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Hunting Cyclic Energy Wasters
Jim Paris, John Donnal, Robert Cox, and Steven Leeb

Abstract—Many useful electromechanical systems operate pe-
riodically. These systems may be configured to maintain a physi-
cal setpoint for temperature, pressure, or another environmental
variable. Pathologies in these systems can result in significant
energy waste. Non-intrusive power monitoring can find these
energy wasters with a minimum of installed sensors.

Index Terms—Smart Grid, Cycling Systems

I. INTRODUCTION

A variety of electromechanical loads, important both for
their commercial and industrial utility and also because of their
energy consumption, run cyclically. These systems operate
under some form of closed loop control intended to regulate
an environmental set point. For example, a motor may run
periodically to create liquid refrigerant in an HVAC system for
cooling (temperature control), or to compress air for pneumatic
tools (pressure control). In pathological situations, which arise
all too often in the field, closed-loop control can lead to
difficult-to-detect energy waste.

For example, vapor-compression refrigeration and air-
conditioning systems typically employ a hysteretic control
to operate a compressor cyclically, generating compressed
working fluid in the condenser when cooling is needed. Unfor-
tunately, a wide range of fault conditions can leave the system
operating, but at reduced efficiency. Reference [1] conducted a
survey of 6000 distinct faults over a six year period, indicating
that many faults, including 82% of evaporator fouling faults
and 86% of condenser fouling faults, failed to result in a “loss
of comfort.” This means that the faulted systems continued
to operate at reduced efficiency, consuming extra electrical
energy with no obvious sign of trouble to building occupants,
who continue to observe an acceptable room temperature with
easily ignored increases in electrical bills. In mission-critical
environments, e.g., in oil refineries or warships, we have
observed that closed-loop control in cycling systems can put
an order of magnitude more wear on a system than would be
normally expected, leading to early and expensive equipment
failures that produce mission cripples.

II. NILM AND CYCLING SYSTEMS

Hunting energy wasters in cycling systems with inexpen-
sive electrical monitoring is fun and rewarding. The peri-
odic actuation of a pump, vacuum, or compressor creates
a cycling system in which electrical power usage follows a
regular cycle based on the characteristics of the monitored
mechanical variable (pressure, temperature, etc). Even non-
electrical equipment, like boilers, can often be monitored
using power signature techniques because most such systems
include ancillary electrical devices like circulation fans which
indicate equipment operation. Patterns of power consumption

Fig. 1. Identifying load transients using the NilmManager web interface

for electromechanical devices can be used to infer operating
health of the cycling system plant and to detect a variety of
fault conditions.

The Non-Intrusive Load Monitor (NILM) can serve as a
platform for cycling system diagnostics with a minimum of
installed sensors [2]–[4]. NILM rapidly samples the current
and voltage in an electrical power system to calculate harmonic
envelopes of power consumption. These harmonic envelopes
can be used to identify when a given load turns on and off.
Patterns and parameters of cycling system transients can be
extracted to perform fault detection and diagnostics (FDD).

A typical modern NILM installation requires conventional
computing capabilities, e.g., essentially any modest perfor-
mance Linux system can host a NILM. However, a NILM
capable of detecting line harmonics and performing parameter
estimation might produce over 320MB of data per hour,
recording 4 billion measurements per day. The recent devel-
opment of an efficient distributed database system, NilmDB
[5], for non-intrusive monitoring has changed the calculus
of information access bandwidth to perform remote FDD
on cycling systems. NilmDB stores data as streams in local
storage which can be queried and extracted over an HTTP
interface. NilmDB also stores decimated copies of each stream
as min/mean/max tuples so requesting a days worth of samples
or a millisecond of samples returns a similar amount of data.

NilmManager, a cloud-based web application, provides ac-
cess to all deployed NilmDBs through a sophisticated GUI.
Through NilmManager, users can quickly view power sig-
nature data from anywhere in the world just as if the data
were stored on their local machine. NilmManager further
aids cycling system analysis by providing a graphic tran-
sient identification interface shown in Fig. 1. Users select
a representative transient from the data and NilmManager
saves the signature as an exemplar for the load. Systems
with ON/OFF control have step waveform transients usually
with some amount of inrush current as in Fig. 2. Systems
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Fig. 2. Cycling events of a standard shop air compressor automatically
detected by NilmManager. The turn on transient shows a characteristic step
and inrush surge.

