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Abstract-Simulating the transient behavior of switching power con- 
verter circuits is computationally expensive because these circuits are 
clocked at a frequency whose period is orders of magnitude smaller 
than the time interval of interest to the designer. It is possible to reduce 
the simulation time without compromising much accuracy by exploit- 
ing the property that the behavior of switching converters in a given 
high-frequency clock cycle is similar, but not identical, to the behavior 
in the preceding and following cycles. In particular, the envelope of 
the high-frequency clock can be followed by accurately computing the 
circuit behavior over occasional cycles. In this paper the implementa- 
tion of an envelope-following method that is particularly efficient for 
open-loop switching power converters with fixed clock frequencies is 
described, and results demonstrating the method’s effectiveness are 
presented. 

I. INTRODUCTION 
N general, switching power converter designers rely heavily I on circuit simulation programs like SPICE [8] to verify the 

correctness and to determine the performance of their designs. 
These programs simulate a circuit by first constructing a system 
of differential equations that describes the circuit, and then 
solving that system numerically with a time discretization 
method such as backward-Euler. When applied to circuits like 
switching power converters, such classical circuit simulation al- 
gorithms become extraordinarily computationally expensive. 
This is because switching power converters use high-frequency 
clocks whose periods are typically orders of magnitude smaller 
than the time intervals of interest to a designer. The nature of 
the calculations used in a circuit simulator implies that to con- 
struct the solution over the time interval of interest, an accurate 
solution must be computed for every cycle of the high-fre- 
quency clock in the interval, and this can involve hundreds of 
cycles. 

The infeasibility of simulating such circuits with classical 
techniques has led designers to explore a variety of simulation 
alternatives, including specialized analog computers [4]. More 
popular are fast approximate simulation techniques, based on 
treating the switching converter’s switches as ideal, and the re- 
maining circuitry as linear 121. In addition, it is sometimes pos- 
sible to further simplify the converter circuit by eliminating 
certain state variables that do not contribute significantly to the 
output of interest [7]. Approximate techniques such as these can 
reduce the cost of computing the behavior of a switching con- 
verter circuit over one high-frequency clock cycle to the point 
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where it becomes computationally feasible to simulate the cir- 
cuit for the hundreds of cycles needed to construct a complete 
transient. 

Programs based on the above techniques are reasonably effi- 
cient, but they are based on idealizations of the circuits in- 
volved which may eliminate behavior that is important to a 
designer. In this paper we present an approach for the detailed 
transient simulation of switching power circuits that does not 
require simplifying the circuit and is much more efficient than 
classical SPICE-like methods when the clock period is small 
compared to the simulation interval. This method, referred to 
as envelope-following [9], exploits the property of such circuits 
that the node voltage waveforms over a given high-frequency 
clock cycle are similar to, but not exact duplicates of, the node 
voltage waveforms in preceding or following cycles. This sug- 
gests that it is possible to construct a solution accurate over 
many clock cycles by calculating the solution accurately for a 
few selected cycles. 

In the next section, envelope-following is introduced, and in 
Section 111 we derive a simple method for computing envelopes 
which involves solving a sequence of two-point boundary value 
problems. The two-point boundary value problems are solved 
with a shooting or Newton method, as described in Section IV. 
The computations involved are explained in Section V, and their 
L.iplementation in the program Nitswit along with results from 
using Nitswit to simulate several switching power circuits is 
described in Section VI. Finally, in Section VII, conclusions 
and acknowledgments are given. 

11. ENVELOPE-FOLLOWING 
Consider the simplified buck dc-dc converter circuit in Fig. 

I ,  [ 2 ] .  This circuit’s behavior in steady-state is roughly that of 
a modulator followed by a low-pass filter. The modulator con- 
verts the input dc source into a periodic pulse waveform and the 
low-pass filter time-averages the pulse waveform to produce a 
dc voltage at the output. In the circuit in Fig. 1, the N-channel 
MOS transistor combined with a diode act as the modulator, 
and are controlled by the input clock connected to the MOS 
transistor’s gate. The dc output voltage of the converter is given 
approximately by DV,,, where D is the duty-cycle of the input 
clock waveform. 

