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Diagnostics for Periodically Excited Actuators

Fukasz Huchel™, Jan Helsen

Abstract—Electromechanical actuators that operate cycli-
cally or with periodically varying loads present unique opportuni-
ties for condition-based diagnostics. Signal processing techniques
can be tailored to exploit periodic variation in the electrical
and mechanical variables and waveforms associated with these
machines. These analytical techniques improve signal resolution
and permit detection of fine changes in system parameters.
This article presents low-intrusion instrumentation tailored to
periodic loads. These instruments can provide subtle diagnostic
information from measurements of quantities such as vibration
and electrical current. Extraction of cyclostationary signal com-
ponents and development of diagnostic metrics are discussed in
this article and demonstrated on an industrially relevant case,
a diaphragm pump.

Index Terms— Cyclostationarity, diaphragm pump, instrumen-
tation and diagnostics, spectral correlation, switched capacitor
filter.

I. INTRODUCTION

LECTROMECHANICAL actuators with periodically

varying loads serve as workhorse components in many
industrial and commercial processes [1]-[4]. Compressors
for heating, ventilation, and air conditioning (HVAC) and
high-pressure air service, machine tools with periodic
stamping or cutting, and reciprocating pumps all experience
periodic load variations throughout a mechanical operating
cycle [5], [6]. Associated periodic modulations appear in
many signals associated with these actuators and machines,
including vibration, electrical current, speed, and torque
[6], [7]. These periodic variations are an underexploited
opportunity for diagnostics. Signal processing techniques and
measurement hardware can be tailored to exploit periodic
signal features that enhance measurement accuracy [8] and
the possibilities for fault detection [9]-[12]. This article
introduces a combination of adaptive filtering and sampling
hardware combined with signal processing methods to create
fault detection and diagnostic metrics for electromechanical
actuators with periodically varying loads. The combined
hardware and software techniques offer an instrumentation
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and measurement system tailored to utilize unique features
of periodically excited actuators.

Diaphragm pumps are one example of an industrially impor-
tant, periodically cycling actuator. These pumps are critical
for many medical, food, and petrochemical processes [13],
[14], as they offer volumetric precision, high discharge pres-
sures, and superior isolation of the working fluid. Diaphragm
pumps also exhibit significant failure mechanisms. Two main
challenges reported in the literature include diaphragm rupture
and check valve failure [15], [16]. These two phenomena are
related. For example, inlet valve clogging can lead to prema-
ture diaphragm damage. Physical rupture of the diaphragm can
lead to contamination of the process liquids by hydraulic oil
from the pump’s mechanism.

There are a relatively few publications that examine the
analytical description of diaphragm pump operation and asso-
ciated degradation in practical environments [15], [17], e.g.,
in comparison to centrifugal pumps. Moreover, a few refer-
ences deal with diagnostics and condition monitoring of these
positive displacement devices [18]-[20]. Diaphragm pumps
are susceptible to several crippling failure mechanisms and
are often employed in harsh environments that induce regular
degradation and eventual failure. The focus of this article
will be fault detection for diaphragm pumps. The techniques
developed here apply to other periodically cycled actuators,
e.g., compressors and stamping machine tools.

New hardware and associated signal processing tech-
niques that exploit the inherent periodic excitation in these
types of loads will be demonstrated analyzing a LEWA
EK-1 diaphragm pump [21]. Among other benefits, these
signal processing techniques utilize periodicity to reduce the
need for transmitting or storing large quantities of sampled
data. Cyclically aware signal processing algorithms focus on
signal features relevant to diagnostics, and, with appropriate
instrumentation hardware, are ideal for remote or embedded
diagnostic systems [22]. That is, awareness of periodic opera-
tion makes it easier to create actionable diagnostic indicators
right “at the edge” of the sensing environment.

II. DIAGNOSTIC APPROACH

Periodic operation colors or impacts the structure of many
different physical signals associated with an actuator. For
example, periodic variations may appear in torque, current,
vibration, acoustic signature, and other signals. Diagnostics
indicators are often found in many or all of these signals.
Some may be easier or more appropriate to measure in a
given application. For example, where control requires current
sensing, current measurements may be available without the
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added expense. On the other hand, sealed or electrically
isolated or installed systems may be more easily analyzed
from mechanical measurements. The sections below describe
two illustrative approaches, one examining the cyclostationary
components of a vibration signature, and the second examining
frequency components of a current signal associated with the
induction machine driving the device under study.