Fig. 3. A Low Pressure Air Compressor (LPAC) with load/unload control.
Transients detected by NilmManager indicate change in operation state.

with LOAD/UNLOAD control run continuously but consume
different amounts of power depending on their state as in
Fig. 3. Regardless of the type of load, once the characteristic
transients are identified, the Manager issues commands to the
remote NILM to automatically identify future transients of
the load. This derived waveform, when processed with an
appropriate model, provides a powerful diagnostic tool for
cycling system analysis.

III. MODELING CYCLING SYSTEMS

Actuators in cycling systems can suffer from a wide range
of problems, and non-intrusive electrical monitors can quickly
and efficiently acquire the data needed to detect these problems
without requiring the installation of additional sensors. Con-
sider, for example, the vacuum pumps in a vacuum-assisted
waste disposal system. These systems are commonly used
for sewage collection aboard ships and aircraft and in many
municipalities with flat terrain and high groundwater tables.
Many cities, including New York, have recently started to
deploy such systems for solid-waste collection since they
reduce the emissions and costs associated with trucks. Figure 4
includes data from an example installation designed to collect
sewage aboard one of the US Coast Guard’s “Famous”-class
cutters. Under normal conditions, two vacuum pumps operate
periodically and in alternation to create vacuum in a storage
tank in the system, producing a typical pattern of pump run
transients like that shown in Fig. 4a. Over time, the pressure
sensor in the storage tank can become clogged. As the sensor
clogs, the controller loses the ability to detect the depressur-
ization in the tank, and the vacuum pumps are run longer
and longer, drawing down the tank pressure far below normal
operating levels before triggering the faulty sensor, as shown in

(a) Normal operation, showing typical pump run tran-
sients.

(b) Operation with clogged pressure sensor, which in-
creases the duration of pump runs.

(c) Operation with faulty vacuum seal. The control system
triggers the second pump after the first fails to perform as
expected.

Fig. 4. Pump run transients for waste disposal system, showing normal
operation and detected fault conditions.

Fig. 4b. A different pathology is illustrated in Fig. 4c, in which
one of the two vacuum pumps has developed a faulty seal. In
this case, the controller operates the faulted pump, observes
no change in tank pressure, and automatically operates the
second pump immediately in seriatim to depressurize the tank.
Both the sensor clog and the seal failure produce distinctive
power consumption signatures that can essentially be reduced
to a figure of merit or health “score” from a single cycle of
operating data as compared to a baseline case.

Other pathologies can lead to individual pump runs that
betray little or no presence of a fault. For example, a modest
leak in the hundreds of feet of fittings and pipe that make
up the system can result in pump runs with a conventional
duration and shape of power consumption, but which occur
more frequently or with a different statistical distribution. In
this case, non-intrusive power data can be used as base data
for statistical identification of faults over longer windows of
time. NilmDB and NilmManager make it easy to extract hours,
days, or weeks of pump operation. This base data must be used
with a carefully developed model of system behavior in order
to distinguish true faults from non-pathological changes in use.

Models for non-intrusive fault identification, like most FDD
models, stem from an understanding of how the system
behaves under normal operating conditions, and how system
behavior is affected by environmental variables. System be-
havior in cycling systems is driven by sources or sinks of the
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controlled variable. For example, in a compressed-air system
used to power various pneumatic tools, the actuator operating
schedule is determined by the actions of the various tools
following operator demand. The cycling of a residential heater,
on the other hand, is affected by heat flow, and is impacted by
system factors like insulation, outdoor temperature, and indoor
occupancy. Typically, from the viewpoint of the actuator,
external driving forces are unknown and control occurs based
on the status of a state variable or derived quantity such
as temperature, pressure, or fluid level. Algorithmic queuing
theory provides a strong framework for system modeling of
these cycling systems, a framework very useful for interpreting
the data available from a NILM.

With appropriate models for the behavior of each of the
individual sources and sinks, the complete response of the
system can be predicted by simulation. If a leak is inserted
into the system, for example, the effect will be to add a
continuously active sink element. In order to determine the
impact of the leak, it can be included into a model and
simulated. An analysis of the model’s predictions under faulty
and non-faulty conditions indicates how a leak can be detected
using only the operating schedule of the actuator. In general,
the required analysis will differ from one class of systems to
the next.