The voltage waveforms in steady state for the switch and out- 
put nodes of the buck-converter of Fig. 1 were computed nu- 
merically using a standard backward-Euler integration scheme; 
the computed timepoints are plotted in Figs. 2 and 3 (for the 
simulation, the dc input was 10 V, the clock was a 100-kHz 
square wave and R = 140 Q ,  L = 420 p H  and C = 38 pF). As 
should be expected in a realistic simulation, the plots clearly 
indicate the effect of the finite conductivity of the MOS transis- 
tor and the nonideal behavior of the diode. More relevant to 
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Fig. 1 .  Buck converter. 
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Fig. 2 .  Buck converter switch node voltage in steady-state. 
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Fig. 3 .  Buck converter out node voltage in steady-state. 

this paper is that the backward-Euler integration schlme re- 
quired more than twenty timepoints for each simulated clock 
cycle, because of the rapid variation of the voltage at the switch 
node. This implies that simulating a power converter transient, 
which can span hundreds of clock cycles because of the low- 
pass filtering, will be computationally very expensive. For ex- 
ample, the plot in Fig. 4 is of the output voltage waveform for 
the power-up transient of the buck converter in Fig. 1. In this 
case the power-up transient is made up of more than 1000 cycles 
of the input clock, and the total simulation used more than 
20 000 timepoints. 

The number of timepoints computed during a switching con- 
verter transient simulation can be reduced by exploiting the fact 
that a designer typically is not interested in the details of the 
node voltage behavior in every clock cycle, but rather is inter- 
ested in the envelope of that behavior. Specifically, we define 
the envelope to be a continuous function derived by interpolat- 

- 
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a 
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=w 
Fig. 5 .  Envelope definition. 

ing the sequence formed by sampling the state every clock pe- 
riod T (see Fig. 5 ) .  Note that our definition of envelope is not 
standard. Here, the envelope is not unique given x ( t ) ;  the en- 
velope generated by interpolating the sequence x(  0 + 7 ) ,  x (  T 
+ 7 ) ,  x (  2 T + 7 ) ,  depends on 7 .  The key advantage of 
considering just the envelope is that if the sequence formed by 
sampling the state of the beginning of each clock cycle, x(O), 
x (  T) ,  x(2 T), , changes slowly as a func- 
tion of m, the clock cycle number, it is possible to approximate 
the envelope without computing every clock cycle. 

* - , x ( m T )  - * 

111. COMPUTING THE ENVELOPE 
Most switching power converter circuits can be described by 

a system of differential equations of the form 

where x (  t )  E ', the state, is the vector of capacitor voltages, 
and inductor currents, U( t )  E an is the vector of input sources, 
p ( x ( t ) ,  U( t ) )  E an is the vector of capacitor charges and in- 
ductor fluxes, andf (x( t ) ,  u ( t ) )  E an is the vector of resistive 
currents and inductor voltages. If the state x is known at some 
time to, it is possible to solve (1) and compute the state at some 
later time tl . In general, one can write 

4 4 )  = 4J(X(tO)? to* 4 )  (2) 

where 9: a' x 63 x -P 6i' is a state transition function for 
the differential equation. 

The straight-forward approach to computing the envelope of 
the solution to (1) is to numerically compute x ( t )  for all t and 
then to sample this computed solution at x(O), x ( T ) ,  x ( 2 T ) ,  
. . .  to construct the envelope. If the envelope is smooth 
enough, then it will be possible to approximately represent an 
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interval ofsample points, x ( ( m  - l ) T ) , x ( m T )  * . x ( ( m  + 
1 ) T )  with a low order polynomial in the cycle number. For 
example, if over 1 + 1 cycles the envelope is well approximated 
by a straight line, then 

x ( ( m  + 1 ) ~ )  - x ( m ~ )  = ~ [ x ( m ~ )  - x ( ( m  - 1 ) ~ ) ] .  ( 3 )  

The term [ x ( m T )  - x ( ( m  - 1 ) T ) ]  can be thought of, impre- 
cisely, as the derivative of the envelope at x (mT) in which case 
(3) is loosely analogous to solving a differential equation by 
forward-Euler. Following that analog, 1 is then the cycle-step 
for the integration method. 

