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ABSTRACT

This research presents techniques developed forimiasive sensing and fault detection in reciptoga
compressors driven by induction motors. These ghaes are “non-intrusive” because they rely onlyvoitage

and current signals measured on the compressorrpmatée. The electrical sensor based method alfowsasy
and non-intrusive determination of many fault sewsisignals that usually require complicated, exgdee, and
time consuming operations to measure. The elesigitals are processed and used with the invertadrdic motor
model equations and motor parameters (which a@ ddsermined non-intrusively) to recover the insapous
angular speed of the compressor shaft, as welleatotque of electromagnetic origin provided by th@or. These
two intermediate signals and compressor paramaigch as crank shaft inertia are then used to swlvéhe

compressor load torque. This load torque signalhigls fault diagnostic value because it is compasfepressure
and friction torques, and these signals are closadchanical phenomena of diagnostic interesténctimpressor.
All these signals are recovered at a fine resatugiging high level of detail on a sub-shaft revan basis.

The use of the load torque signal in determiningltéaand additional diagnostic information is algioen. A
procedure for determining the cylinder suction aistharge pressure from the load torque signallkamdvable
cylinder parameters such as cylinder volume, ciamk length, and gas coefficients is discussed. |[d&e torque
signal is also useful directly: for the two pistorachine used in the research, symmetry of the tp@erotation
peak of the load torque is a valuable diagnostiasuee. Reed valve leakage faults were investigayedrilling

small holes of varying sizes in one cylinder’s suttreed. The asymmetry in each cylinder’s pressumgue peak
increases with increasing leak size, providing kaothindication and measure of leakage severity.

1. INTRODUCTION

Reciprocating compressors are widely used in imguddealthy valves are vital for compressors tofqren
efficiently. Compressor valves are just one of mamynpressor components that, in general, are nsityea
accessible for inspection of their condition. This led to a large body of research on indirechots of sensing
the health of compressors and their valves. \iimabased methods (McCarthy 1994) require the liastzn of
vibration measurement devices in industrial or pthen-ideal environments, as well as much skilinterpreting
the resulting signals. We propose to use thergesignals measured on the power cable of the cesspr’s drive
motor to determine mechanical faults for multi-odér compressors. The use of rugged and easyttil iakectric
sensors that can be located away from the workinvy@ment of the compressor makes the method nvasive
and reduces the cost of the fault detection metived common vibration-based methods. A basic dgtson of the
reciprocating compressor as it relates to the fdalection algorithm, followed by a short descdptiof our
experimental setup, rounds out this introductortiea. The following three sections describe how #hgorithm
works and the steps required to convert the sampgledtric signals into useful diagnostic informatio
Mathematical notation is kept to a minimum, seeasth (2011) for in depth equations and a completapuiter
code implementation of the algorithm. The finalteets of the paper describe the results of thet fdatection
algorithm when applied to a realistic refrigeratlonp containing known valve faults. Estimates gfrader suction
and discharge pressures from this system are edsemted and compared to known values.

1.1 Framework and Experimental Hardware

The reciprocating compressor is a time-variant inear switched system with multiple inputs and otgpand
many states. A schematic illustration of a reaipting compressor is shown in Figure 1. An eleatrator drives
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the crank shaft of the reciprocating compressoickvbauses motion of the pistons. The pistonsacbtpress gas
by positive displacement, while the valves pernais dlow into and out of the cylinders so as to eaagpressure
increase in the gas across the device. Our faulticden approach divides the compressor into thregor
subsystems important to its operation: the firdisygtem is the induction motor, the second is tlehanical
motion of the crankshaft and reciprocating pistomkile the third consists of the gas dynamics gogdrby the
compressor’s valves. Starting with the electrinalg, the algorithm processes the signals throwagih éomain
using simplified models to create derivative signafl fault diagnostic value. The derivative sigaatputs of each
subsystem are then used as the input signals donelt subsystem, revealing more information ahestage. In
addition, the intermediate signals often allow Yerification of the simplifying assumptions of theodels of the
following stage, providing a valuable check on #weuracy of the results. For example, an indicatbvalve
leakage by the algorithm would imply that the idezd healthy valve assumption of cylinder presa&stmator is
invalid, preventing the user from being misled.