To illustrate the model-building procedure, the following
three subsections present the analysis required for pneumatic
systems such as those used for waste disposal and air-powered
tools. This analysis is provided to illustrate the process, and
any specific references to any one target system are intended
only for ease of illustration. The field results presented in
Section IV demonstrate how the procedure can be generalized
in the diagnostic context without requiring exhaustive analysis.

A. Load Dynamics

To ensure instant availability and to provide for short
periods of high demand, pneumatic systems typically have an
air receiver or vacuum tank that is periodically charged by
a compressor or pump. As loads draw from the pressurized
reservoir, system pressure decreases. Once a certain low-
pressure set point has been reached, the controller transmits a
start command to the pump or compressor, causing the device
to begin charging the system. Once the pressure has reached
the predetermined high set point, the pump motor is either de-
energized or the pumps are directed to enter a re-circulation
mode. In vacuum-assisted waste-disposal systems, there are
two relevant types of vacuum reducing events. The first of
these are what are termed system usage events, and they result
from the operation of typical system loads, such as drains. In
general, these loads cause sharp drops in vacuum pressure.
In addition, there are also leaks, which typically result in a
persistent vacuum loss.

Figure 5 shows both pressure and pump power in a repre-
sentative cycling system aboard the USCGC SENECA. Any
time that a system usage event (SUE) removes vacuum from
the system, a sharp drop is observed in the measured vacuum
pressure. Note that as the number of SUEs increases, the
discharge period shortens and the number of pump runs

Fig. 5. Reservoir pressure and pump input power during several charge
and discharge cycles in the vacuum-assisted waste-disposal system aboard
SENECA. Note that the sharp drops in pressure are the direct results of
system usage events (SUEs) and that the persistent background loss is the
result of a small leak.

increases. By comparison, the development of a leak, which
causes the persistent loss shown in Fig. 5, also increases the
number of pump runs and decreases the average length of a
discharge period.

Assuming that the system can be accurately modeled using
lumped-element approximations, the pressure loss due to a
leak, which is denoted as Pleak(t), is the solution to the first-
order differential equation1

dP

dt
= −cP, (1)

where c is a constant whose value depends upon the parame-
ters of the system (i.e. capacity, etc.).

Assuming that N usage events have occurred during the
current discharge period2, the reservoir pressure, P (t) can be
approximated as

P (t) = Phigh − (∆P1 + · · ·+ ∆PN ) + Pleak (t) , (2)

where Phigh is the high pressure set point, ∆Pk is the pressure
removed by the k-th SUE, Pleak(t) is a functional description
of the leak, and t = 0 is defined to be the time at which
the current discharge period began. In order for the pumps to
energize, the total pressure loss must be sufficient to cause
P (t) to fall below the controller’s low-pressure set point,
Plow. Equivalently, the pumps will operate as soon as the
total pressure loss, ∆Ploss, is greater than the difference
between Phigh and Plow. Thus, mathematically, the pump
trigger condition can be written as

Phigh − Plow ≤ ∆Ploss

≤ (∆P1 + · · ·+ ∆PN ) + Pleak (t) . (3)

1For convenience, the terms “pressure” and “vacuum pressure” are used
interchangeably in this section.

2As indicated in Fig. 5, the term “discharge period” refers to the interval
when the pump is not operating.
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B. System Usage Process

The rate at which individual usage events affect the system
has a strong impact on the operating schedule of the pumps.
In general, however, these events occur at random intervals,
as human users typically operate the drains when needed.

The determination of the usage process in a cycling system
amounts to the selection of an appropriate queueing model.
These models originated in the early 1900s, when they were
investigated by A. K. Erlang for purposes of developing auto-
matic telephone exchanges. Just as in the case of the telephone
problem, cycling systems have a community of users that
both request service at random intervals and require service
for random lengths of time. The selection of an appropriate
model requires consideration of the statistics of the arrival
process, the statistics of the service times, and the number of
servers [6].

