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Abstract—The non-intrusive load monitor has been demon-
strated [1]–[3] as an effective tool for evaluating and monitoring
shipboard electro-mechanical systems through analysis of elec-
trical power data. A key advantage of the nonintrusive approach
is the ability to reduce sensor count by monitoring collections
of loads. This paper reviews tradeoffs that affect the likely
performance of the NILM in a real world environment.
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Fig. 1. Typical system layout for non-intrusive monitoring of several loads.
Data acquisition and processing occurs at a central location.

I. INTRODUCTION

The power distribution network can be pressed into “dual-
use” service, providing not only power distribution but also a
diagnostic monitoring capability based on observations of the
way in which loads draw power from the distribution service.
We have developed a nonintrusive power monitor for ship-
board applications. Experiments with this monitor are reported
in [2]–[12]. This power system diagnostic monitor uses exist-
ing power wiring to monitor loads. It is lightweight, cheap
to install, and, because of its low sensor count, potentially
highly reliable. References [13]–[19] demonstrate the NILM
as a potentially effective tool for evaluating and monitoring
shipboard mechanical systems through analysis of electrical
power data. A key advantage of the nonintrusive approach is
the ability to reduce sensor count by monitoring collections of
loads.

The arrangement of the power wiring for these collections of
loads determines the performance, accuracy, and usefulness of
the NILM. This paper reviews tradeoffs that affect the likely
performance of the NILM in a real world environment. In

Fig. 2. The USCGC ESCANABA (WMEC-907) in Boston, MA.

particular, these tradeoffs bound the size of the collection of
loads that can be monitored, determining the extent of the
“nonintrusiveness” that the monitoring system can deliver in
practice.

Figure 1 shows a typical layout of the NILM, with one sen-
sor monitoring three loads. Because the NILM can associate
observed electrical waveforms with the operation of particular
loads, it is possible to exploit modern state and parameter
estimation algorithms to verify the operation and “health” of
electromechanical loads [20], [21]. In order to minimize sensor
count, a NILM installation would monitor as many loads as
possible from a current sensor monitoring the aggregate feed
to the loads.

Ideally, a single NILM could be used to measure and
disaggregate all of the power usage of the electromechanical
loads on a ship. However, there are practical limitations that
prevent complete monitoring and individual tracking of each
load as the total number of loads monitored on an aggregate
feed increases. Specifically, there are at least three issues that
could limit the extent to which a NILM can be “nonintrusive:”

• First, the NILM examines sampled or “quantized” ob-
servations of the measured current. This quantization is
distributed over a finite range of observable currents,
bounded by an absolute maximum current that can be
measured by the combination of the sensor and associ-
ated analog-to-digital converter. Therefore, for a given
hardware configuration, the dynamic power range of the
NILM is bounded. As the NILM is pressed to monitor
larger aggregate current feeds with bigger maximum
currents, the smallest observable features or waveshapes
become increasingly limited. Among other concerns, the
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Fig. 3. Data acquisition and processing flow in a NILM for AC loads

power usage of small loads might barely register in the
presence of much larger loads, due to limited resolution
of the data acquisition.

• Second, the pickup of random noise or other distortions
may increase as the NILM moves further away from mon-
itored loads. Informally, the possibilities for pickup and
coupling of electromagnetic noise may vary depending
on the location where the NILM is installed.

• Third, some loads may be indistinguishable from each
other or from the periodic variations of power demand
associated with other or larger loads in the aggregate
stream. For example, power demand oscillations associ-
ated with cyclically operated equipment like steering gear
or fin stabilizers may fortuitously and unfortunately look
like or mask the signals of other loads like motor pumps.

This paper examines all three of these issues to determine
their likely effect on NILM performance, using analysis of
the NILM techniques combined with real-world data and
examples from the USCGC ESCANABA (Figure 2). This
analysis could be used to determine the likely success of
nonintrusive monitoring at any given point in a particular
power system. It could also be used a priori to design a power
system for shipboard applications that is intended to facilitate
reliable nonintrusive monitoring.

II. THE NILM SYSTEM

Figure 3 shows a simplified diagram of the data acquisition
and processing flow in a typical NILM installation for AC
loads. In general, load monitoring is a three-step process
consisting of:

1) Data acquisition, where electrical loads’ current and
voltage are measured and converted into digital form.

2) Preprocessing, where power usage or other useful at-
tributes are extracted from the raw data.

3) Application-specific disaggregation, identification, and
diagnostics.

Fig. 4. NILM integrated sensor box, provided by Dr. John Rodriguez of
NEMOmetrics, with integrated LabJack analog-to-digital conversion card. Ex-
ternal connections are provided for power, current transducers, and Ethernet.