A. Cyclostationary Vibration Components

Alternating suction and discharge cycles create a nonuni-
form loading condition over a single operating cycle of a
diaphragm pump. The pump’s head acceleration is influenced
by these cyclic variations, which results in a strongly mod-
ulated vibration signal. Detection of variations and subtle
periodicity in a signal can be challenging for conventional
spectral analysis techniques [23]. For example, random content
can interfere with the detection and isolation of the periodic
part of a signal [24]. Antoni [4] shows examples targeted to
a diesel engine and a centrifugal pump, and highlights how
inspection of the power spectral density can fail to distinguish
hidden periodicity in the vibration signals.

The concept of cyclostationarity can be used to expose the
impact of load torque modulation on vibration measurements.
Informally, cyclostationarity extends the class of stationary
signals to signals with periodically changing statistical prop-
erties [25]. Mechanically, cyclostationary signals can arise
from periodic modulations of multiple modes of motion, for
example, as in a musical instrument. Formally, a signal is said
to exhibit cyclostationarity if a particular cascade of linear and
nonlinear transformations reveal periodic components or infor-
mation content in the signal [26]. Certain classes of operations
are typical. For example, associated linear operations include
a filtering operation, while nonlinear transforms might be
applied in the form of a squaring operator, | |2.

A “spectral correlation” function [23] can be used to isolate
and detect cyclostationary components in a vibration signal.
The spectral correlation function defines a set of spectral
coefficients

Se(a, f) = / ” R%(v)e /™" (1)

—00

where R? represents a cyclic autocorrelation function.
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The cyclic autocorrelation function can be interpreted as
the Fourier series coefficients of an autocorrelation function
Ry (2, 7), defined as:

Ry (t,7) = E[lx(1)x™(r — 7)] 3)

where E stands for an ensemble average. For the ergodic
processes, (3) can be estimated with the time average operator
[27]. The variable x(¢) is the signal to be analyzed, e.g.,
a vibration signal; a is a cyclic or modulation frequency; f
is a carrier frequency, e.g., the average speed or vibration fre-
quency of the pump; and 7 is a measurement interval. Spectral
correlation coefficients in (1) describe the energy distribution
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across both cyclic frequency o and carrier frequency f.
In the special case of a = 0 and stationary signal x(¢), (1) is
simply a power spectral density function [24]. Discrete-time
formulation of (1) is given in the Appendix.

Given a time-domain signal x(¢), spectral correlation func-
tion can be defined as in (1)—(3). The spectral correlation coef-
ficients can also be understood from the frequency transform
of the time-domain signal. For example, we can define the
short-time Fourier transform [24] of x(¢) as

1

14 ar
XAf(t, f) = / ?Af x(v)e_jzﬂ.'fl)dv (4)
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where Af is the bandwidth around frequency component f.
Gardner [28] demonstrates that Sy (e, f) can be obtained with
the correlation of the frequency transforms, as in

T
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where base of this observation are properties of the cross-
spectral density. Inspection of (4) and (5) shows that the spec-
tral correlation function is a measure of temporal correlation
between the complex envelopes evaluated at f and f + «.

The spectral correlation function provides the promising
capability of detecting modulation components in an environ-
ment with low signal-to-noise ratio (SNR) [23]. When x(¢)
is a stationary random signal without cyclostationarity, (1) is
essentially zero for all a # 0, a result of the time-shift property
of the autocorrelation sequence applied to a stationary signal.
The spectral correlation coefficients, therefore, reject possible
noise and interference. A conventional approach with a = 0
fails to reject the impact of interfering stationary noise.

As an estimator of the spectral correlation, the fast spectral
correlation is used [26]. The MATLAB implementation of the
fast spectral correlation is available in [29]. In order to mitigate
scaling effects and allow for a reliable comparison between
estimates of the spectral correlation, it is recommended to
normalize the estimate [4], [10]. The spectral correlation
is normalized by the square root of power spectral density
evaluated at both frequencies: f and f + a. This unitless
quantity is commonly referred to as the spectral coherence

Vx(a» f)

Sx(a, f)
VS8:0, SO, f +a)

This spectral coherence is effectively normalized for the
background signal and noise floor for a signal of interest.
We develop a new figure-of-merit for the spectral content by
integrating over a carrier frequency range F for any particular
choice of a. This figure-of-merit, the mean envelope spec-
trum (MES), summarizes the average impact of modulating
frequency component a on carrier frequencies f in the range
of F

yxla, f) =

(6)
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Fig. 1. Magnitude frequency spectrum of the deterministic signal.

a o
o o
[N )

S
o
o

N
o
o

Center Frequency f (Hz)
3 8
o o

o

1 2 3 4 5 6 7
Cyclic Frequency « (Hz)

Fig. 2. Spectral coherence map of the deterministic signal.