F?S_ Fa R —

Induction Motor

Crank Shaft

Figure 1: Functional components of a reciprocating compressor

Two Copeland Corporation KAMA-007A-TAC-800 modelnapressors were used in this research. One compresso
is installed in a research air conditioner, white tother compressor has been modified with an madteshaft
extension passing through the compressor caseldw @hbstallation of a 2500 count optical shaft edeo for
precision speed measurement. Parameter fitting fanild detection experiments were conducted with tive
compressors to develop and validate the fault tlete@lgorithm. The compressor is a semi-hermdiicsgaled
vertical cylinder design with two pistons linked0l8egrees apart on the crank shaft. The compréespomwered by
a three-phase, four-pole induction motor directnmmected to a 208 volt electric service. Compldertec
measurements on the compressor require three eodgsors and three current sensors. The samplentest be
fast compared to the shaft speed of the comprésswder to catch phenomena on time scales shibhidtthe shaft
rotation. For the lab machine a sampling rate &Hz was sufficient. A custom compressor head aaldevplate
described in Laughman (2008) allows direct sampbhgylinder pressure via two pressure sensorgngds from
these pressure sensors were used for algorithihati@in and fitting of compressor model parameters.

2. ESTIMATING MOTOR IAS AND TORQUE FORM ELECTRICAL SIGNALS

Our algorithm is able to recover compressor shadied information without requiring difficult instation of shaft
encoders as in the fault detection method of Alt&edt al. (2009) and Elhagt al. (2010). The calculation of the
instantaneous angular speed (14S3nd torquer,,of the induction motor from the sampled electrgnsilsv, andi
represents an inversion problem and is presentedjirations (1-4). The remaining symbols of (1-4 derived
signals or motor parameters. There are two chadlerig doing this. Obtaining accurate motor pararseig
important, but the primary challenge is the faett tihverse problems in general are very sensitvgoise present in
all sampled signals. . The algorithm to solve fhisblem is described below and in Schantz (201@)cvered in
depth in Schantz (2011).
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The algorithm removes the majority of the nois¢hia electrical signals by sampling for a duratioi®0-300 shaft
rotations, converting the signals to a rotatingrefice frame synchronous with the electric supmguency, and
then performing a synchronous averaging keyed ¢osthaft rotation. This averaging requires knowledf¢he
mean shaft speed, which is easily obtainable floensampled signals (Schantz 2011). The synchroaveraging
step acts like a comb filter (Braun 2011) and reesoWrequency components that are not harmonicshef t
fundamental shaft rotation frequency. This remoxesugh noise from the signals to allow numericélitsans to
the induction motor inverse problem. Synchronousraging to remove noise is justified because tlokigtion
motor subsystem, in contrast to the large compressoa time-invariant contracting system for trempling
durations involved (Schantz 2011). As proven by mdler and Slotine (1998), the output of any tinmyariant
contracting system driven by a periodic input teaggonentially to a periodic signal with the sanegiqd. In the
supply synchronous reference frame, the periodid torque represents the only non-constant inptitednduction
motor, hence stator current signals ideally consistontent at the shaft rotation fundamental a@scharmonics,
while the supply voltage signals are ideally const&€ontent not at these harmonics is considerasendligh
frequency content above the 15th harmonic is alserikely to be noisy, and is removed with a loasg filter.
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Figure 2: Comparison of estimated shaft speed with measshafi speed for one typical cycle. Also includethis
measured shaft speed averaged over the same dumatibe electrical inputs used to estimate thé spaed.