To compute the envelope of a system with period T using a 
fixed cycle-step version of the above forward-Euler style en- 
velope-following algorithm, a simple repetitive two-step pro- 
cess can be used. The first step is to cornputex( T) ,  givenx(O), 
by solving (1) over the interval [ 0, TI .  Then the second step is 
to se tx(1  + 1 ) T )  = x ( T )  + I [ x ( T )  - x(O)].  This process 
canberepeatedtocomputex((2 + 2 1 ) T ) , x ( 3  + 31)T) ,e tc .  
Note that calculating the envelope over a long interval then re- 
quires solving (1) for one out of every 1 cycles. 

Although simple to describe, a forward-Euler based approach 
to computing envelopes is inefficient for simulating switching 
converter circuits. Maintaining stability severely limits the size 
of the cycle-step 1, just as in the standard forward-Euler algo- 
rithm. A more stable algorithm is to approximate the value of 
x ( ( m  + 1 ) T )  by 

which is analogous to the backward-Euler algorithm. This ap- 
proach allows for larger cycle-steps than the forward-Euler 
based approach, but leads to a more difficult to solve equation 
for each cycle-step. To see this, consider computing x (  1 T )  
given x (  0 )  based on (4). An x (  ( I  - 1 ) T )  must be determined 
such that when used as an initial condition for ( l ) ,  the x (  I T )  
computed with standard discretization techniques satisfies x ( 1 T )  
- x ( O )  = l [ x ( / T )  - x ( ( l  - 1)T)l.Thisisaboundaryvalue 
problem, and is in general difficult to solve. For the case of 
switching power or filter circuits, the above boundary value 
problem can be solved efficiently using a Newton or shooting 
method [ 5 ] ,  and this is presented in the next section. 

Iv. SOLUTION BY NEWTON 
As mentioned in the previous section, each cycle-step of a 

backward-Euler envelope-following algorithm applied to ( 1) in- 
volves finding an x (  ( m  + 1 - 1 ) T )  which satisfies 

x ( ( m  + I ) T )  - x ( m T )  

= / [ x ( ( m  + [ I T )  - x ( ( m  + I - I ) T ) ]  ( 5 )  

where x ( m T )  is known from the previous cycle-step and x(  ( m  
+ 1 ) T )  is determined fromx((m + 1 - 1 ) T )  by solving (1) 
over one cycle. Using the state transition function defined in 
(2), the relation betweenx((m + 1 ) T )  andx((m + 1 - 1 ) T )  
can be written as 

x ( ( m  + I ) T )  = 4 ( x ( ( m  + I - I ) T ) ,  

(m + 1 - 1)T, (m + 1 ) T ) .  (6)  

Using this relation in ( 5 )  yields a nonlinear algebraic equation 

4 ( x ( ( m  + 1 - I )T) ,  (m + I - I ) T ,  ( m  + / ) T )  - x ( m ~ )  

= / [ ~ ( x ( ( m  + / - I )T) ,  (m + 1 - I ) T ,  ( 7 )  

(m + I ) T )  - x ( ( m  + 1 - l ) ~ ) ]  

from which x (  ( m  + E - 1 ) T )  can be determined given x (  m T ) .  
An iterative Newton's method can be applied to solving the 

above system. In general, the Newton method applied to the 
problem of finding an x E (R" such that F ( x )  = 0, F:  (R" + 

(R", yields the iteration equation 

J , ( x k )  [ x k + '  - x k ]  = - F ( x k ) ,  (8) 
where k is the Newton iteration count and J F  E (R ' I  is the 
Jacobian of F. Reorganizing (7) into a form to apply Newton's 
method leads to 

o = F ( x ( ( m  + / - 1 ) ~ ) )  

= 4 ( x ( ( m  + / + I ) T ) ,  (m + I - I )T ,  (m + I ) T )  (9 )  

1 
- - x ( ( m  1 -  1 + 1 - 1 

1 ) T )  + - x ( m T )  
I -  1 

In this case, JF is given by 

a 1 
ax 1 - 1  J F ( X )  = --4(x, (m + 1 - 1)T, (m + 1 ) T )  - - 4  

(10) 

where I,, is the identity matrix of size n. 
The most time-consuming computation in this Newton iter- 

ation is evaluating J ,  and F, which involves computing the state 
transition function and its derivative. The state transition func- 
tion can be evaluated by numerically integrating (1) from ( m  + 
1 - l ) T t o ( m  + l )Tgivenx((m + 1 - 1 ) T ) .  Thederivative 
of the state transition function, referred to as the sensitivity ma- 
trix, represents the sensitivity of x (  ( m  + l )  T )  to perturbations 
in x ( (  m + 1 - 1 ) T) and can be computed with a small amount 
of additional work during the numerical integration, as is de- 
scribed in the following section. 

