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Abstract—Energy harvesting offers an important design option
for creating sensing and control elements without a require-
ment for custom wiring or batteries. This paper presents an
approach and design method for a magnetic energy harvester,
VAMPIRE [1], whose magnetic core periodically goes into satu-
ration. Saturating the core at appropriate times is essential for
maximizing energy transfer. Methods for estimating the amount
of harvested power under saturation using a “transfer window”
are introduced. The accurate model for numerical simulation is
also presented, and verified through experiments.

Index Terms—Magnetic, Energy, Power, Harvest, Saturation,
Nonlinear, Nonideal, Transformer, Inductor, Transfer, Window

I. INTRODUCTION

Fine grain sensing and control is the future of energy
efficiency. Electromechanical systems can waste energy for
a variety of reasons. They may be operated poorly, e.g.,
left operating or operating at an inappopriate setpoint when
not needed. Many electromechanical systems operate under
closed-loop feedback control, which can be a disaster for
efficient operation in pathological situations. HVAC compo-
nents, for example, operate to achieve a comfort setpoint,
and, without intervention, will continue to do so regardless
of a developing but not-yet-crippling failure like loss of
refrigerant charge. Distributed sensing can provide a detailed
look at operations, and, with appropriate signal processing,
can provide actionable information for preserving mission
capability and operational efficiency.

Sensors and control elements require power and communi-
cation paths that can quickly create a dizzying requirement for
new or additional wiring. Energy harvesting is an important
solution to this problem, allowing adequately low-power sen-
sors and controls to operate from power “sources” derived
from parastic or symbiotic energy flows like mechanical
vibration [5], [6], [10], thermal gradients [7], [8], acoustic
vibrations [9], and light [11]. We are examining coupling
magnetic fields from operating electromechanical equipment
like rotating machines to create an inductive energy harvester.
This harvester can power sensors for assessing vibration,
thermal profile, and other operating signatures that can ei-
ther indicate diagnostic conditions or affirm proper operation.
When possible, inductive coupling can provide a relatively
large amount of harvested energy compared to many other
approaches, and has the additional benefit of allowing the
associated sensor to measure the electrical consumption of the
operating electromechanical load.

A core-clamp current transformer is a familiar solution
for inductive coupling to a current-carrying wire. Magnetic

cores are often used to make current sensors, and linearity, or
at least the avoidance of severe nonlinearity like saturation,
is generally important for current sensors. In contrast, for
power harvesting, we have found that a saturating core can
be essential for maximizing the energy harvested. In magnetic
amplifiers [12], or saturable reactor applications, such as [13],
[14], [15], and [16], magnetic cores are intentionally saturated
during the operation, but they are used for changing the
insertion impedance to act as switches, not harvesting power.

Saturation is highly nonlinear, and this paper presents a
model of core behavior, including such nonlinearity, that can
accurately predict the amount of power harvested from the
environs of a current-carrying power wire, e.g., in the terminal
connection box of a motor. Specifically, the model can be used
as quick design aids or for more detailed numerical solution
to meet an energy harvesting target.

II. VAMPIRE

We have developed a vibration and temperature monitoring
system called VAMPIRE, vibration assessment monitoring
point with integrated recovery of energy [1], [2]. VAMPIRE
occupies free space in the terminal box of a typical motor
enclosure, and can be added “new” or as a retrofit to an
existing motor by passing a single phase wire through a
VAMPIRE device. A magnetic core inductively couples energy
from the phase wire, similar to a common current transformer
but different in that here the goal is to actively extract desired
power. While transformers are often operated to avoid satu-
ration, controlled saturation is critical to extracting energy in
the harvester application. High core permeability is essential to
achieve acceptable winding coupling and adequate harvesting
opportunity. Saturation occurs when voltage is intentionally
developed on the secondary winding to transfer power. The
timing of core saturation with respect to the AC primary
side greatly affects the energy recovery. The core saturation
complicates analytical modeling, giving rise to a need for a
tractable model that can guide design.

