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Current and Voltage Reconstruction from
Non-Contact Field Measurements

David Lawrence, John Donnal, and Steven Leeb

Abstract—Non-contact electromagnetic field sensors can
monitor voltage and current in multiple-conductor cables
from a distance. Knowledge of the cable and sensor
geometry is generally required to determine the trans-
formation that recovers voltages and currents from the
sensed electromagnetic fields. This paper presents a new
calibration technique that enables the use of non-contact
sensors without prior knowledge of conductor geometry.
Calibration of the sensors is accomplished with a reference
load or through observation of in situ loads.

Index Terms—Sensor systems, magnetic sensors

I. INTRODUCTION

An electric current flowing through a conductor pro-
duces a magnetic field whose magnitude at any point in
space is proportional to the current. Similarly, a voltage
applied to a conductor produces an electric field whose
magnitude is proportional to the voltage. The voltage
and current in a conductor may thus be determined by
electric and magnetic field sensors placed nearby [1], [2].
The obvious appeal of this technique is that it works at a
distance, i.e. it is not necessary to remove the insulation
from a wire in order to measure its voltage and current
[3]. Non-contact sensors have a lower cost of installation
because they do not require power to be shut down by
an electrician.

Figure 1 illustrates a hardware implementation of a
non-contact sensing system developed for this paper. A
utility service entry cable is shown in the figure. Each
one of the four sensors shown in the figure (secured
to the cable) can make a measurement of electric and
magnetic field at that point on the cable. Three such
sensor “heads” are labeled in Fig. 1 as measuring field
quantities S1, S2, and S3. Up to four sensor heads can be
connected to a digital coordination board, which samples
the current and voltage sensors on each head. Data from
the sensor heads can be read at sample rates up to 3
kHz and transmitted over a USB serial connection to
a computer. The sensor heads are carefully constructed
with permalloy and ground shielding to ensure that
electric and magnetic field measurements are “focused”
on the cable and that interference from external fields is
minimized or eliminated, as described in [6].

Fig. 1. Non-contact meter using capacitive voltage sensors and
magnetic current sensors installed on a service entrance cable for
nonintrusive monitoring.

i1 i2

s1 = 7i1 + 3i2 s2 = 3i1 + 7i2

s3 = 6i1 + 6i2

Fig. 2. Schematic of non-contact sensor deployment with two
conductors and three sensors. In the text, quantities s1, s2, and
s3 represent magnetic field strengths. The quantities i1 and i2 are
currents.

When a cable like the one shown in Fig. 1 con-
tains multiple conductors, the electric and magnetic
fields from each conductor superpose. Thus, a magnetic
field sensor records a linear combination of the cur-
rents through each conductor (as depicted in the cross-
sectional schematic view shown in Fig. 2) and an electric
field sensor records a linear combination of the voltages
on each conductor. The black rectangles in Fig. 2 provide
a schematic representation of the sensor heads shown
in Fig. 1. These sensor heads read magnetic fields that
are produced by the currents i1 and i2 in the center
circles of Fig. 2. The concentric circles around each
current schematically represent the magnetic field lines
created by the wire currents. Each magnetic field reading
from an individual sensor will be a linear combination
of the scaled currents i1 and i2, as indicated by the
representative equations for S1, S2, and S3 in Fig. 2.
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With enough sensors in different locations, the lin-
ear transformation from cable currents and voltages to
sensor readings is invertible and the original currents
and voltages may be recovered [4], [5]. The process of
determining the transformation from sensor readings to
voltages and currents is called “calibration”. Reference
[1] introduced an algorithm for calibrating non-contact
sensors to recover estimates of wire currents in a cable.
This process involves introducing a calibration load on
each phase or conductor in the wire bundle in seriatim.

As described in [1], a suitable calibration load might
be a resistive load switched on and off at a controlled
duty cycle for a minute or two on each phase of the
power service. In a residence, for example, this would
involve plugging in a resistive load switched on and off
by a solid-state relay for a window of time, and then
performing the experiment again on the “other” phase in
the house (assuming a home with a split-phase service).
The switching permits the calibration load to be uniquely
detected on each phase during calibration, even while
other loads are operating. With a known number of con-
ducting phases, and an equal number of installed sensor
heads, and a careful but relatively easy set of quick
experiments plugging in a calibration load once on each
phase, the matrix relating sensor measurements to cable
currents can be uniquely determined. After calibration,
the sensor measurements can be used as a henceforth
“non-contact” estimator for the cable currents.