V. SENSITIVITY COMPUTATION 
To see how the computation of the state transition function 

and its derivative fit together, consider numerically integrating 
(1) with backward-Euler, which we chose for its simplicity and 
because it is effective for problems with rapidly varying inputs, 
like clocks. Given some initial time r, and some initial condi- 
tion x(t , ) ,  applying backward-Euler to (1) results in the alge- 
braic equation 

where h E (R is the timestep. Note we have dropped explicitly 
denoting the dependence of p and f on the input U for simplicity. 

Equation (1 1)  is usually solved with Newton's method, for 
which the iteration equation is 

J,(X'k'(t, + h ) )  ( x ' k + ' ) ( t ,  + h )  - x ( k ' ( t o  + h ) )  

= - g ( x ' k ' ( t ,  + h ) ,  x ( t o ) )  (12) 
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where k is the Newton iteration index, and J, ( x  ( t ) ) E 6i ’ I  is 
the Frechet derivative of the nonlinear equation in (1 1) and is 
given by 

+- = _ _ _ _  
J g ( x ( t ) )  = & ( t )  h a x ( t )  a x ( t )  

Solving (1 1) yields an approximation x ( to + h )  = + ( x (  t o ) ,  
to, to + h). Implicitly differentiating (11) for x ( t o  + h )  with 
respect to x (  to)  yields 

Given an x ( t o ) ,  (1 1) can be repeatedly applied to approxi- 
mately compute x ( t o  + T )  = + ( x ( t o ) ,  to, to + T ) ,  and (14) 
can be repeatedly applied to approximately compute the sensi- 
tivitymatrixax(t, + T ) / a x ( t o )  = a+(x ( to ) , t o to  + T ) / a x ( t o )  
[l]. Note that J, is required in both (12) and (14), and thus the 
sensitivity matrix update can be made very efficient by factoring 
J, once and using it for both computations. For large problems, 
though, computing the dense n X n sensitivity matrix can be- 
come expensive. 

VI. IMPLEMENTATION AND TEST RESULTS 
An envelope-following method has been implemented in the 

Nitswit [6] simulation program. The program is written in “C,” 
and runs under the UNIX operating system. The program uses 
a trapezoidal-rule based envelope-following algorithm for which 
the cycle-step update equation is 

x((m + 1 - 1 ) T )  - (mT) 
1 - 1  

Theterms[x((m + 1 ) T )  - x ( ( m  + 1 - l ) T ) ] a n d [ x ( ( m ) T )  
- x (  ( m  - 1 )  T ) ]  in (15) can be thought of as envelope deriv- 
atives at x ( ( m  + 1 ) T )  and x ( m T )  respectively. Just as in the 
classical trapezoidal-rule, the average of these two derivatives 
is used in the cycle-step update equation. The Newton method 
described above is used to solve for the cycle-step update and 
as in standard integrators, the cycle-steps for the follower are 
selected automatically, based on examining both the envelope 
truncation error and the iteration count for the Newton method. 

For the envelope-following approach to be more efficient than 
classical methods for a given problem, it must necessarily be 
possible to accurately represent the envelope of interest with a 
small fraction of the clock cycles. In addition, the Newton 
method used to solve the envelope update equations must con- 
verge rapidly, as each Newton iteration involves numerically 
simulating an entire converter clock cycle. If the problem is 
simulating an open-loop converter, by which we mean a con- 
verter where the frequency and duty cycle of the input clock are 
not functions of the converter state, the Newton method does 
converge very rapidly. 

That the shooting Newton method should converge rapidly is 
clear for the case where an open-loop converter is constructed 
from clock-controlled ideal switches and other linear circuit ele- 
ments. For such a converter the state transition function is affine 
(linear plus a constant [ lo]  and J, in (10) is a constant. This 

implies that the Newton method will always converge in one 
iteration. For realistic circuits in which switches are irnple- 
mented by transitions and diodes, the state transition function 
over one cycle will still be nearly affine, and in our experience, 
the Newton method typically converges in three or fewer iter- 
ations at each cycle-step. 