Fig. 5. NILM system as installed next to a power distribution panel on the
USCGC ESCANABA. The NEMOmetrics sensor and data acquisition box,
top, connects via Ethernet to a tablet PC, bottom.

The hardware that implements this process is designed to
be modular and flexible. A custom integrated sensor box
from NEMOmetrics, shown in Figure 4, provides a sealed
enclosure that includes all data acquisition components with
external connections for power, current transducers, and an
electrically-isolated Ethernet data link. An embedded system
or commercial off-the-shelf personal computer can be used to
process, analyze, and store or report data on the monitored
loads. Figure 5 shows a full NILM system as used on the
USCGC ESCANABA. This installation utilizes a Thinkpad
tablet PC to present a touchscreen user interface to the
operator.
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TABLE I
EXAMPLE CURRENT TRANSDUCERS AND CONVERSION RATIOS

Model Maximum Primary Current KN

LA-55 ±50 A 1/1000
LA-150 ±150 A 1/2000
LA-205 ±200 A 1/2000
LA-305 ±300 A 1/2500

The NILM processing workflow for AC loads is examined
below, with particular emphasis on details relevant to sensor
reduction and scalability.

A. Data Acquisition

Data acquisition measures the voltage and current supplied
to a load or collection of loads, converting these observations
into digital form at the computer. Voltage and current are
measured similarly, but this discussion will focus on the
current for simplicity. The current carries the majority of
information used by subsequent processing steps.

Current is measured using a current transducer (CT). This
active device is placed around a current-carrying wire going
to a particular collection of loads, also known as the primary
current IP . The CT provides an output pin where a scaled
copy of the measured current is produced as the secondary
current IS . The ratio of primary current to secondary current
is the conversion ratio, denoted KN . Typical CTs used for
NILM are shown in Table I.

The secondary output IS of a CT is then placed across
a burden resistor RM to ground. The measured voltage VM

across this resistor is proportional to the primary current IP

by the relation

VM = IS ×RM = IP ×KN ×RM (1)

For example, the measured voltage range VM for a LA-55 at
maximum current with a 50 Ω burden resistor would be

VM = ±50 A× 1
1000

× 50 Ω (2)

= ±2.50 V (3)

An analog-to-digital conversion (ADC) card connected to
a computer is used to sample the voltage VM at a rate of
8000 samples per second. This introduces quantization error,
because the digital result of the sampling has a fixed limited
resolution as determined by the characteristics of the ADC.
The ADC resolution is typically expressed as the number of
significant binary bits B used to represent the digital result.
B binary bits can represent a total of 2B discrete values, and
these 2B values correspond to equally-spaced discrete voltages
across an ADC card’s specified input voltage range. Voltages
that fall in-between are rounded to the nearest discrete value,
and this rounding or truncation is the source of the quantization
error. Figure 6 demonstrates the quantization of a sine wave
at two levels, B = 4 bits and B = 2 bits, which correspond
to 16 and 4 discrete levels, respectively.

1The LabJack software outputs 16-bit values, but only the top 12 bits of
the output value are significant. The low-order 4 bits are always read as 0.

TABLE II
EXAMPLE ANALOG-TO-DIGITAL CONVERTER SPECIFICATIONS

Model Voltage Range (VR ) Output Range Bits (B)
PCI-1710 ±10 V (selectable) 0→4095 12

LabJack ±5 V 0→655201 12
NerdJack ±10 V (selectable) 0→65535 16

−1

0

1

0 π 2π

sin(x)
B = 4
B = 2

Fig. 6. Quantization error, as would be introduced by a linear ADC. The
continuous function sin(x) is compared to the same function represented
discretely with only 4 and 2 bits of resolution.

The choice of ADC card for the NILM has evolved over
time to the meet the needs of aggregate load monitoring.
Specifications for some relevant cards are shown in Table II.
Many of our early shipboard NILM systems were deployed
using the Advantec PCI-1710, a PCI add-in card compatible
with standard desktop computers, that provides accurate and
reliable measurement while supporting the NILM’s required
8 KHz data rate. The primary drawback of the PCI-1710,
however, is that laptops, tablet PCs, and embedded systems
cannot easily integrate a PCI card. This limits installation
flexibility, as a NILM utilizing this card can only be placed
in a location within several feet of a desktop computer.