In the waste-disposal example, the system usage process is
approximated as an M/D/∞ queue. The name of this standard
queueing model, written in Kendall’s notation, makes refer-
ence to the way in which the model addresses each of the three
considerations listed previously. In this nomenclature, the first
character describes the arrival process, the second character
describes the service time distribution, and the third character
lists the number of servers. In terms of the M/D/∞ queue, this
means that the arrival process is Poisson, the service times are
deterministic, and the number of servers is infinitely large [6].
Field data has shown that the Poisson process reasonably
approximates the arrivals in a waste-disposal system. Second,
given that usage events have been shown to occur almost
instantaneously, one can approximate the distribution for the
service times using one deterministic value, namely zero.
Third, the claim that the number of servers approaches infinity
is effectively true, at least as long as the system has enough
toilets and drains to guarantee that patrons will rarely, if ever,
have to wait.

In the special case that the service times are zero, the
combined operating schedule of the individual pneumatic loads
is governed exclusively by the statistics of the Poisson arrival
process, which is denoted as N(t). In this model, each new
arrival increases the value of N(t) to the next largest integer.
Assuming that the arrival rate λ does not change as a function
of time, this process can be defined as follows. The process
starts at t = 0, i.e. N(0) = 0, and for any times t and s such
that t > s ≥ 0, the increment N(t)−N(s) is independent of
N(τ) for all τ ≤ s. This increment has the following Poisson
distribution [7]:

Pr [N (t)−N (s) = k|N(τ), τ ≤ s]
=Pr [N (t)−N (s) = k]

=
[λ (t− s)]k e−λ(t−s)

k!
.

Since N(0) = 0, this becomes

Pr [N (t) = k] =
(λt)

k
e−λt

k!
. (4)

Physically, Eq. 4 expresses the probability that N(t) is equal
to a given integer value.

For purposes of modeling the system usage process in a
cycling system, it is important to be able to predict more than
just the number of arrivals in a given interval. Specifically, it is
also necessary to be able to predict the time between individual
arrivals. To derive the distribution for this quantity, consider
each inter-arrival period to be a random variable T . For a
moment, focus on the time to the first arrival. The probability
that this event occurs during the interval [0, t] is a quantity
known as the cumulative distribution function (CDF) of T .
Thus, by definition, this function is

FT (t) = Pr [T ≤ t] . (5)

Using both Eq. 5 and the total probability law [8], Eq. 5 can
be rewritten as follows

FT (t) = Pr [T ≤ t]
= 1− Pr [T > t]

= 1− Pr [N (t) = 0]

= 1− e−λt. (6)

From the above result, it is possible to determine the probabil-
ity distribution function (PDF) for T . This function, which is
denoted as fT (t), is the derivative of the corresponding CDF,
FT (t). Thus, the PDF is

fT (t) =
dFT (t)

dt
= λe−λt. (7)

The Poisson process is memoryless, meaning that the behavior
of the arrivals after any time t ≥ 0 is itself a Poisson process
that is independent of the behavior prior to that time [8]. Thus,
Eq. 7 is the PDF for the time between any two arrivals.

C. Ideal Behavior of the Pump Operating Schedule

In order to predict the operating schedule of the actuator in a
cycling system, the usage and load models must be combined.
In this case, it is convenient to begin by first considering the
following set of idealized operating conditions:

• Each SUE reduces the reservoir pressure by an amount
∆P

• System usage is a homogeneous Poisson process, i.e. λ
is not a function of time

• The system usage process resets at the beginning of each
discharge period

In this situation, the control relation presented in Eq. 2
simplifies as follows

P (t) = Phigh − (∆P1 + · · ·+ ∆PN ) + Pleak (t)

= Phigh −N∆P + Pleak (t) . (8)

If no leaks are present in the system, then this result can be
reduced even further. With Pleak(t) = 0,

P (t) = Phigh −N∆P. (9)

Since ordinary usage is the only source of loss in Eq. 9,
it is clear that the pump will energize as soon as N∆P is
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Fig. 6. Key pressure values in an example cycling system in which Nmax =
3. As shown, the pump will energize as soon as the reservoir pressure drops
below Plow , which, in this system, can only happen after the arrival of the
third SUE.

large enough that P (t) ≤ Plow. Given that each SUE reduces
P (t) by the same amount, Eq. 9 clearly implies that there is
a fixed number of usage events that must transpire before the
controller will command the pump to energize. For instance,
in the example system used to generate Fig. 6, it is clear
that the pump will begin to operate immediately following
the occurrence of the third SUE. For convenience, we define
the variable Nmax, which represents the maximum number
of usage events that can occur during any single discharge
period. As implied by Fig. 6, the value of Nmax is simply the
smallest integer that guarantees the validity of the inequality

