorithm provide actionable information for
diagnostic systems. The developed instrumentation system
is compact and allows quick and temporary installation as
demonstrated in the experimental setup. The signal processing
algorithm utilizes cyclostationary analysis to reveal underlying
modulation in vibration signals. Practical limitations such

6

as sensor location, tool holder technology, and machining
approach were taken into account. The hardware system is
characterized by a lack of troublesome equipment, such as
quadrature encoders, dynamometers, or optical sensors. The
proposed diagnostic indicator MESbI provides a quantity
which can be employed to detect tool degradation. A nor-
malized scalar indicator was missing in cyclostationary-based
TCM literature. The MESbI was tested on a sample of
industrially-worn end mills, a realistic test case often over-
looked. The MESDI provided exceptional and repeatable per-
formance as verified by the indicator distribution over multiple
tests.
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