To provide flexibility to a system designer integrating the
NILM, recent installations have been developed using the
LabJack UE9 Ethernet-based acquisition card. An electrically-
isolated data interface with maximum lengths of at least
100 meters, Ethernet provides significant benefits in that it
allows the acquisition and data processing to occur at physi-
cally disjoint locations, making installations such as the one
shown in Figure 5 possible.

Recently, MIT has developed a new custom Ethernet-based
ADC card to further improve NILM data acquisition. The
NerdJack, shown in Figure 7 and described in [22], improves
on the LabJack by increasing the supported voltage range and
number of bits B from 12 to 16, which reduces the ADC
quantization error. This will allow the NILM to accurately
resolve smaller currents, improving performance as larger
collections of loads are monitored and reducing the accuracy
error detailed in Section III-A. Other features include LabJack
form-factor compatibility, faster sampling rates, more input
channels, and hardware expandability for future data pre-
processing frontends. The NerdJack is undergoing final testing
and is expected to begin replacing the LabJack in new NILM
installations within the next few months.

The accuracy of the chosen ADC card can be related to the
voltage VM as follows. The values in Table II give, for each
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Fig. 7. The custom “NerdJack” Ethernet-based data acquisition card,
currently under development by Zachary Clifford at MIT [22].

ADC card, the specified maximum input voltage range VR,
and the number of significant bits B. As these bits are evenly
distributed over the integer codes, the absolute accuracy can be
computed in terms of measured voltage per least-significant-
bit (LSB) as

VM,LSB = |VR|/2B (4)

For the LabJack, where VR = ±5 V and B = 12,

VM,LSB =
((+5 V)− (−5 V))

212
(5)

≈ 2.441 mV (6)

This is the maximum accuracy. Note that it covers the entire
±5 V range of the ADC, while Equation 3 shows that
the measured voltage VM will only reach ±2.50 V. This
inefficiency leads to a loss of resolution, and can be mitigated
somewhat by different choice of CT, burden resistor, and ADC,
when possible.

The maximum accuracy can then be converted to equivalent
primary current per LSB using Equation 1, which for our
model CT configuration gives

IP,LSB =
VM,LSB

KN ×RM
(7)

=
2.441 mV

1/1000× 50 Ω
(8)

≈ 48.82 mA (9)

Another useful metric is the effective number of bits corre-
sponding to a particular size load being measured. To find
this, the number of LSBs N corresponding to the amplitude
I of the load can be computed from Equation 7 as

N = I/IP,LSB (10)

From this, the effective number of bits BE is

BE = log2(N) = log2(I/IP,LSB) (11)

As an example, a ±5 A load being measured by the model
setup is effectively being measured with a resolution of

BE = log2 (((+5 A)− (−5 A))/48.82 mA) (12)
≈ 7.68 bits (13)
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(b) Spectral envelope output from the preprocessor.

Fig. 8. Motor start transient as measured by the NILM.

For ease of calculation, Equation 11 can be expanded to give
the complete formula for effective number of bits

BE = log2

(
I ×KN ×RM × 2B

|VR|

)
(14)

where, as before,

I = amplitude of load current
KN = CT conversion ratio
RM = CT burden resistor
|VR| = amplitude of ADC voltage input range

B = ADC rated number of bits at full range

For illustration in the next sections, Figure 8a demonstrates
the raw voltage and current waveforms acquired by the NILM
during an electric motor startup. The raw measurement integer
code corresponding to zero input signal is determined by the
ADC specifications, and is 2048 in this example.

B. Spectral Envelope Preprocessor
The NILM employs a preprocessing step to extract spectral

power envelopes from the raw voltage and current waveforms.
Existing research has demonstrated the utility of this pre-
processing step for identifying transient electrical signatures
in a wide variety of applications [1], [3], [20], [23]–[26].
Preprocessing exposes energy consumption and harmonic sig-
natures that are relatively uniquely associated with the physical
task performed by a load. Preprocessing raw data eliminates
distracting data artifacts, such as the underlying 60 Hz carrier
wave of an AC power system, and reveals fingerprint signa-
tures that can be used to identify load operation and diagnostic
conditions.
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The spectral envelopes extracted by the preprocessor are
are short-term averages of harmonic content present at each
of the harmonics of the incoming line frequency. As reviewed
in [23], the in-phase spectral envelopes ak of an input current
signal x(t) are

ak(t) =
2
T

∫ t

t−T
x(τ) sin(kωτ)dτ (15)

where k is the harmonic index, and the quadrature spectral
envelopes are

bk(t) =
2
T

∫ t

t−T
x(τ) cos(kωτ)dτ (16)

For NILM applications, the time t is referenced such that
the term sin(ωτ) in Equation 15 is phase-locked to the
voltage measurement, which can be achieved using a Kalman
filter [27] to determine voltage-waveform zero-crossings. The
averaging interval T is one or more periods of the line
frequency. Under these conditions, the spectral envelopes are
computed as Pk = ak and Qk = − bk, and these are the
outputs of the preprocessor. The outputs are defined in this way
so that the values P1 and Q1 correspond to the conventional
definitions of real and reactive power.