Consider the following physical connection as in Fig. 1.
The primary side is a single utility phase line at 60 Hz (or
50 Hz), which supplies power to equipment to be monitored,
e.g., a motor. The secondary side has N windings and is used
to extract energy. The primary side current generates the mag-
netic field (H) and the flux density (B) inside the core, which
induces voltage and current on the secondary side. Typically,
the insertion impedance of the harvester is relatively low, and
the primary wire can be thought as a current source created by
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Fig. 1. VAMPIRE physical connection - real example

TABLE I
CORE DIMENSIONS

Outer Radius (rOD) 12.25mm
Inner Radius (rID) 8.25mm

Height (h) 9mm
Flux Area (ACORE) 3.6× 10−5 m2

Flux Length (lFLUX) 6.44× 10−2 m

the operation of the electromechanical load. If the secondary
side carries nonzero current, then it also generates H and
affects B inside the core, creating a familiar coupled system.
In steady-state operation, the combined winding system is
governed by Maxwell’s equations and the B-H characteristics
of the core.

Experiments to validate our analysis procedure were con-
ducted with a magnetic core. High permeability is essential for
good coupling prior to saturation, and our illustrative design
here uses an amorphous nanocrystalline core (VITROPERM-
W380) by Vacuumschmelze (VAC) [3]. The dimensions of this
core are listed in Table I.

III. APPROXIMATE POWER HARVESTING ANALYSIS

In normal applications, magnetic cores are operated in a
relatively unsaturated region of the B-H loop. If the core
material enters the relatively saturated region in a transformer
application, the voltage across the secondary rapidly drops to
zero since the voltage that can be developed by the core is
proportional to the time derivative of B. In this case, power
delivery across the transformer essentially halts. In a current
transformer application, if the primary side carries periodic
current with sufficient amplitude to create adequate H field to
drive the core into saturation, transformer current is transferred
into the load only for a portion of the periodic cycle where
the core is not saturated. The period of time when the core is
able to transfer power might be termed a “transfer window”.

In the next two subsections, we explore the harvestable
power based on the extent of the transfer window. This
approach enables quick hand calculations for core size and
load target. More accurate numerical analyses for fine-tuning
a design are presented in the following sections. For both
the approximate and numerical approaches, we consider two
possible load types: resistive loads, and constant voltage load
(with an ideal rectifier, i.e., a regulated DC load).

A. Resistive Load (RLOAD) Case

If the primary side current is a sinusoid with frequency of
ω/2π, the power delivered to the resistor pulsates at twice
this frequency. The average power delivered to the load in
each half cycle of the primary waveform can be computed
given various assumptions about core saturation. The primary
side period, the unsaturated time duration (transfer window)
in each half cycle, and the time point beginning a half cycle
are denoted as T , tSAT, and t0, respectively.

PLOAD =
2

T

∫ t0+tSAT

t0

[
IP

N
sin(ω t)

]2
·RLOAD dt

=
I2P ·RLOAD

πN2

[
ω tSAT

2
− sin(2ω tSAT)

4

] (1)

When the core does not saturate (tSAT = T/2), the average
power harvest simply becomes

PLOAD, nonsat =
I2P ·RLOAD

2N2
(2)

More generally, the core will saturate. To figure out tSAT, we
balance a flux equality between the maximally allowed flux
set by BSAT for the core and the applied voltage integrated
over T/2. To align the zero crossings of the primary current
and the power calculation, we set the initial time point (t0) to
be 0. Then, the voltage integration is from 0 to tSAT.

2BSAT ACORE N =

∫ tSAT

0

VCORE(t) dt

=

∫ tSAT

0

IP

N
sin(ω t) ·RLOAD dt

(3)

The coefficient ‘2’ before BSAT on the left hand side comes
from the fact that the core goes from one end of the B-H loop
to the other end of the B-H loop in a half cycle, which results
in a net change of 2BSAT. Solving (3) gives

tSAT = min

[
1

ω
cos−1

(
1− 2ωBSAT ACORE N

2

IP RLOAD

)
,
T

2

]
(4)

Since tSAT is bounded by T/2, we can find the minimum
RLOAD that saturates the core, given IP and N .