The problem of acquiring accurate motor model patans is solved via a nonlinear minimization teqhei
available in commercial computation packages. Taeiqular optimizer employed for nonlinear minimipa is
described by Coleman and Li (1994) and (1996). pamameter fitting method is based on two key olz@ms.
The first is that the result of the inversion c#dtions using the correct parameters will producphgsically

International Refrigeration and Air Conditioning iference at Purdue, July 16-19, 2012



2517, Page 4

meaningful (i.e. real) IAS signal, while paramegeror will result in a significant imaginary pad the calculated
IAS. The second observation is that the mean ofAlesignal be equal to the known mean shaft spletermined
earlier for synchronous averaging. Minimization af error function based on these ideas resultsc¢urate
parameter estimates and accurate IAS estimatesexAmple of typical good agreement between IAS edém
generated by our algorithm and directly measurefl A a reciprocating compressor via shaft encoslgiven in
Figure 2.

3. CALCULATION OF LOAD TORQUE AND CYLINDER PRESSURE MODELING.

This section describes how the algorithm treatsthe remaining subsystems of the compressor; thmamhycs of
the reciprocating mechanism and refrigerant conswas The major idea is to use the equation of omotf the
mechanism shown in (5) along with estimated 14% g¢nd motor torque; to solve for the load torqug, which
consists of gas compression pressure torque aribfral losses. Here we take a simplified apprdadhe equation
of motion. Centripetal forces are insignificant tbe shaft speeds involved, and the angular depemdof the
generalized inertia parameter is also ignoredhaddrces involved are small in comparison to tfesgure loads on
the pistons. This is also true of gravity effedtee generalized inertia is a function of crank shafational inertia,
crank arm and con rod length, and piston massjaflies easily known by manufacturers. For our Brpnts a
combination of name plate data, disassembled coemianeasurement, and least squares fitting froreraxental
data was used to set the generalized inertia paeantieshould be noted that knowledge of the galimed inertia is
optional for the purposes of valve fault detection.

=T, — Jb )

The quantities,,, andd are known from the induction motor inversion prwe described earlier. Calculation of
7, requires the differentiation @f to obtaind, and this has presented no problem if the low fities was used to
remove high frequency noise in the electric sigaalsuggested in the previous section. The loapi¢ois directly
useful for fault detection and diagnosis as showeeiction 5, or it may be used to determine thandgl suction
and discharge pressures. To obtain this informatioa load torque must be processed through a nuddektion
and cylinder pressure torques, which are descrilead

3.1 Simplified Cylinder Pressure Model

The simplified cylinder pressure model assumestti@ialves are mass-less: they open or closenihstahen the
pressure difference across them changes signhandatve flow areas offer no resistance to flonompression is
governed by the polytropic compression model. Fpiston cycle beginning after the discharge valas tiosed at
top dead center the refrigerant gas remaining énctflinder clearance volume expands as the pistopsd When
the cylinder pressure drops below the suction ptequessure, the suction valve opens equalizingspres and
remains open until the piston starts to rise agéhen compression occurs until the cylinder presfwecomes
greater than the discharge pressure, once agamingpa valve and causing pressure equalization thitdischarge
plenum. The discharge valve closes when the pigtaches top dead center and the cycle repeats.

The simplified cylinder pressure model is requitetause a more complicated model containing vaywemics

such as flutter and impact would have a large nunolbgparameters which would decrease the stabilftyany

algorithm that calculates cylinder pressure from lthad torque signal. In addition, compressor mactufes strive
to create valves that behave in exactly the idedlinatter assumed by the simplified model. For @tapn a plot
of cylinder pressures expressed by the simplifiedti@h are overlaid on measured cylinder pressurdsgare 3.

The plot was generated by finding the bespfitp,, clearance volumé&,,.,,, and polytropic exponerit to match

measured cylinder pressure. Note that the plodisan output of the fault detection algorithm. @eation of these
best fit suction and discharge pressures is neededaluate the accuracy of the cylinder pressstienator due to
the complicated nature of the true cylinder presswvhile gas is flowing through the valves.