To illustrate the properties of the spectral correlation, con-
sider a signal

x(t) = cos (271 (f + %) t) cos (Zn%t)

_ %(ejZH(f+a)t +ej27rft +e—j27r(f+a)t +e—j2nft) )
where (a/2) =2 Hz and f + (a/2) = 400 Hz. Figs. 1 and 2
show the positive frequency magnitude spectrum and the
spectral coherence map, respectively, for the signal in (8).
As expected by inspection of (8), the spacing of the frequency
components in the frequency domain is equal to o = 4 Hz.
As expected from (5), the temporal correlation of Xar (¢, f)
sequence with X7 (¢, f + ) sequence reveals a component
at f =398 Hz and o = 4 Hz on the spectral coherence map.

Next, consider a random signal that consists of a carrier
modulated by a low-frequency signal

x(t) = x¢cos(2m2t) )

where x¢ is a value of a random variable with Gaussian
probability density function, zero mean, and unity variance.
Figs. 3 and 4 present the power spectral density and spectral
coherence, respectively. It can be observed that the power
spectral density fails to recognize the periodic variations in
the signal of interest. The power spectral density is essentially
wideband. However, the spectral coherence map gives a very
clear indication of a periodicity. The random nature of the
carrier is manifested by the presence of vertical line across all
carrier frequencies f.
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Fig. 4. Spectral coherence map of the random signal.

B. Spectral Current and Vibration Components

The first approach to fault detection and diagnostics
uses current signature analysis associated with an induction
machine driving the device under study [6], [11]. Experi-
mental results confirm that the fundamental component of a
current signal provides little diagnostic information. Moreover,
it often masks subtle components that tend to be useful for
diagnostic purposes. A custom adaptive discrete-time notch
filter in our hardware is used to remove the fundamental
component of the current signal and enhance opportunities for
diagnostics.

The second approach monitors the energy level at one
of the mechanical resonances of the pump’s head structure.
The acceleration measured at the pump’s head is used to
extract the desired information. Both diaphragm degradation
and inlet valve clogging significantly impact the energy level
at this resonant frequency. An impulse response decay analysis
is able to identify the spectral location of the resonance.
A sensitivity study for the location of the resonant frequency
was performed to understand and minimize the influence
of different mounting conditions of the diaphragm pump.
An example of the acceleration signal acquired using the
industrial integrated electronic piezoelectric (IEPE) sensor
during the decay experiment is shown in Fig. 5. The signal
shown in Fig. 5 is the response of the LEWA EK-1 industrial

pump.
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Fig. 5.

IEPE sensor data during a natural response.

Fig. 6. Custom data acquisition board.

ITI. EXPERIMENTAL SETUP

A custom data acquisition system was developed to permit
focus on modulating signals most relevant for the device diag-
nostics. Validation of the diagnostic strategies was performed
on a high-pressure setup emulating a work environment of a
diaphragm pump.

A. Acquisition Hardware

The custom data acquisition system provides four simul-
taneously acquired channels with a resolution of 24 b and
a sampling frequency up to 64 kHz. Data can be stored
locally or accessed remotely via a 100 Mb/s Ethernet con-
nection which can simultaneously power the device via Power
over Ethernet technology. The data acquisition board shown
in Fig. 6 is equipped with a dedicated active filter for current
signal processing. The adaptive discrete-time notch filter is
implemented with two stages of an LTC1060 switched capac-
itor filter IC. The bandwidth is fixed by the hardware con-
figuration, while the center frequency is adapted. Firmware is
responsible for tracking the fundamental frequency variations
and updating the center frequency. This discrete-time switched
capacitor filter is used for fundamental frequency rejection in
the current signal.

As shown in Fig. 7, the system includes a custom feedback
loop to continuously adapt the filter center frequency depend-
ing on the fundamental frequency of a power source. That
is, as the utility supplying an induction machine or another
motor under investigation varies in frequency, the filter system
will automatically track to reject power line carrier frequency.
After filtering, the remaining signal is amplified to exploit
the full practical range of an analog-to-digital converter. This
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Fig. 8. Experimental setup with diaphragm pump.

maximizes the SNR [27], specifically targeting parts of the
signal which contain diagnostic information.