RLOAD,min,sat =
ωBSAT ACORE N

2

IP
(5)

In another special case where the core is heavily saturated,
relatively early in the half cycle (tSAT � T/2), we can
approximate the sinusoidal current in (3) as a linear function
around zero.

2BSAT ACORE N ≈
∫ tSAT

0

IP

N
ω t ·RLOAD dt (6)

In this hard saturation regime, we can easily obtain an expers-
sion for tSAT without an inverse cosine function.

tSAT, hardsat ≈

√
4BSAT ACORE N2

ω IP RLOAD
(7)
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Fig. 2. PLOAD response with a resistive load

Then, the average power harvest becomes

PLOAD, hardsat ≈
2

T

∫ tSAT

0

[
IP

N
ω t

]2
·RLOAD dt

=
8

3π

ω1.5 I0.5P B1.5
SAT A

1.5
CORE N

R0.5
LOAD

(8)

If we compare (2) to (8), we can see the two expressions
have opposite dependencies on RLOAD. The harvestable power
increases with RLOAD in the nonsaturation regime, and de-
creases with RLOAD in the hard saturation regime. Therefore,
we can expect that the peak will occur between two extremes.

However, finding the exact RLOAD value for the maximum
power harvest is challenging because the expression for PLOAD
is a complex function of tSAT, and tSAT also contains RLOAD
inside an inverse cosine function. If we find an extrema using
(1) and (4), the following equation set is obtained, which
can be solved numerically to find the RLOAD that yields a
maximum power harvest:



RLOAD =
2ω tSAT − sin(2ω tSAT)

1− cos(2ω tSAT)

× ωBSAT ACORE N
2 sin(ω tSAT)

IP [1− cos(ω tSAT)]
2

tSAT =
1

ω
cos−1

(
1− 2ωBSAT ACORE N

2

IP RLOAD

) (9)

Fig. 2 illustrates an example with IP = 6.27 ARMS, N =
200, and freq = 60 Hz. We can see that (8) is a very close
approximation to (1) when RLOAD is relatively large, i.e.,
where the core enters hard saturation. We can also verify
that the maximum power harvest indeed happens in the soft
saturation regime, the region in between the two extremes. The
solid black line indicates the experimental result.

B. Constant Voltage Load (VLOAD) Case

For powering sensors and signal processing hardware, the
energy harvester will likely provide power to a conversion or
storage stage, not just a resistor. If a DC-DC converter with
a switching frequency much higher than the line frequency is
connected to the core as a load, the voltage across the core
is effectively the cycle average of the input voltage of the
converter, and it can be considered as a constant DC value
to the core. Similarly, if a supercapacitor is used, due to its

extremely high capacitance and the efforts of a post-regulator,
the harvester again sees essentially constant DC voltage. In
these cases, the important parameter for determining power
transfer is the load voltage VLOAD.

The calculation of the flux equality is much simpler now
due to the time independent load voltage.

2BSAT ACORE N =

∫ tSAT

0

VLOAD dt (10)

Therefore,

tSAT = min

[
2BSAT ACORE N

VLOAD
,
T

2

]
(11)

The average power harvest can be generally expressed as

PLOAD =
2

T

∫ tSAT

0

[
IP

N
sin(ω t)

]
· VLOAD dt

=
IP VLOAD

πN
[1− cos(ω tSAT)]

(12)

Using (12), we can calculate the average power harvest of
the special case where the core does not saturate (tSAT = T/2).