Plow ≥ Phigh −N∆P. (10)

Solving, it is found that

Nmax =

⌈
Phigh − Plow

∆P

⌉
, (11)

where dxe is the ceiling of x.
When operating under the simplified conditions considered

here, it is possible to predict the distribution for the time Tp
that elapses during any individual discharge period. Given the
fact that the number of usage events impacting the system is a
fixed quantity, Tp is simply the sum of the Nmax inter-arrival
times, i.e.

Tp = T1 + T2 + T3 + · · ·+ TNmax
. (12)

Because Tp is the sum of a fixed number of random variables,
its PDF is given by the relation

fTp
(t) = f1 (t) ∗ f2 (t) ∗ f3 (t) ∗ · · · ∗ fNmax

(t) , (13)

where ∗ is the convolution operator [8]. Given the inter-arrival
model presented in Eq. 7, the PDF for Tp is

fTp
(t) = λNmax

tNmax−1e−λt

(Nmax − 1)!
. (14)

In general, this two-parameter distribution is known as the
Erlang PDF of order k [8]. In Eq. 14, k = Nmax. Note that
in the special case that k = 1, the Erlang PDF reduces to the
exponential distribution.

In order to demonstrate the idealized behavior described
above, a simulation was designed and executed in Simulink

Fig. 7. Expected (solid line) and simulated (bars) frequency distributions for
the discharge time, Tp, under fault-free conditions. The simulation time was
one week.

TABLE I
PARAMETERS USED IN THE IDEAL SYSTEM SIMULATION.

Parameter Value

Phigh 17.5 inHg

Plow 13.5 inHg

λ 30 hr−1

∆P 1.1 inHg

Fig. 8. Leak-induced pressure loss versus time in an example system with
Nmax = 3. Note that the distance between Pleak(t) and Plow is the amount
of usage-induced pressure loss that would be needed in order to cause the
pump to energize at time t.

[3], [4], [9], [10]. In the simulation, the user can set the values
of all of the relevant system parameters (i.e. ∆P , Phigh, Plow)
as well as the value of the Poisson parameter, λ. Table I lists
the values used to generate the simulated results presented
graphically in Fig. 7. Also shown in that figure is the frequency
distribution predicted by Eq. 14.

In the event that the ideal system develops a leak, its
behavior will depart from that predicted above. A simple
graphical explanation for this departure is presented in Fig. 8.
As shown, the leak causes the reservoir pressure to decrease
continuously. As a result, the number of SUEs required to
initiate pump operation becomes dependent upon the time that
has elapsed since the beginning of the discharge period. In
the example system used to generate Fig. 8, for instance, it
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Fig. 9. Leak-induced pressure loss versus time in an example system with
Nmax = 3. Note that at time τ1, the vertical distance between Pleak(t) and
Plow is exactly 2∆P . As a result, only 2 SUEs are required to trigger the
pumps at that time.

is clear that the only way to force the pumps to re-energize
during the first few minutes of the discharge period is for
three usage events to occur in relatively short succession. If
that does not happen, however, the leak will continue to reduce
the pressure in the reservoir. Eventually, leak-induced loss will
be large enough that only 2 SUEs are needed to initiate pump
operation. For example, at the time t0 shown in Fig. 8, it
is clear that the pressure loss resulting from 2 SUEs will be
sufficient to cause the pumps to energize.

With certain simplifying assumptions, a more rigorous
foundation can be provided for the leak behavior described
above. Specifically, for a lumped element system, the time
dependence of the leak-induced pressure loss can be described
mathematically using the solution to Eq. 1. If the controller is
programmed so that it keeps the pressure within a relatively
narrow range, then the exponential solution to Eq. 1 can
be represented using the following first-order Taylor series
expansion:

Pleak (t) = Phighe
−ct ≈ Phigh − αleakt, (15)

where αleak = cPhigh. For a system that obeys these
assumptions, there are exactly Nmax times at which the
required amount of usage-induced pressure loss decreases. The
procedure used to identify these times is outlined graphically
in Fig. 9. As an example, consider what happens if the
discharge period lasts until time τ1. At that exact instant, the
leak has reduced the pressure to the point that the pumps will
operate if the usage-induced loss is exactly (Nmax − 1) ∆P .
Prior to that time, however, only the occurrence of Nmax SUEs
could have forced the system pressure to fall below Plow. A
similar procedure can be used to determine τ2, the time at
which the required usage loss drops from (Nmax − 1) ∆P to
(Nmax − 2) ∆P . In general, the values of the times τk are
given by the formula

τk =
Phigh − Plow − (Nmax − k) ∆P

αleak
,

for k = 1, 2, 3, . . . , Nmax. (16)

(a) CDF (b) PDF

Fig. 10. Theoretical distributions for Tp when a leak exists in the ideal
system. (a) The CDF and (b) The PDF, fTp (t)

Clearly, the behavior described above has an effect on
the distribution fTp(t). In particular, leak conditions cause
the PDF to change at the times τk. For 0 < t < τ1, the
only possible set of events that can elicit pump operation is
the arrival of Nmax SUEs. Thus, the PDF in this region is
still given by Eq. 14. Recall, however, that the pumps will
automatically operate at t = τ1 if exactly Nmax − 1 SUEs
impact the system during the interval 0 < t < τ1. Thus, there
is a certain fixed probability that the pumps will operate at
that time, and it is equal to the probability that the system
experienced at least Nmax − 1 but not Nmax SUEs prior to
τ1. To determine the value of this probability, we must employ
the Erlang CDF of order k, which is defined as

F (t; k, λ) =

{
λk

(k−1)!

∫ t
0
xk−1e−λxdx, t ≥ 0,

0, t < 0.
(17)

For a given value of k, this equation expresses the probability
that at least k arrivals occurred prior to time t. Thus, from the
above arguments, the probability that the pump runs at time
τ1 can be expressed using the relation

F (τ1;Nmax − 1, λ)− F (τ1;Nmax, λ) . (18)

Between the times τ1 and τ2, only Nmax−1 SUEs are required
to initiate a pump run. The PDF in this region will again be
Erlang, but it will be of a reduced order. Specifically, this
section of the PDF is the Erlang distribution of order Nmax−1,
i.e.

fTp (t) = λNmax−1 t
Nmax−2e−λt

(Nmax − 2)!
, for τ1 < t < τ2. (19)

In order to generalize the procedure presented above, it is
useful to consider the complete CDF of the variable Tp. From
the above arguments, it is clear that for the times 0 < t < τ1,
the CDF is Erlang with k = Nmax. After t = τ1, the CDF is
still Erlang, but its order is reduced by one. As a result, there
is a step change in the overall CDF at t = τ1, and the height
of this change is given by Eq. 18. This behavior is illustrated
graphically in Fig. 10a. As shown, the CDF has similar step
changes at each of the τk, as the number of required SUEs,
and thus the order of the required Erlang, decreases by one.
Furthermore, the height of the “jump” at each τk corresponds
to the probability of observing a pump run at that time.
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Fig. 11. Expected (solid line) and simulated (bars) frequency distributions
for the discharge time, Tp, in the idealized system with a 10 inHg/hr leak
rate. The simulation time was one week.

The complete PDF can be derived by differentiating the
CDF shown in Fig. 10a. In between the τk, this is a straight-
forward operation. At the boundaries, however, the CDF has
step changes, meaning that the derivative at those locations
is an impulse whose area corresponds to the height of the
change [11]. Thus, the complete PDF for Tp during leak
conditions is

fTp
(t) = f (t;Nmax, λ) [u(t)− u (t− τ1)]

+

Nmax∑
i=2

f (t;α, λ) [u(t− τi−1)− u (t− τi)]

+

Nmax−1∑
i=1

[F (t;α, λ)− F (t;α+ 1, λ)] δ (t− τi)

+ [1− F (t; 1, λ)] δ (t− τNmax
) ,

where α = Nmax − i.

For demonstration purposes, Fig. 10b shows the PDF that
corresponds to the CDF presented in Fig. 10a. Figure 11
displays a simulated frequency distribution that was obtained
by inserting a small leak into the ideal system characterized
by the parameters presented in Table I. The actual leak rate in
this case is 10 inHg/hr. Note that the additional probability of
observing a pump run at the times τk causes several large
“pulses” to appear. For comparison purposes, Fig. 11 also
shows the predicted frequency distribution.