B. Diaphragm Pump Experiment

The experimental setup, focused on a LEWA EK-1
diaphragm pump, was constructed for this study. Fig. 8
presents a schematic diagram of the setup. Inlet and out-
let pressure accumulators were used together with pressure
regulators to create appropriate pressure levels at the input
and output of the pump. The pump is driven by a 0.5 HP,
4-pole induction motor. It features an internal gearbox with a
10:1 ratio. The pump in the setup is equipped with a nonspring
loaded ball-type check valve at both the inlet and outlet
ports. The diaphragm installed during the experiments was
manufactured from polytetrafluoroethylene (PTFE). Table I
presents physical parameters used during experiments with the
setup. Volumetric flow measurements were recorded to track
the time necessary to displace a fixed amount of fluid [15].

The valve clogging phenomenon was emulated by gradually
clogging the inlet check valve by means of a strong hydraulic
sealant. Fig. 9 shows different stages in the clogging process,
and the check valve bracket and ball are visible. In order to
analyze the results presented in Section IV, we introduce a
figure-of-merit, the “clogging stage.” The clogging stage is an
empirical quantity that describes the percentage of the valve
opening that has been clogged.
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TABLE I
SETUP DETAILS

Parameter: | Range:

Output pressure,[psi] 60-185
Input pressure,[psi] 40
Flow,[1/min] 0-4
Temperature, [°C] 20

Viscosity, [cSt] 46(max)

Fig. 9. Inlet valve clogging. Increasing clogging is presented starting from
the left side.

Fig. 10. Fixture for diaphragm damaging.

A special fixture was machined to permit accelerated
diaphragm degradation consistent with that observed in the
field. The fixture in Fig. 10 allows the application of force
perpendicular to the membrane. The value of the force
was empirically adjusted. The specific results presented in
Section IV correspond to a membrane stretched with 800-N
force, which emulates damage that might be experienced by
the diaphragm during a malfunction.

IV. EXPERIMENTAL RESULTS

The performance of the proposed diagnostic techniques is
demonstrated in this section. Acquired data were sampled at
21 kHz with a 24-b resolution over a 20-s measurement inter-
val during pump operation. The MES values were obtained
for 0-21-kHz range. All results were obtained with a working
fluid consisting of food-grade hydraulic oil with a viscosity
of 46 cSt. The inlet pressure was fixed at 275.79 kPa (40 psi),
while the output pressure was kept at 1172.11 kPa (170 psi).
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Fig. 11.  Spectral coherence map for pump vibration.
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Fig. 12.  Average flow as a function of the clogging stage.

A. Vibration-Based Approach

Fig. 11 presents the spectral coherence map for diaphragm
pump vibration signal. Distinct vertical lines at multiples of
the pumping frequency reveal significant random content in the
vibration signal. This is expected for structures with multiple
fluid-structure interactions and several rotating components
supported with bearings and the internal gear. The pump
operates with a four—-pole motor connected to a utility with
a 60-Hz electrical frequency. The resulting motor mechanical
shaft rotation near 30 Hz passes through a 10:1 internal gear
ratio to produce a reciprocating motion with frequency in the
vicinity of 3 Hz, depending on the loading condition and slip
value. Detection of cyclostationary components provides clear
indication of the existing modulation frequencies and spectral
location of the carrier frequencies.

1) Valve Clogging: A first approach uses the cyclostationary
content of the vibration signal to detect the valve clogging
phenomenon. Progressive clogging of the inlet valve leads to
a decrease in the average flow. Obviously a decrease in the
flow level is an intuitive method of detection often used in
the field. However, a good diagnostic tool should allow for an
early indication of failure even without a significant decrease
in the average flow. Fig. 12 presents a relation between the
clogging stage and the measured averaged flow. It can be seen
that for 20% clogging stage, the flow rate decreases slightly.
However, for the severe case the flow value is only 60% of
the clean case. Fig. 13 relates the value of the MES with the
clogging stage. It can be seen that the indicator increases with
progressing clogging. For the clogging stage of 0.3 pu, there
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Fig. 14. Magnitude frequency spectrum of the IEPE sensor reading.

is a clear increase in the MES, as compared with a clean case.
Contrastingly, the average flow at the same stage is about 90%
of the clean case. This is a promising performance from the
condition monitoring point of view.