PLOAD, nonsat =
2 IP VLOAD

πN
(13)

Also, we can express the average power harvest in hard
saturation (tSAT � T/2):

PLOAD, hardsat ≈
2

T

∫ tSAT

0

[
IP

N
ω t

]
· VLOAD dt

=
2ω2 IP B

2
SAT A

2
CORE N

π VLOAD

(14)

Again, the expressions for the average power harvest in the
two extremes have opposite dependencies on VLOAD. The peak
will occur in between unsaturated and hard saturated operation.
The maximum power harvest point is relatively easily found
in the voltage load case. We differentiate PLOAD with VLOAD,
which gives the following equation to solve for extrema:

0 = 1− cos

(
2ωBSAT ACORE N

VLOAD

)

− 2ωBSAT ACORE N

VLOAD
sin

(
2ωBSAT ACORE N

VLOAD

) (15)

Equation (15) is in the form:

1− cos(x)− x · sin(x) = 0 (16)

This type of equation has an obvious but nonpractical solution
at x = 0. An additional condition on x can be inferred:

x =
2ωBSAT ACORE N

VLOAD
= ω tSAT ≤ ω

T

2
= π (17)

Based on (17), the trace of 1− cos(x)−x · sin(x) is drawn
on Fig. 3 up to x = π. As shown in the figure, it has a
single nonzero solution at x = 2.3311224. Using 3π/4 as an
approximate solution, the optimum VLOAD can be expressed as

VLOAD,pmax ≈
8

3π
· ωBSAT ACORE N (18)
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Fig. 4. PLOAD response with a constant voltage load

And the corresponding maximum power harvest is

PLOAD,max ≈
8 (2 +

√
2)

6π2
· ω IP BSAT ACORE (19)

Figure 4 illustrates an example with IP = 6.27 ARMS, N =
200, and freq = 60 Hz. As expected, the maximum power
harvest happens in between the unsaturated operation region
and the hard saturation region. The expression of PLOAD, max
is independent of the magnetic permeability (µ) of the core.
However, it is implied in the region itself that the core must
be placed in saturation. Therefore, µ needs to be sufficiently
high so that it can drive B from −BSAT to +BSAT within the
given range of the input current. Essentially, high µ improves
coupling to the primary current, and soft saturation is desirable
for maximum power harvest.

The horizontal location of the peak is similar in both the
estimates and the experimental results. The estimate is slightly
“off” in predicting peak power and into the saturation region.
This error, relative to the analysis for the resistive case, occurs
because of the voltage load. In the case of the resistive load, the
load voltage, which is directly seen by the core, is proportional
to the transformer current until saturation. Therefore, the flux
accumulation will be negligble when the transformer current
is near zero. An error in determining the start of the cycle, if
any, will have little effect, and the end point of the transfer
window will be essentially correctly estimated. On the other
hand, for the voltage load case, as soon as the secondary
current flows, the fixed load voltage is applied across the core,
and develops core flux at the same rate regardless of the level
of the transformer current. Therefore, any mis-estimate in the
start time of the transfer window, e.g., which opens up the
transfer window a little earlier by ∆t compared to the idealized
analysis, will shift the end point of the transfer window by the
same amount, ∆t, to an earlier time point. In the worst case,

where the transfer window ends at the peak of the sinusoid,
the loss is substantial: the maximum current that can possibly
flow in a time segment as long as ∆t is lost due to the transfer
window shift, and, instead, we “gain” a longer interval with
near-zero current in the start of the transfer window. This issue
tends to be worse in the hard saturation regime because the
transfer window is shorter.

In practice, the transfer window “opens” early because of
the core coming out of the saturation ahead of the primary
current zero crossing. Once the core gets out of the tail
region of the B-H loop, which is slightly before the zero
crossing of the transformer current in the experiment, high
magnetizing inductance is restored, and slows the change of
the magnetizing current. Since the magnetizing current cannot
rapidly track the transformer current, the current difference
between them must be flown into the load resistor. As soon
as a current difference is generated, the core directly sees the
load voltage, and starts “accumulating” flux.

The following sections introduce a model to accurately
predict the amount of power harvest. Nonidealities caused
by a nonlinear core behavior are included in the model, and
computed through numerical methods.

IV. NONLINEAR MODELING

We present a core model that can be used in a numerical
solver to predict behavior of the harvester with excellent
accuracy. The model, derived from Maxwell’s equations, is
especially useful for refining a target design. Nonidealities
such as hysteresis core loss and wire losses are considered.