SinceV,,, does not vary with operating condition akddnly varies weakly, the values of these paramedegs
assumed to be a priori information available fog fault detection algorithm. For the purpose ofliity other
compressor parameters, the cylinder pressure njstetiescribed can be used to calculate the foncehe pistons
and the torque on the crank shaft due to cylindessure. Knowing this pressure torque, the timévdive of the
IAS, and the torque developed by the induction mallows a least squares estimation of the frictoafficients
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Comparison of Measured Cylinder Pressure with Simplified Cylinder Pressure Model
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Figure 3: A comparison of the simplified cylinder pressuredal with measured cylinder pressures.

that govern the friction losses. Only the crankfishaaring friction and the piston sliding frictiomere considered
important. However, the pressure and friction feroa the piston act on the crank shaft througtstime lever arm
and cannot be distinguished in a crankshaft tofgplance. This causes the least squares estimates giiston
friction coefficient to be sensitive to any appmosgition error inherent in the simplified cylindeepsure model. The
result is that the estimated piston sliding frinticoefficient may be negative. This poses no probknd
incorporating this negative value increases ther@oy of the cylinder operating pressure estimator.

4. ALGORITHM FOR SUCTION AND DISCHARGE PRESSURE ESTIMATION

The recovered load torque signg) along with known cylinder pressure and frictiowdel parameters, contains
enough information to produce an estimate of thengressor operating pressures. Unlike a compressengg
balance that is able to provide a rough estimat¢hefpressure difference across the compressorprigsure
determination procedure here results in an estifaatehe suction and discharge pressures in thimasd. This
information makes the load torque signal usefulféailt detection of the larger system in which toenpressor is
located. The main difficulty is that the estimatedd torque signal is not referenced to a knowmlcngle, while
the contribution to load torque by the cylindergare and friction forces depend strongly on ciamie.

The algorithm calculates load torque curégsis a function of candidaf® andP,; values and minimizes the error
(or difference) betweefy andt;, in a numerical minimization procedure. In ordemteaningfully comparé, and
7;, the torques must be expressed relative to a camtnank angle. The crank angle §fis known from the
cylinder pressure and friction models from whichvéis generated, but the crank angle,0ofs unknown. Periodic
cross correlation provides the solution. The tinhift gesulting in maximum correlation betwedn and 7, is
assumed to bring both signals to a common crankealtgis important to ensure that there is onaicigoint of
maximum correlation betweefy and r; otherwise the cross correlate and shift operatan destabilize the
minimization procedure. The assumption of healthljnders means that the load torque signals arsgierwith
each cylinder’s contribution matching any otherrogr's contribution, causing many points of stramgrelation
betweent; andt;, one for each cylinder. However, any differencesMeen each cylinder’s contributions#oare
assumed to be caused primarily by noise. Stakibity be improved by folding and averaging each dglits load
torque contribution into a single characteristiaddorque curve. This allows the minimization &rdtte stably until
termination resulting in estimates of the cylindgerating pressures. A block diagram of the alforits given in
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Figure 4 below. Extensive derivations of the modaisl algorithms involved, along with example code the
numerical procedures are given in Schantz (2011).
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Figure 4: Flow chart of the algorithm to estimate cylindeegsures from the load torque signal.

5. VALVE FAULT EXPERIMENT AND RESULTS

Correct operation of a compressor’s valves is irgurfor efficient functioning of the compressohelspectrum of
valve damage severity is large and, in some casesbe extremely hard to notice. Common reasonydtwe
damage include attempted compression of an incasiile liquid such as condensed refrigerant or ooil
interaction with solid debris. Solid debris in ttedrigeration loop (that has been cited as theeafivalve damage)
is usually composed of slivers of metal left ovesni manufacture or installation of the system (Gésel999).
Damaged valves do not effectively seal the cylirfd@m the suction or discharge manifolds. The uirddsflow of
refrigerant through these leaks represents a lbsslametric efficiency for the compressor (Breulard Braun
1998). As a fault resulting in degraded compresdficiency, minor leaks caused by valve faults aneimportant
target for detection in any fault detection method.