The second quantity used for the assessment of the valve
condition is energy present at the resonant frequency. This is
shown in Fig. 14. For low clogging stages, the flow volume is
essentially similar. This means that, for a fixed amount of fluid
and a smaller available check valve area, the average speed of
the working fluid increases. The increase in the average speed
results in higher magnitude values of spectral content near the
resonance, exciting monotonically increasing vibration levels
with clogging. For heavier clogs, e.g., a 0.7-pu clogging stage,
flow volume is substantially impacted as the flow value drops
by more than 40%. That is, as clogging becomes heavier,
the trend in vibration energy will reverse.

A clear increase in the value of both the MES and energy
at the resonant frequency can be observed for low clogging
stages, i.e., for which the flow is maintained above 90% of its
initial value. Clogging is a gradual process of filling openings
in the valve bracket, and early clogging stages can be reliably
detected by both methods. Consequently, the nonmonotonic
behavior for severe clogging does not discount or eliminate the
value of either of the diagnostic indicators as a clog develops.
Each result presented in Figs. 13 and 14 is the average of ten
data sets acquired independently.

In an industrial environment, clogging increases gradually
depending on the solid fraction of the pumping fluid, its
viscosity, and other factors. Continuous operation of the
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Fig. 15. Reverse emulation of the clogging process.
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Fig. 16. MES during experiment.

experimental setup and addition of impurities in laboratory
conditions is very difficult. Here, we emulate this situation
by reversing the process. The hydraulic sealant used for
clogging emulation presented good endurance in providing a
clog. However, long operation at constant input and output
pressures can lead to the gradual removal of the sealing insert
from the valve bracket. Starting with the clogging stage of
approximately 0.3 pu, the pump was being operated until the
desired clearing or removal of the sealant clog was achieved.
This test technique facilitates recording measurements for
different valve conditions without physical intervention into
the pump’s mechanism, ensuring an operating cycle that is
consistent with sustained use in an industrial environment.
Fig. 15 shows gradual removal of the sealant clog over the
course of an experimental cycle (compare with Fig. 9 to
see the effect). Fig. 16 presents the MES, and Fig. 17
presents a peak of the magnitude frequency spectrum near
the resonant frequency. Data sets directly before and after
the sealant removal were recorded. The measurements are
presented in a chronological order as labeled in the legends.
In Fig. 16, the evolution of the cleaning process is visible.
There is a clear change in the MES value when comparing the
data set labeled as Clean6 with the previous measurements.
This is where significant weakening of the sealant structure
happened. Further measurements Clean7—Clean9 present how
this process evolved and led to the state presented in Fig. 15.
Fig. 17 shows peak values of the magnitude spectrum at the
resonant frequency, represented as a bar plot for clarity. As the
sealant removal progresses, a decreasing trend in the peak
energy at the resonant frequency can be observed. Both of
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the applied techniques are able to detect a change in the
valve condition. Especially, the MES-based approach presents
a clean and valuable condition indicator.

2) Diaphragm Degradation: The second phenomenon tar-
geted in this article searches for diaphragm degradation. The
performance of two diaphragms was compared, a new PTFE
diaphragm and one stressed as described in Section III. Both
the MES and energy at the resonant frequency approaches
are tested. Fig. 18 presents the value of the MES for both
diaphragms. Five independent measurement sets are presented
for both cases. An increase in the value of the MES at the
fundamental cyclic frequency can be noticed for a damaged
diaphragm case. However, it is not as pronounced as for the
valve clogging problem. Inspection of Fig. 11 reveals that there
is significant energy at multiple harmonics of the fundamental
cyclic frequency a. Indeed, the third harmonic of a presents
a good indication and allows for distinction between both
diaphragms, as shown in Fig. 19. Error bars represent the
standard deviation across five independent measurement sets.

While there is no a priori reason to choose any particu-
lar harmonic sideband as the diagnostic indicator, we have
observed several practical approaches to developing a diagnos-
tic metric from the frequency data. First, a composite indicator
can be found that sums content across many sidebands. Sec-
ond, we have found that the choice of any particular sideband
is not critical, as the diaphragm excites a broad set of sideband
modulations. In particular installations, it is conceivable that

4151

L ——Damaged | |

8.4 8.6 8.8 9 9.2 9.4
Cyclic Frequency a (Hz)

Fig. 19. MES evaluated at the third harmonic.
%107
——Good
251 ——Damaged | |

|IEPE Sensor]| (V)
o

23.7 238 239 24

Frequency (Hz)

235 236
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the metric is best determined by examining trends over a
period of operating life.