It is possible to further exploit the nearly affine property of 
the open-loop converter state transition function by only com- 
puting J, for the first Newton iteration in each cycle-step. This 
is a significant savings, as it avoids recomputing the sensitivity 
matrix and usually doesn’t slow the Newton method’s conver- 
gence. 

Algorithm: Nitswit Envelope-Follower 

m = O  
While mT < STOPTIME 
{Select the cycle-step 1. 

Predict a first guess, xo( (m + 1 - 1 ) T ) .  
Numerically integrate (1) from (m + 1 - 1)  T to (m + 

l ) T  to compute xo((m + 1 ) T )  and axO((m + 
l ) T ) / a x ( ( m  + I - 1 ) T ) .  

ComputeJF(xO((m + 1 -  l ) T ) ) a s i n ( I O )  
Set k = 0 
Until Newton Converges { 

Solve the Newton update equation for x k  + ’ ( (m + 1 

Numerically integrate (1) from (m + 1 - 1 ) T to (m 
- 1 ) T ) .  

+ / ) T t o c o m p u t e x k ( ( m  + I ) T )  
1 
m = m + l .  

1 
Exactly how the envelope-following method behaves can be 

seen by examining Fig. 6, which compares two techniques for 
computing the power-up transient of the buck converter in Fig. 
1. The continuous line is a portion of the power-up transient 
computed with the classical SPICE-like method, and dark seg- 
ments are the results prod,uced by the envelope-following 
method. As can be seen in the figure, the envelope-following 
method computes only occasional cycles, but the output voltage 
for the computed cycles are within a few percent of those com- 
puted with the classical method. 

In the table below we present a comparison between the CPU 

time used by classical and envelope-following methods in sim- 
ulating the start-up transient from three types of open-loop 
switching power supplies, a resonant converter res [3], and two 
buck converter circuits with the topology of Fig. 1: one whose 
steady-state is discontinuous conduction, dbuck, and one whose 
steady-state is continuous conduction cbuck (the converter 
closed is discussed below). In each case, the clocking is pro- 
vided by a user-defined source. As can be seen from the table, 
the envelope-following method can be very efficient, particu- 
larly when the simulation interval is long compared to the clock 
period. 

A. The Dificulty Simulating Closed-Loop Controllers 
In a closed-loop converter the input clock duty cycle is a 

function of the converter’s state, and such converters can in 
principle, be simulated with the envelope-following method as 
implemented in Nitswit. A comparison of envelope-following 
to classical methods for a closed-loop buck converter, closed, 
is given in Table I ,  but the results are not that encouraging. 
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Fig. 6. Comparison of classical and envelope-following solutions 

TABLE I 
CPU TIME ( I N  SECONDS ON A SUN4 260) COMPARISONS FOR 

CLASSICAL VERSUS ENVELOPE-FOLLOWING SIMULATION 

Envelope 
Circuit Nodes IntervallClock Classical Following 

quasi 7 200 144 38.4 
cbuck 4 300 131 24.6 
dbuck 4 1000 55 1 65.9 
closed 5 600 52.4 17.4 

Experiments with Nitswit indicate that the obvious explanation 
for the poorer efficiency, that closed-loop converters have more 
nonlinear state transition functions, is not the dominant prob- 
lem. 

The difficulty simulating closed-loop loop converters is that 
they typically include control circuitry which produce large, 
very rapid responses to small changes in the converter output. 
That these controller variables are nearly algebraic functions of 
other system states implies that they are independent of their 
own past, and need not be envelope-followed. Eliminating these 
variables from the envelope computation will allow larger cycle- 
steps, and we are investigating automatic ways of determining 
nearly algebraic variables based on examining the sensitivity 
matrix. 

VII. CONCLUSION 
In this paper it is shown that an envelope-following approach 

to the simulation of switching power and filter circuits can pro- 
vide substantial speed improvements over classical simulation 
methods. Several aspects of the method are still under investi- 
gation; of particular importance is finding techniques that are 
efficient even for closed-loop converters. Also, it has been ob- 
served that most of the entries in the sensitivity matrix remain 
close to zero, and ways to exploit this are being considered. In 
addition, the effectiveness of the envelope following is some- 
what dependent on where the cycle boundaries are placed, and 
an automatic selection method is desirable. 
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