Previous compressor fault detection studies hawelaied valve faults by installation of a refrigerdypass path
between the suction and discharge sides of the a®pr. A valve is installed on this line and tlewfarea is
varied to simulate various valve faults (Armstra2@04), (Armstronget al. 2004). The compressors used in the
present research have reed-type suction and dggehaives. Glaeser (1999) studied the failure naishas of reed
valves in refrigeration compressors and gave phatggs of failed reed valves. These photographs weed as a
guide to intentionally damage suction reeds in rcfionally similar manner. In this research, vafaelts were
simulated directly by drilling holes in suction dseand installing the reeds in the compressor.cbimepressor was
part of a laboratory air conditioner system. Ataich valve installation, the system was re-chavgéd refrigerant
and allowed to run for approximately 5-10 minutefolbe a one minute period of voltage and currend des
recorded for processing by the fault detection wettCylinder pressure measurements were also tadlagith
high dynamic range pressure sensors installedeircdimpressor head plate to assess the severitg déak on the
cylinder pressure, and validate the physical meishabehind the fault detection method.

The four tested conditions corresponded to a flae#-baseline and three faulty suction reeds okiming leak size.
These holes were drilled in the region of the réleat seals the cylinder from the suction manifoldtioe
compressor. Photographs of the “damaged” suctiedsrare shown in Figure $he reeds were installed in the
compressor valve assembly shown in Figure 6a aguf&i6b.
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Figure 6a: Suction reeds installed in compres without  Figure 6b: Suction reeds installed in compressor v
valve plate. valve plate.

The output of the fault detection method most gdmsito valve faults and other mechanical faultghimi the
compressor is the load torque curVee normalized load torque curves for ther valve fault onditions are shown
in Figure 7 with the convention thpositive load torque accelerates the cranksEach region of the load torq
curve can be associated to a particular p due to the dominant contribution of that pistor’egsue torque during
the compression and discharge phase of its « In Figure 7 ach piston’s load torque regior superimposed.
Below each load torque subplot is the measurediasgti pressure from each test confirming the presehthe leal

Referenang Figure 7, the two regions of the load torqueveware expected to appear similar to each othiei
valves and other components of each cylinder aeeatipg in identical (healthy) condition. Thistise for the tof
left plot of Figure 7 which ragsents the baseline ca®or the fault cases this is not true, and the degfk
dissimilarity increases ith the severity of the faullt is clear that valve leaks reduce the pressurihénaffectec
cylinder, which is reflected in the reduced loacque on the crank shaft when the affected cylindetevgoes
compressionAn example metric that easily capts the dissimilarity betweeload torque regions associated w
each piston is the difference in area enclosedaoh eurve. Table 1 containss metric for each case. Only suct
valve faults were tested due to the ease of repiant of the suction reeds. The fault detection watshould bt
sensitive to discharge valve faults and other leaksh as gasket or seal leaks, using an idemrocedure. A
necessary assumption for this procedure is thaffabk affects one cylinder to a greater degreen ttiee othel

International Refrigeration and Air Conditioning iference at Purdue, July-19, 20:2



2517, Page 8

cylinder, or pre recorded baselines at known opegatonditions can be compared against to detetiisfthat affect
each cylinder equally.
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Figure 7: Comparison of normalized load torque signals afidder pressure measurements for each test (tdp an
bottom plot of each pair respectively). The sali Irepresents the cylinder with the valve leakiagét. The dashed
line is data from the healthy cylinder.
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Table 1: Presentation of the simple fault detection mdbicvalve leakage faults. Severity of the faultatio of
suction reed leakage area to total suction poet af&0 mm.