In addition, we note that the machine may offer an obvious
choice of frequency for developing a diagnostic metric: a
natural resonance of the mechanical structure, which amplifies
the effect of the changes. Fig. 20 compares the magnitude fre-
quency spectra zoomed in at the resonant frequency. It can be
seen that the condition of diaphragm significantly contributes
to the way the resonance is excited. The damaged diaphragm is
substantially less efficient in pumping, and therefore, provides
less excitation at the resonant frequency. This is reflected
in Fig. 20 as a reduced peak or energy content in the damaged
condition in comparison to undamaged operation. The results
in Fig. 20 are the averages of five measurement sets. Error bars
represent the standard deviation of the resonant frequency peak
magnitude.

B. Current-Based Approach

A current signal can also be utilized to detect diaphragm
degradation and valve clogging. The current signal used in
this analysis is the output of the discrete-time notch filter on
the data acquisition board.

High fidelity measurements of the filtered current allow
for the identification of sidebands around the fundamental
frequency. Change in energy of the sideband frequencies is
utilized to monitor the device under study. Fig. 21 shows the
fifth sideband of the fundamental 3-Hz modulation. Similarly,
as in Section IV-A, the presented data are an average of
five data sets. Error bars represent the standard deviation
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Fig. 22.  Comparison of current frequency spectra, diaphragm degradation.

of the magnitude spectrum peak value. A clear indication
of progressing clogging is observed. Consequently, it can
be concluded that monitoring of the energy levels at this
frequency could be used as a detection tool. There is a
significant increase in the variance of the current sidebands
for the clogged case as shown in Fig. 21.

A similar approach will detect diaphragm degradation.
In this case, the third sideband was identified as a strong signal
for use as a diagnostic indicator. In general, the amplitudes
of the sidebands will vary with the mechanical system and
the electric machine and should be chosen to provide the
largest signal for diagnostic detection. Fig. 22 presents the
magnitude spectrum located around the third sideband. In this
case, the change in the average value of a given frequency
component is even higher than for the valve clogging scenario.
Current signal analysis in the frequency domain allows to
successfully detect the problems of interest.

V. CONCLUSION

Two low-intrusive diagnostic tools are presented in this
article. The first one relies on the acceleration data. Mon-
itoring of cyclostationary components with the MES in an
acceleration signal was applied as a candidate method and
proved to be a solid diagnostic tool. The experimental results
showed that it can successfully monitor valve and diaphragm
condition despite the complex mechanical structure of the
device under study. It presented a superior performance for
signals where periodic modulations interfere with essentially
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random content. Such a scenario is common for a wide range
of industrial actuators with a diaphragm pump being a good
example. In addition, the energy of the vibration signal at
the mechanical resonant frequency was successfully deployed
for condition monitoring. The second approach is based on
the analysis of the frequency content in the current signal.
Adaptive discrete-time notch filter allowed for optimal analog-
to-digital conversion of the signal of interest. Two frequency
locations were identified as candidates for detection of the
valve clogging and diaphragm degradation phenomena.

The approach presented in this article and verified on a
diaphragm pump case can be generalized to a broader class of
devices. The MES indicator relies on the detection of hidden
periodicity in a vibration signal, and hence, can be applied
for all electromechanical, pneumatic, or hydraulic actuators
driving periodic loads. Similarly, monitoring of the energy
at the device-specific mechanical resonant frequency can be
applied to a broad class of devices. Analysis of the current
signal in the frequency domain targets specifically devices
driven by electric machines; however, it presents a great low-
intrusive monitoring tool.

APPENDIX

Given a discrete-time signal x(z,), the spectral correlation
function for the discrete-time case is given as

n=N m=+o0

2 2

n=—N m=—00

1
s = lim ——
x@ )= lim NI DR

; A v
X [Ry(t, tm)e /2" T e 12 E ] (10)

where Fy is sampling frequency, a is a cyclic frequency, f is a
carrier frequency, t, = (n/Fy), 1, = (m/Fy), and R, (t,, Tim)
is an autocorrelation function of x(z,).
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