A. Maxwell Model

Denoting the secondary side current as IS(t), the net
ampere-turn seen by the core is

ATCORE = IP sin(ω t)−N × IS(t) (20)

The primary side current is assumed sinusoidal AC with an
amplitude of IP. The magnetic field H(r, t) in the core is

H(r, t) =
ATCORE(t)

2π r
=
IP sin(ω t)−N IS(t)

2π r
(21)

The magnetic flux density, B, is determined by the B-H
curve of the core. We begin with a consideration of a saturating
but non-hysteretic core, and expand to add hysteresis later. To
model saturation, we can just use a piecewise linear waveform
as in the left of Fig. 5, or, more practically, an ‘arctan’
function as in the right of Fig. 5. With the ‘arctan’ function,
the magnetic flux density can be modeled as

B(r, t) = BSAT ·
2

π
arctan

(
H(r, t)

α

)

= BSAT ·
2

π
arctan

(
IP sin(ω t)−N IS(t)

2π r α

) (22)

Please note that 2/π is used to normalize the return value
of arctan function to 1 when saturated. The reciprocal of α
describes the sensitivity in the nonsaturated region. Its role is
similar to the initial permeability in conventional models.
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If we denote the height, outer radius, and inner radius of the
toroidal core as h, rOD, and rID, respectively, we can express
the voltage across the core as below.

VCORE(t) =

∫ rOD

rID

N · h · ∂B(r, t)

∂t
dr (23)

The time derivative of the magnetic flux density can be
calculated by differentiating (22).

∂B(r, t)

∂t
=

BSAT

π2 r α
·
ω IP cos(ω t)−N ∂IS(t)

∂t

1 +
[IP sin(ω t)−N IS(t)]

2

4π2 r2 α2

(24)

When we integrate (24) over r from rID to rOD , we can
evaluate (23):

VCORE(t) =
N · h ·BSAT

2π2α
×
[
ω IP cos(ωt)−N ∂IS(t)

∂t

]

× ln

r2OD +
[IP sin(ωt)−N IS(t)]

2

4π2α2

r2ID +
[IP sin(ωt)−N IS(t)]

2

4π2α2


(25)

A hybrid circuit representation of (25) is given as a two-
port box in a dashed line in Fig. 6. The leakage inductance
is relatively small for the experimental core and is ignored
in this figure. We model wire loss with RWIRE, which is in
series with the load. The effect of hysteresis on the harverster
is included with a resistance RCORE in parallel with the core.
The detailed analyses for the values of these loss components
are described shortly.

If we define the load charateristics in terms of VCORE(t)
and IS(t), we have a complete set of differential equations
that describes the system. Assuming the core is connected to
an external circuit, a set of general system equations can be
obtained by combining (25) and the following equations set:

IS(t) = ILOAD(t) + ILOSS(t)

VCORE(t) = ILOSS(t) ·RCORE

VCORE(t) = ILOAD(t) ·RWIRE + VLOAD(t)

(26)

We will illustrate the use of this model with a resistive load,
with VLOAD(t) = ILOAD(t)·RLOAD, with the understanding that
the load model can be extended to any load type, including
switched loads, given an accurate load model, e.g., an equation
relating VLOAD(t) and ILOAD(t). In the next section, we will
discuss how to model the lossy elements, RWIRE and RCORE.

Nonideal
Trans-
former

IS(t)
+

VCORE(t)

−

RCORE

ILOSS(t)

RWIRE ILOAD(t)

ZL

+

VLOAD(t)

−

Fig. 6. Circuit representation of Maxwell method

B. Loss Modeling

1) Wire Loss Modeling: Primary currents for the harvester
are typically (but not necessarily) from the power line of
monitored equipment operating at line frequency. At 60 Hz,
the skin depth of the copper wire is,

δ =

√
2 ρ

ωµ
=

√
2 · 1.68× 10−8

2π 60 · 4π × 10−7
= 8.42 mm (27)