Originally a choice for highlighting recognition features,
the NILM preprocessor also has useful ramifications regarding
signal quality in the presence of quantization and noise. These
benefits are examined more closely in Section III-B.

The first two spectral envelope harmonics corresponding to
a motor start, as computed by the NILM preprocessor, are
shown in Figure 8b.

C. Load Identification and Diagnostics
The NILM uses the spectral preprocessor output to per-

form load disaggregation, to identify the operating schedules
of specific loads, and to extract diagnostic information and
other application-specific indicators about the loads. A useful
method for extracting these identifying features relies on the
power transients, which are associated with any event in which
the power usage of the system changes quickly. Typically, this
occurs when a load turns on and off, and may also occur
during cyclical operation. Transient power changes may also
occur in the event of failures such as the physical breaking
of a link or the failure of a reverse-osmosis membrane.
Transients are useful for diagnostic estimation because, for
electro-mechanical systems, the transients may be rich in
frequency content and amplitude.

Matching transient power signatures relies on finding unique
aspects of a load’s power usage. In many simple cases, match-
ing shape of the transient is sufficient, and the transients can
be identified by comparing against exemplars, as demonstrated
in Figure 9. When scaling to larger NILM installations that
incorporate many loads, more complex methods of identifying
transients may be required, as discussed in section V.

III. MEASUREMENT ACCURACY

Sensor count and installation complexity are reduced with
the nonintrusive approach by placing the measurement system
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Fig. 9. Startup power usage of a single device, with three component power
transients identified through exemplar matching. From [24].

Load 2Load 1
50 Amps

Load 3
5 Amps

Downstream NILM

Max = 75 Amps
Upstream NILM

Max = 5 Amps

20 Amps

Fig. 10. Two potential locations for a NILM installation. The “upstream”
NILM monitors all three loads, while the “downstream” NILM monitors only
one load.

at a location that encompasses multiple loads. To reliably
identify load operation and diagnose load problems, the NILM
must disaggregate the power usage and harmonic content of
individual load transients with some level of accuracy. A useful
procedure for evaluating the NILM’s ability to disaggregate
loads is to examine the identification performance as the
number of monitored loads is increased.

For discussion, consider the installation of an “upstream”
and “downstream” NILM for comparison, as shown in Fig-
ure 10. The upstream NILM will see the net power usage of
all three loads, up to a steady-state maximum of 75 A, whereas
the downstream NILM is only monitoring a single load with
a maximum steady-state current of 5 A.

A. Accuracy of Raw Data
One limitation pertaining to the upstream NILM’s perfor-

mance relative to the downstream system is that the current
transducers and analog-to-digital conversion systems have a
fixed accuracy. To meet the upstream and downstream load
requirements in Figure 10, a system designer might consider
Tables I, II and other requirements to decide on the following
configurations:

Upstream Downstream
Transducer LA-205 LA-55

Conversion Ratio KN = 1/2000 KN = 1/1000
Burden Resistor RM = 5 Ω RM = 155 Ω

Voltage Range VR = ±5 V VR = ±5 V
Bits B = 12 B = 12

Now consider the power usage of a single load measured
by both systems, Load 3. Assume that this load has a startup
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(b) Raw upstream data, enlarged to show detail.

Fig. 11. Two NILM configurations recording the same transient event. The
upstream configuration is scaled to handle much larger loads, but cannot
resolve the finer details of a single load due to quantization.

power transient with amplitude I = 5 A that each NILM
is capturing through the data acquisition process described in
Section II-A. Equation 14 can be used to compute the effective
number of bits BE,D of the raw current measurement for the
downstream setup as

BE,D = log2

(
5× 1/1000× 155× 212

10

)
(17)

≈ 8.31 bits (18)

and similarly compute BE,U for the upstream setup

BE,U = log2

(
5× 1/2000× 5× 212

10

)
(19)

≈ 2.36 bits (20)

This loss of nearly 6 bits of accuracy represents a significant
degradation in resolving the raw current due to measurement
scaling and quantization during the analog-to-digital conver-
sion process.