Suction Reed Leak Area Fault Severity Fault Deteabin Metric
Baseline (no hole) 0 0.74
0.811 mm 0.014 5.46
1.533 mm 0.025 8.66
3.093 mm 0.052 11.92

6. CYLINDER PRESSURE DETERMINATION RESULTS

The load torque signal is sensitive to the loadshencrankshaft of the compressor, such as thei¢oggping into
compression of the refrigerant. It is possible stineate the cylinder suction and discharge pressinoen the load
torque curve. An assumption required by the estonatlgorithm is that the compressor cylinders fargt free.

This requirement can be verified via the simplé testhe load torque curve described in the previgection. The
algorithm to generate cylinder pressure estimatsdiscussed in detail in Section 4.

A range of suction and discharge pressure conditieere generated in the instrumented air conditiforetesting
of the pressure estimation algorithm. The varioustisn and discharge pressure conditions were exeby
immersing the temperature sensing bulb of the sititermal expansion valve (TXV) in a temperaturatadled
recirculating water bath. The temperature of thib maas varied in 3°C steps from 5°C to 23°C. Atretmperature
level the unit was operated for approximately 3@utes to come to steady-state and allow the batpeeature to
stabilize. Then a 30 second duration set of elmdtreasurements was recorded, along with presseasurements
for validation. The electrical measurements werecessed by the fault detection algorithm to gemetia¢ load
torque signal. The load torque signal was thentinpuhe pressure estimation algorithm of Secticio generate
estimates of the cylinder suction and dischargesqumes. The results are presented in Table 2. dltle &lso
compares these estimates with some of the cylisdetion and discharge pressure definitions as sésxliin
Section 3.1. The comparative best fit pressuraieslwere generated from the validating cylindersguiee
measurements. The error between suction and digelpessure estimates and the best fit (measunetddrs and
discharge pressures is less that 3% in for thedasinditions.

Table 2: Results of the cylinder pressure estimation atgoricompared with best fit pressures of the sirigalif
cylinder pressure model and the measured cylindesspre range.

Bulb | Estimated Cylinder “Best Fit” Cylinder Measured Suction Measured Discharge
Temp Pressures (kPa) Pressures (kPa) Pressure Range (kPa) Pressure Range (kPa)
Suction | Discharge | Suction Dischargel Minimum Maximm | Minimum | Maximum
5°C 258 1333 256 1370 208 286 1319 1457
8°C 285 1356 283 1389 229 292 1342 1470
11°C 306 1409 305 1395 249 337 1353 1473
14°C 325 1424 331 1399 270 363 1363 1469
17°C 343 1408 347 1406 286 383 1367 1477
20°C 356 1404 363 1409 299 396 1361 1480
23°C 372 1408 373 1413 305 407 1359 1490

7. CONCLUSION

Fault detection in reciprocating compressors uglegtrical measurements is experimentally demotestrto be
sensitive to leaking reed valves. The load torqgeas of the crankshaft is calculated and asymmbétyveen the
contributions of nominally identical cylinders sesvas the fault indicator. Independently, a praoeds given to
estimate cylinder suction and discharge pressuoes the load torque signal to expand the prognasipability of
the non-intrusive method beyond the compressdf.ifBee mathematical foundations of the algorithivegpromise
for its use in a wide range of induction motor drivsystems with a sufficiently periodic load torgmeluding most
types of positive displacement compressors.

NOMENCLATURE
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C, crank shaft friction coefficient R, R Resistance (rotor, stator)

Cs piston friction coefficient T load torque

D =12, — LgyLgs Tm motor torque

i stator current 0 shaft angle

j ji= -1 W, electric supply frequency

J generalized inertia W, sampling frequency w.r.t. shaft rotation

k Fourier transform frequency vector Operators

Loy total rotor inductance ( ) Fourier transform

Lgs total stator inductance F10) inverse Fourier transform

L, motor magnetizing inductance m () imaginary part

P motor pole count () () mean, or complex conjugate

Peyi, Py, Py Pressure (cylinder, suction, discharge) (+), () single, double time derivative
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