The wire diameter for the secondary windings is usually much
smaller than 8.42 mm. For example, in our prototype design,
we used AWG 30 with a diameter of 0.255 mm [1]. Because
δ is much larger than the wire diameter, we can ignore skin
effect, although this could be important in other applications.
Following the analysis discussed in [4], the proximity effect is
also negligible at the line frequency using this wire guage. As
an example, assume AWG 30 with 500 turns and 3 layers. Each
turn is roughly 42.5 mm long, and RDC = 7 Ω. To convert the
round-wire windings into equivalent foil conductors, we model
each conductor with N/3 windings, and effective height of
2π rID. The effective width of each “foil” is,

weff =
π r2AWG30 ×N/3

2π rID
= 0.164 mm (28)

And,
∆ =

weff

δ
= 0.0195 (29)

With M = 3,

FR =
RAC

RDC
= ∆·

[
sinh(2 ∆) + sin(2 ∆)

cosh(2 ∆)− cos(2 ∆)

+
2 (M2 − 1)

3
· sinh(∆)− sin(∆)

cosh(∆) + cos(∆)

]
= 1.00000

(30)

Therefore, the proximity effect is negligible, and we need
only to include DC resistance for wire loss modeling.

2) Core Loss Modeling: As will be shown later, hysteresis
loss for the VAC core will be so low that we can ignore it if
the output power is larger than several mW. We discuss core
loss here to provide a general model for cores with higher
losses. Among many techniques to estimate core loss at given
frequency and BPEAK level [17], [18], [19], [20], [21], our
core loss model is based on a simple expression of [17] due
to zero DC-bias and symmetric B-H loop operations centered
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at zero. The loss in our analysis is proportional to f1 B̂2 in
principle, though the actual implementation is based on the
cyclic measurements of BPEAK and IPEAK.

To model core loss, we make a rectangular approximation
to the B-H curve. We track the peak load current (IPEAK), the
peak core voltage (hence BPEAK), and the RMS voltage of the
core (VRMS) throughout each cycle. These values can be used
to estimate a B-H loop area. In a numerical simulation, this
power loss can be calculated and used to update the resulting
core loss resistance for the next cycle. Assuming the core
maintains its high permeability until saturation, where Volume
is the volume of the core and HC is the coercivity of the core,
the full hysteresis loss is modeled as

PLOSS-MAX = 2HC · 2BSAT ·Volume · freq (31)

The B-H loop loss for any particular operating cycle can be
calculated as a fraction of the maximum loss:

PLOSS = PLOSS-MAX ·
IPEAK

ISAT
· BPEAK

BSAT
(32)

Finally, the loss resistance is

RCORE =
V 2

RMS

PLOSS
(33)

This model calculation must be performed over a full cycle
in order to permit calculation of the RMS values. We want the
modeled resistor to dissipate the required amount of power
over a cycle (or, if using a rectifier, a half cycle). How-
ever, adding such a resistor (or changing the loss resistance)
will change the current divider formed with the magnetizing
inductance, the core loss resistor, and the load. Since the
entire circuit is continuously affected by cyclic update of the
loss resistance, an additional numerical solver is used as an
“internal loop” to provide a convergence to a correct core loss
resistance, operating to provide correct values to the time-
domain circuit solver.

C. Parameter Estimation
To demonstrate our model and approach for a numeri-

cal simulation, three parameters are required: BSAT, α, and
PLOSS-MAX.

1) BSAT Estimation: To characterize the core, we conduct
experiment as depicted in Fig. 7, with a resistive load con-
nected to the core. We need to select the load resistance high
enough that the core goes into the hard saturation. If it is
in hard saturation, the analysis simplifies in the sense that
hysteresis loss is at maximum, which ensures that the core is
driven to ±BSAT, and that a distinct “cat-ear” shape in voltage
makes the waveforms easy to identify.