To demonstrate the practical implications of this effect,
experiments were performed in February 2009 on the USCGC
ESCANABA (Boston, MA). A single run of the collection-
hold-transfer (CHT) vacuum pump was captured simultane-
ously by upstream and downstream NILM systems in the
described configurations, with no additional loads active at the
time. A portion of the pump’s transient at shutoff is shown in

Figure 11. As calculated, the upstream data shows significantly
less resolution and accuracy compared to the downstream data.
In the detailed view of Figure 11b, smaller changes in the raw
current are indistinguishable from the quantization noise due
to the reduced accuracy.

In general, the accuracy of the raw current data acquisition
for any particular load will linearly decrease as the maximum
load capacity of the NILM increases, given that the ADC
parameters are fixed. For example, if the NILM is sized
to handle twice as much aggregate current, then the power
usage of any individual load will be measured with half
the resolution. As the NILM scales to more loads, the raw
resolution may be severely reduced.

B. Accuracy of Spectral Envelopes
Fortunately, most existing NILM analysis techniques do not

make direct use of raw current data, relying instead on the pre-
processed spectral envelope output. In most applications, the
usage is more specifically limited to only the first harmonics
of in-phase and quadrature power, P1 and Q1. The full effect
of measurement quantization in these common cases therefore
depends on how the raw error affects the calculation of these
values.

As shown in Equations 15 and 16, P1 and Q1 correspond to
averages over a single 60 Hz period of the incoming voltage
and current waveforms. Informally, this has a “smoothing”
effect on the data similar to applying a low-pass filter, and
high-frequency deviations will be averaged out by the pre-
processor. Quantization error in the raw data will then have
a limited impact, as long as the mean value still approaches
the actual power usage of the load. In effect, the preprocessor
uses the high-speed, quantized sampled data from the data
acquisition to produce good quality output at a lower rate.

Figure 12 demonstrates this effect of the preprocessor on the
two NILM configurations tested on the USCGC ESCANABA.
Although the upstream quantization error in Figure 11b is
readily apparent, the preprocessor’s spectral envelope output
for downstream and upstream data in Figures 12a and 12b are
very similar. Both show fine details of the pump’s power usage,
particularly during the startup transient. Figure 12c demon-
strates this accuracy by plotting the error as a percentage of
the full amplitude of the transient; the error is generally within
±1% for the duration of the pump run.

This result demonstrates that moving the NILM upstream
does not cause significant loss of accuracy due to quantization
and measurement error, in the common case that spectral en-
velopes are the metric used for identification and diagnostics.
A more formal analysis of the effects of quantization error
on the output of the preprocessor will be published in [28].
Preliminary results indicate that, given reasonable assumptions
about the nature of the quantization process and the power
usage of real-world loads, the effects of quantization alone
are minimal, and are expected to be comparable or better than
the results demonstrated here on the USCGC ESCANABA.

IV. MEASUREMENT DISTORTION

Noise comes in many forms. For load monitoring purposes,
signal and measurement distortion generally refers to an exter-
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Fig. 12. Comparison of preprocessor spectral envelope output for the raw
waveforms from Figure 11.

nal and undesirable corruption of the voltage and current wave-
forms as measured by the NILM data acquisition. Depending
on the nature of the distortion, it can also be carried through
NILM processing steps and indirectly affect identification and
diagnostics. There are many potential means by which noise
or other distortions can be introduced to the power distribution
and monitoring system, including electromagnetic pickup by
the wiring network, thermal noise in electronic components,
and magnetic interference at the sensor.

A. Uncorrelated Noise
The robust design of the NILM preprocessor allows it to

reject many uncorrelated sources of noise, where the additive
effect of the noise is independent of the input waveforms.
One such type of noise is additive white Gaussian noise
(AWGN). This type of noise is normally-distributed around
zero and uncorrelated, and might be expected to appear as a
result of thermal noise in the system. It can be shown [28]
that the energy of this noise is equally distributed across all
frequencies.

The spectral envelope calculation is particularly well-suited
to handle such noise. For example, the NILM preprocessor

utilizes a Kalman filter or phase-locked loop to reduce error
in the detected voltage zero-crossing points. This filter has a
high noise rejection capability, as examined in [27], and so
the NILM is largely unaffected by noise on the voltage input.

For the current measurement, the effect of white noise at
the preprocessor is closely related to the effect of quantization
noise in the acquisition process, as described in Section III-B.
The spectral envelope calculation involves extracting harmonic
content at specific frequencies that are low multiples of the
60 Hz line frequency. Since white noise is equally distributed
across all frequencies, the contribution of such noise to any
particular harmonic power envelope is small.