IV. RESULTS

This section considers two specific real-world cycling sys-
tems in which the modeling techniques described above have
been used to detect faults. The first is the collection, hold, and
transfer (CHT) system responsible for removing waste aboard
the USCGC SENECA. The second is a compressed-air system
operating a shop tool.

A. Coast Guard CHT Diagnostics

A NILM system was installed on board the USCGC
SENECA to monitor the operation of the CHT system. The
system was first characterized in a training phase to provide a
baseline model. The resulting histogram is shown in Fig. 12,

Fig. 12. Normal operation pattern of CHT system onboard USCGC SENECA

Fig. 13. Abnormal operation pattern indicative of leak onboard USCGC
SENECA

which is fully consistent with the non-faulty behavior predicted
by the model presented above. During a portion of the install
period, the distribution changed as the result of a large leak.
The crew was not aware of the leak since no alarms or other
warnings existed to alert them to the problem. Figure 13 shows
the histogram generated by the leaking CHT system. This
histogram includes data taken over a seventy-two hour period.
Note the presence of the large discontinuities as anticipated
by the model described above.

After alerting the crew to the suspected leak, maintenance
technicians discovered the two check valves at the suction of
the vacuum pumps to be faulty. The check valves are meant
to shut after the vacuum pump de-energizes and maintain the
vacuum in the system. Disassembly of the valves revealed
pitted faces and loose components. Figures 14a and 14b show
the condition of the valve and internals as it was disassembled.
The valves were beyond repair and had to be replaced. After
replacement, the distribution returned to normal.

B. Shop Air Compressor Diagnostics

Air compressors are commonly used to operate a variety of
tools in machine shops. To model the effect of air tool usage,
a computer-actuated valve periodically released pressure from
the hydraulic line of an example compressor. The system
generated usage patterns based on a statistical model using
an exponential distribution (λ = 5min) for inter-arrival times
and normally distributed service times (µ = 4secs, σ = 1sec).
The system ran intermittently over the course of three weeks
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(a) Check Valve Fixture (b) Valve Face

Fig. 14. Check valve removed from the SENECA’s waste-disposal system
following the detection of a leak by a NILM. Note the uneven wear on the
rubber face.
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Fig. 15. Diagnostic histograms suggesting faulty valve operation. Wider
distributions indicate longer compressor run times.

producing 122GB of current and voltage data. At the conclu-
sion of the experiment NilmManager was used to automate
transient detection, which it completed in under five minutes.
During the three week field test, no faults in operation were
detected; however, after generating the operational histograms
it became clear that the electronic valve suffered a partial
breakdown partway through the experiment. Figure 15 shows
normalized histograms for normal compressor operation dur-
ing the first two weeks and abnormal operation during the
last week. The computer-driven actuator operated on the same
statistical model throughout the experiment so the number and
duration of “tool usages” is approximately the same for both
histograms. This indicates that the valve itself periodically
failed to open or only opened partially during the later part of
the experiment.

The behavior observed in Fig. 15 is consistent with the
modeling procedure described in Section III. In this case, the
faulty valve causes a change in one of the primary system
parameters, namely the load dynamics. The resulting change
in the distribution is expected, although not in the same
way predicted for the constant leak described in Section III.
Although one could develop a more complete analytical model
to describe the behavior observed here, it would be challenging
and not necessarily rewarding. What is important to note is
that one can use the basic modeling procedure to understand
normal operating conditions and can then explain deviations
using appropriate physical arguments. This is important, as it
suggests that the model can be easily adapted as needed to

the specifics of a given system without the need for excessive
analysis by a subject matter expert.

V. CONCLUSION

Cycling systems, which represent a significant portion of
energy consumption in residential, commercial, industrial, and
military environments, commonly have energy-wasting faults
that are difficult to detect since underlying system performance
does not change significantly. This paper has demonstrated
that non-intrusive electrical monitoring can be used to detect
such faults in these systems without requiring the installation
of additional sensors. By developing an appropriate model
that considers both the physics of the target system and the
statistics of its usage, one can develop powerful diagnostics
that lend themselves to widespread adoption within the Smart
Grid framework.
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