In a half cycle, ∆B = 2BSAT, hence ∆Λ =
2BSAT ACORE N . This must be equal to the core voltage
integrated over a half cycle. With a measurement of the load
voltage over a half cycle, we can usefully write:
RWIRE +RLOAD

RLOAD
· VLOAD, AVG ·

T

2
= 2BSAT ACORE N (34)

Therefore,

BSAT =
T (RWIRE +RLOAD)

4ACORE N RLOAD
· VLOAD, AVG (35)

Nonideal
Trans-
former

IS(t)
+

VCORE(t)

−

RCORE

ILOSS(t)

RWIRE

ILOAD(t)

RLOAD

+

VLOAD(t)

−

Core

Fig. 7. Test circuit for the parameter estimation

2) PLOSS-MAX and α Estimation: We use the same circuit
used for estimating BSAT to determine core loss, and operate
the core in saturation regime to ensure that the hystersis loss
is at PLOSS-MAX.

With a resistive load, we can simplify the general system
equation set, (25) along with (26), to a single equation about
ILOAD(t) as below.

N hBSAT

2π2 α
×
[
ω IP cos(ω t)− γ N ∂ILOAD(t)

∂t

]

× ln

r2OD +
[IP sin(ωt)− γ N ILOAD(t)]

2

4π2α2

r2ID +
[IP sin(ωt)− γ N ILOAD(t)]

2

4π2α2


= ILOAD(t) · (RWIRE +RLOAD)

(36)

where γ is defined as

γ =
RCORE +RWIRE +RLOAD

RCORE
(37)

By evaluating (36) at two different time points, we generate
two equations about α and γ. For the evaluations, we extract
a full cycle data of the primary side current and VLOAD(t).
The cosine and sine terms can be directly calculated with
the selected time points, and ILOAD(t) can be calculated by
VLOAD(t)/RLOAD. Note that zero crossings of the primary side
current and VLOAD(t) do not align in general. When evaluating
VLOAD(t) at two time points, the phase shift of VLOAD(t) with
respect to the zero crossing of the primary side should be
considered. We directly obtain α from solving two resulting
equations. And, γ (with VLOAD,RMS that can be computed with
the extracted cycle data) leads to:

PLOAD-MAX =
(γ − 1) V 2

LOAD,RMS

RWIRE +RLOAD
(38)

D. Magnetic Permeability (µr) Estimation

If we differentiate both sides of (22) with H(r, t),

∂B

∂H
= BSAT ·

2

π
· 1

α
· 1

1 +
H2

α2

(39)

This equation is maximized when H(r, t) = 0, and this is the
initial magnetic permeability, µ0 µr, at zero. Therefore,

µr =
2BSAT

π αµ0
(40)
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Note of course that the nonlinear magnetizing inductance
arises from the fact that that µr is an estimate of the initial
permeability, and will not be maintained constant throughout
the period.

V. NUMERICAL SIMULATION

The numerical circuit simulator is implemented in
MATLAB. The multi-dimensional Jacobian-free numerical
solvers employed in the simulator are based on the Newton
and the Generalized Conjugate Residual (GCR) [22], [23]
methods, and find solutions of equations generated from the
Maxwell core model, the core loss model, and the load model.
The Newton method is used to find a zero crossing, i.e.,
solution, of a function, and the GCR is used to rapidly
construct the search direction for the next Newton. At each
iteration of the GCR, a vector orthogonal to those obtained
from earlier iterations is added to the search direction. The
progression in time, i.e., estimating the next time point for
transient simulation, is modeled by trapezoidal integration.

We illustrate the resistive load case as an example. We
rearrange (36) to get the first time derivative of ILOAD(t):

∂ILOAD(t)

∂t
=
ω IP

γ N
cos(ωt)− 2π2α

γ N2 hBSAT
×

(RWIRE +RLOAD) · ILOAD(t)

ln

r2OD +
[IP sin(ωt)− γ N ILOAD(t)]

2

4π2α2

r2ID +
[IP sin(ωt)− γ N ILOAD(t)]

2

4π2α2



(41)

Trapezoidal integration applied to ILOAD(t) is:

ILOAD(tn+1)− ILOAD(tn)

=
1

2
∆t

(
∂ILOAD(t)

∂t

∣∣∣∣
t=tn

+
∂ILOAD(t)