Furthermore, the presence of uncorrelated noise appears
minimal in practice. In Figure 11b, which shows the high level
of quantization when the NILM is scaled to handle upstream
loads, the visible noise in the waveform is still within ± 1

2 LSB,
which is the accuracy rating of the analog-to-digital converter
itself. It is therefore expected that this type of noise will not
be a significant limiting factor for NILM scalability.

B. Correlated Noise and Coupled Signals

Some sources of signal distortion may be related to the
original signal itself or might be caused by other external
factors that are not distinguishable from the correct data. One
potentially large source is electromagnetic coupling and pickup
between any electric circuits or loads. Changing currents in a
motor, transformer, or just the power distribution wiring will
generate magnetic fields which can induce related currents
in other systems. From the measurements performed by the
NILM, these distortions may be perceived as additional loads,
or they may negatively affect sensitive diagnostics of existing
loads.

Increasing the number of loads monitored by the NILM
will generally exacerbate the problem, as additional loads
utilize additional wiring and components that can both radiate
or couple and receive the noise. Unlike uncorrelated noise,
which the preprocessor is already capable of rejecting, this
type of noise is not easily rejected and any increases are
undesirable. While the net effect has been low in observed
systems, distortion coupling can potentially be complex and
relate closely to specific installation details, so it is important
to consider these effects.

Fortunately, there are several mitigating factors and tech-
niques that can be used to reduce the impact of signal
coupling and correlated noise. For example, many circuits
and distribution panels are already in shielded and isolated
metal enclosures, like the NEMOmetrics NILM sensor box
in Figure 4; while nominally done for safety purposes, this
is also an effective and simple way to isolate a circuit from
electromagnetic interference.

For situations where a ship-board power system is de-
signed a priori to facilitate nonintrusive monitoring, the system
designer may be able to manage noise coupling between
individual loads to place susceptible loads further apart, or
even choose loads that are known not to interfere with each
other. For wiring runs between distribution panels and loads,
coupling can be reduced by physically separating wires or by
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utilizing separate conduit for separate feeds. Wiring layout to
enhance monitoring might become as important a concern as
wiring for redundancy and combat survivability, as effective
monitoring can enhance operational readiness.

The choice of location for the NILM monitoring hardware
can also have an effect on noise pickup. For instance, consider
a generator with a long distribution wire running to a room of
loads. A NILM intended to monitor these loads would likely
see less noise pickup if placed at the entrance to the room
rather than at the generator. The modular design of the NILM
shown in Section II is explicitly intended to support this type
of installation, and features like the Ethernet connection allow
the data acquisition and processing hardware to be physically
separated with no loss of quality or performance.

Finally, as the size of the set of monitored loads increases,
the NILM has more information about the state of the power
system, and in particular the operating schedule of specific
loads. This information may be useful in reversing the ef-
fects of coupled noise. For example, if the system designer
determines that running Pump A causes excessive noise to
be picked up by Pump B, the load monitor could poten-
tially be improved to correct for and remove this additional
noise whenever Pump A is running. However, this and other
advanced techniques have not been necessary in practice;
coupled noise does not appear to be a significant problem in
current installations.

V. DISAGGREGATION

The ability to distinguish or disaggregate load transient
shapes from the background variations created by other loads
is the third and potentially most complex issue affecting
the scalability of the non-intrusive load monitor. Of course,
the ability of the NILM to operate given only an aggregate
power measurement leads to sensor reduction and installation
flexibility. However, larger and more challenging or variable
collections of loads may limit the NILM’s ability to decom-
pose a combined measurement into individual operating wave-
forms. Some of the details of the signal processing approach
to disaggregation are necessarily site or application specific.
For example, when measuring the combined power usage of
a collection of electric motors, one application may require
simply knowing how many motors are on, while another might
require the ability to determine operating schedules for each
specific motor individually. The NILM’s utility and precise
placement will vary in these two scenarios.

A. Methods of Disaggregation
The basic requirement for successful disaggregation is that

there exist some unique metric or feature of an individual
system’s power usage that distinguishes between the loads of
interest. Typical metrics include steady-state power levels and
transient shape, amplitude, and sequencing. More advanced
metrics include frequency domain analysis and the use of
the higher-order harmonic spectral envelope data from the
preprocessor. In some cases, these metrics may not be fully
known or repeatably characterizable, but can be distinguished
using machine learning algorithms that perform feature-based

clustering either automatically or based on supplied training
data.