∂t

∣∣∣∣
t=tn+1

)
(42)

We combine (41) and (42), move all the terms to the same side,
and define the resulting side as G. We can numerically solve
G = 0 using Newton with GCR for each time point. The first
order differential equation requires one initial condition. Since
the primary side is a sine wave, its value is zero at t = 0, and if
the system is fully de-energized, ILOAD(t) is zero as well. This
initial condition produces a turn-on transient. After we obtain
ILOAD(t) for the entire cycle, we calculate IPEAK, BPEAK, and
VCORE, RMS. Using the same steps discussed in (32) and (33),
PLOSS and RCORE can be obtained.

However, two problems remain: first, we are interested
in power harvesting capability in the steady-state, not the
initial transient; second, the convergence regarding RCORE and
VCORE, RMS is not discussed. In order to guarantee the steady-
state and the convergence on core loss, we add another solver
with a shooting function FSHOOTING that returns a 2×1 vector.
The added solver also employs Newton with GCR, and wraps
around the time range solver. The first element of the shooting
function calculates the difference of two function values that
are apart exactly by a period in time, and returns zero if it is
in the steady-state.

FSHOOTING[1] = ILOAD(t0 + T )− ILOAD(t0) (43)

Until(|FSHOOTING| ≤ Tolerance for F ) {
for each time point τ {

Until(|G| ≤ Tolerance for G) {
Newton_GCR on G;(residual update)

}
ILOAD(τ) = Solved Value;

}
VCORE, RMS Calculation;
PLOSS Calculation;
Newton_GCR on F;(residual update)

}

Fig. 8. Pseudo code of the numerical simulator

TABLE II
CORE PARAMETERS

BSAT 1.190T
PLOSS-MAX 0.125mW

α 2.2

The second element calculates the difference between two
core loss resistance values in two consecutive iterations. If the
difference converges to zero, RCORE, PLOSS, and VCORE, RMS
are in a correct relationship. RCORE-PREV denotes the core loss
resistance calculated in the previous iteration.

FSHOOTING[2] =
V 2

CORE,RMS

PLOSS
−RCORE-PREV (44)

If |FSHOOTING| is within the tolerance, the system is in the
steady-state, and the core loss is correctly estimated. Figure 8
describes the pseudo code including two solvers in separate
layers and the shooting function.

VI. EXPERIMENTS

An amorphous nanocrystalline core was used to verify the
validity of the proposed modeling and analysis. The estimated
parameter values, BSAT, PLOSS-MAX, and α, are listed in Table
II. The manufacturer of the core is Vacuumschmelze.

In Fig. 9, four plots are presented to portray the close
agreement between the experiment and the Maxwell modeling
method described above. The first two plots illustrate the
resistive load case in two different combinations of IP and
N . The remaining plots illustrate the constant voltage load
case in two different combinations of IP and N . Responses
are almost identical in all configurations, indicating that the
modeling accurately represents physical responses of the core
under various settings of load type, IP, and N . We can also
infer that, by noticing that the peaks happen after the linear —
unsaturated — regions, controlling the level of saturation of
the core is necessary to extract the maximum magnetic energy
from induction coupling.

Figure 10 presents time domain comparisons between the
experiment and the Maxwell method where the waveforms of
the load voltage in the resistive load case are depicted for three
different saturation and load conditions.
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Fig. 9. Experimental verification of the Maxwell modeling method

VII. CONCLUSION

This paper demonstrates that quick approximations can
identify the transfer window for power transfer in a saturating
current core. This analysis can be used for reasonably accurate
decisions on core sizing and load targets for the magnetic
energy harvester. A more accurate core model based on
Maxwell’s equations has been presented for precise numer-
ical design simulation, where the B-H curve was modeled
and nonideal losses were considered. Parameter estimation
techniques for a physical core were demonstrated, and the
numerical solver using Newton with GCR was presented. The
solver has two layers: the first being the time range solver;
and the second being a solver for steady-state and core loss
resistance. Experimental results demonstrate the accuracy of
the modeling approach for different loading conditions.
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