Experience has shown that transient analysis is a particularly
useful technique for identification and diagnostic monitoring
[5], [7]. As the NILM scales to monitoring larger collections
of loads, two issues in particular can make transient analysis
difficult. First, transients associated with distinct physical
events may overlap, and adding more loads to the system may
increase the chance of this occurring. Second, classification of
a transient generally requires that the steady-state power usage
of the system is otherwise quiescent so that the shape can still
be correctly recognized. As the number or size of loads in the
system increase, small-scale variations in steady-state power
usage may combine to form larger variations and mask the
transients of interest.

There are a number of potential solutions to the overlap
issue. Sometimes, the chance of transient overlap may simply
be acceptably low, given a load’s expected operating schedule
and transient width. In other cases, the distinct physical events
may be related, as with a fan that always turns on shortly
after a heater. For this situation, the combination of two
transients might be trained as a single event for purposes of
classification. Alternately, if the system can correctly identify
the first transient, the classifier could subtract its known shape
from the remaining data, effectively removing its influence
when classifying the subsequent transient.

Similar techniques can be used to manage predictable
steady-state variations. An unbalanced motor or a motor driv-
ing an eccentric or side-loaded mechanism, for instance, might
wobble and show periodic variations that can be measured
and subtracted. In many cases, however, the cumulative effect
of the steady-state variations of aggregate power load can
be complex and may even resemble non-deterministic signal
noise. In these cases, statistical approaches can be applied
to remove undesired features. Low-pass and other frequency-
based filters can remove periodic variations. The median filter
is particularly useful at cleaning up a steady state signal
because it can preserve sharp edges, which may be useful for
transient identification.

B. Experimental Data

To demonstrate the capability of the NILM to disaggre-
gate loads, two monitoring systems were installed on the
USCGC ESCANABA in September 2008. Several weeks of
data were collected from “upstream” and “downstream” power
feeds as in Section III. The downstream NILM monitored
the collection-hold-transfer (CHT) pumps, and the upstream
NILM monitored these plus many other larger loads, including
the reverse-osmosis (RO) system and fin stabilizers. The sensor
configuration is shown in Table III.

The effective number of bits (Equation 14) for a 10 A load
as measured upstream and downstream are BE,U = 6.8 and
BE,D = 7.8, respectively; this difference is small enough that
there is not significant quantization in the upstream data.

This experiment sought to determine if the relatively small
CHT pump runs could be reliably identified in the upstream
data. Figure 13a shows a representative sample of P1 spectral
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(a) Full window with three CHT pump runs. The upstream power usage
includes additional transients and noise on top of a steady 35 kW load.
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(b) Closeup of the first CHT pump run, with a larger unrelated transient
captured by the upstream NILM.
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(c) Detail of the startup transient of the CHT pump. The general shape is
still present in the upstream data.

Fig. 13. Three comparisons of the time-aligned P1 spectral envelopes
captured by the upstream and downstream load monitors.

TABLE III
SENSOR CONFIGURATION FOR DISAGGREGATION EXPERIMENT

Upstream Downstream
Transducer LA-205 LA-150

Conversion Ratio KN = 1/2000 KN = 1/2000
Burden Resistor RM = 50 Ω RM = 100 Ω

envelope data captured on October 22, 2008 from 0430-0500.
The downstream power shows three CHT pump runs and
no other loads. The upstream power, conversely, shows a
significant continuous steady-state load of 35 kW as well as
numerous other transients. Figure 13b shows a detailed view
of the first CHT pump run. Note how the upstream NILM
captured a larger unrelated transient that occurred during
the CHT pump run, and the large amplitude of steady-state
variations relative to the size of the downstream data. These
issues can prevent proper classification [12].

However, classification is still possible. As shown in Fig-
ure 13c, the general shape and amplitude of the pump’s initial
power transient is retained and visible at the upstream NILM.
Assuming this shape is unique, locating it in the upstream
power data will reveal the times at which the CHT pump
started.

C. Matching Waveforms
After removing DC offset, one common measure of simi-

larity between two sampled waveforms f [n] and g[n] of equal
size N is the Euclidean distance, defined as

D =
∑

n∈N

(f [n]− g[n])2 (21)

This expression can be expanded as

D =
∑ (

(f [n])2 − 2f [n]g[n] + (g[n])2
)

(22)

=
∑

f [n]2 +
∑

g[n]2 − 2
∑

f [n]g[n] (23)

Expressed as a dot product, this is

D = (f · f) + (g · g)− 2(f · g) (24)
= |f |2 + |g|2 − 2(f · g) (25)

If the waveforms match, the Euclidean distance between them
would be D = 0, and this equation reduces to

0 = |f |2 + |g|2 − 2(f · g) (26)

f · g =
|f |2 + |g|2

2
(27)

Furthermore, if the amplitudes match, |f | = |g|, so

f · g =
2|g|2

2
(28)

f · g
|g|2 = 1 (29)

If Equation 29 holds, then the two waveforms match. There-
fore, given f as our input signal and g as an exemplar, or
example waveform, that we wish to find, M = (f · g)/|g|2
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Fig. 14. Exemplar used to match the CHT pump startup transient.

is a useful figure of merit. As this value approaches 1.0, we
can be reasonably confident that f and g match both in shape
and amplitude. Requiring that the amplitude also match is an
important restriction when dealing with aggregate data that
incorporates many differently-sized loads that may share a
similar shape.

When the full waveform f contains more points than the
exemplar g, we can iterate or “slide” the exemplar across the
data, computing the metric M at each point based on the inner
product of a windowed subset of f and g. As the exemplar g
approaches a feature in the data f that matches in shape and
amplitude, the value of the figure of merit M will approach a
local maximum of 1.0.

A significantly faster method of computing the same metric
is based on cross-correlation [29]. Briefly, for two waveforms
x and y, the cross-correlation is defined as:

(x # y)[n] =
∞∑

m=−∞
x∗[m] y[n + m] (30)

where x∗ denotes the complex conjugate of x. For real
numbers, this represents the same basic operation as the dot
product (x · y). Cross-correlation can be computed using the
discrete Fourier transform F using the relation

F{x # y} = F∗{x}F{y} (31)

We are currently evaluating the use of such spectral methods
for transient identification. Preliminary testing indicates that
this technique can speed up the analysis of the data by several
orders of magnitude.

D. Application and Results
To locate CHT pump startup transients in the upstream data,

one sample exemplar of the transient was extracted from the
downstream CHT data, and DC offset was removed, as shown
in Figure 14.

Then, the correlation was computed between this exemplar
and the full window of data from Figure 13a. Figures 15a
and 15b present closeups of the correlation results for down-
stream and upstream data, respectively, at a time when the
CHT pump turned on. As expected, the correlation approaches
1.0 as the time nears the pump start. A peak-detection algo-
rithm with a small detection window between 0.9 and 1.1 is
used to identify these points automatically.

An example of the behavior of the event detector when
confronted with an event that is different from the exemplar is
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(a) Exemplar match against a CHT pump startup recorded downstream.

−1

−0.5

0

0.5

1

1.5

2

2.78 2.79 2.80 2.81 2.82 2.83
C

or
re

la
tio

n
Va

lu
e

Time (min)

Upstream correlation
Detection window

(b) Exemplar match against a CHT pump startup recorded upstream.
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(c) Exemplar mis-match against a non-CHT transient recorded upstream.

Fig. 15. Calculated correlation value (figure of merit) between the exemplar
and measured spectral envelopes. Local maxima near y = 1.0 indicate a
strong correlation at time t.

shown in Figure 15c. In this case, the exemplar is compared
to a large transient that is similar in shape to the CHT pump
startup transient. However, this event is created by another
device and is larger in magnitude than the CHT transient. The
computed correlation value does cross through the detection
window around 1.0, but the local maximum far exceeds the
window and so this transient is correctly not identified as a
CHT pump.

This technique is effective at finding the startup transient.
In the downstream and upstream data, it detects three pump
starts, at 2.80 minutes, 11.38 minutes, and 21.69 minutes.
Further tests were run on similar data corresponding to 21
disjoint hours over the three-week period from October 10 to
October 20. For every CHT pump transient found in the clean
downstream data, the same event was correctly detected at
the same time in the upstream data, with no false positives or
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negatives, demonstrating that disaggregation can be performed
reliably and quickly even in the presence of large unrelated
variations and transients in the aggregate data.

VI. CONCLUSION

At least three issues make it challenging to extent a non-
intrusive load monitor to monitor an increasing variety and
number of loads: quantization, measurement noise, and the
ability to disaggregate loads. The design of the NILM has
been shown in this paper to effectively mitigate both quanti-
zation and measurement noise through the use of the spectral
envelope preprocessor, as experimental data from the USCGC
ESCANABA indicates. Neither of these factors is likely to be
a significant concern as the NILM scales to monitor larger
systems.

Effective disaggregation of load characteristics can be very
application-specific, and may therefore require application-
specific analysis. Nevertheless, several techniques were pre-
sented to improve disaggregation of loads in general cases, and
many of these techniques can be applied to systems of all sizes.
As shown on the USCGC ESCANABA, cross-correlation and
exemplar matching can be used to identify transients quickly
and accurately in real-world aggregate data.
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