This paper expands the algorithm of [1] to provide the
following new capabilities:

1) The number of sensors may be made larger than
the number of conductors, and accuracy is im-
proved by each additional sensor.

2) The mathematics remain computationally tractable
even with a large number of sensors.

3) The calibration technique is extended to the case
of three-phase delta-connected power distribution.

4) Calibration may be completed up to a constant
scaling factor multiplying each current without the
use of a reference load. The scaling factor is then
determined by comparison with the utility power
meter over a longer period of time.

5) Because overconstraint is handled by the algo-
rithms described in this paper, if a reference load
or other known load is used, it may be attached
to each conductor multiple times, and it is not
necessary to know which conductor is connected
each time.

The paper begins by developing these extensions of
the calibration algorithm for DC systems that have
an external path for return currents. The algorithm is

then further generalized to handle AC systems, systems
without an external path for return currents, and three-
phase delta-connected AC systems. Lastly, the algorithm
is modified to use observation of in situ loads in place
of a reference load.

II. CALIBRATION ALGORITHM

This section considers the case of DC systems that
have an unmonitored conductor to carry return currents.
For example, most automobiles use 12V DC distribution
wires and return currents through the metal chassis. This
section also assumes the use of a known reference load.
The reference load is switched at a particular frequency
and the demodulation scheme of [1] is used to distinguish
it from any other loads which are present.

Suppose that there are k magnetic field sensors mon-
itoring a cable with n conductors. The currents through
the cable at time t are

i(t) =

i1(t)...
in(t)


and the sensed magnetic fields are

s(t) =

s1(t)...
sk(t)

 .
Each sensor detects a mixture of the magnetic fields due
to each current, so the sensor geometry and the laws of
physics determine a k-by-n matrix M satisfying

s(t) =Mi(t). (1)

The goal of calibration is to find an n-by-k matrix K
satisfying

i(t) =Ks(t) (2)

using no information other than measurements of s.
Throughout this paper, lowercase boldface letters will
refer to column vectors and uppercase boldface letters
will refer to matrices.

If k < n, such a K does not exist. This situation
is resolved by adding additional sensors. If k ≥ n,
matrix K is chosen to be the pseudoinverse of M .
This K has the smallest condition number of any left
inverse of M , so it minimizes the sensitivity of the
unmixed currents to electromagnetic noise and physical
perturbations. In general, the pseudoinverse of a matrix
M will be denoted by M+.

The matrix K = M+ is decomposed into a product
M+ = UD such that U is an invertible n-by-n matrix
and D is an n-by-k matrix whose rows are orthonormal.
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Fig. 3. Graphical depiction of the unmixing procedure proceeding simultaneously in the time domain and in vector space. As depicted in
Fig. 2, there are three sensors and two conductors. The reference load draws a current of β = 2A modulated at 2Hz on the first conductor for
1 < t < 4 and on the second conductor for 6 < t < 9. There is an additional current of β = 1.5A on the first conductor for 2.3 < t < 7.7
and an additional current of 1A on the second conductor for t < 8.1.

Fig. 3 illustrates the behavior of this decomposition for
the system of Fig. 2. To begin with, Fig. 3(i) depicts ten
seconds of simulated sensor readings. Multiplication by
D reduces the sensor readings from three dimensions to
two, as shown in Fig. 3(iii). Finally, multiplication by
U recovers the original conductor currents, as shown in
Fig. 3(v).

Suppose that the reference load such as a power
resistor that draws a current of β which is modulated at a
particular frequency and duty cycle by a solid-state relay.
This combination, a resistor and a solid-state relay cycled
by a microcontroller, provides a typical calibration load

for our field work. Fig. 3(v) depicts a reference load
with β = 2A that is modulated at 2Hz with a 75%
duty cycle in the presence of background loads. When
the reference load is attached to the xth conductor, it
draws a modulated current of βîx (where îx denotes the
xth basis current, i.e. the length-n vector with a 1 in the
xth position and zeros everywhere else). The resulting
magnetic field is M ·βîx—in other words, it is equal to
β times the xth column of M . Fig. 3(ii) depicts these
magnetic field vectors for a 2A reference load used with
the system of Fig. 2.

In general, the demodulation algorithm of [1] is used
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to detect the presence of the reference load and determine
the sensed magnetic fields which are due to each current
that it draws. Suppose that p runs of the reference load
are detected (where p ≥ n) and that the demodulated
sensor readings in the xth run are equal to σx. If the
reference load switches on at time tx, then

σx = s(tx + ε)− s(tx − ε)

for a sufficiently small value of ε. The demodulation
algorithm is simply a more robust method of determining
this quantity in the presence of other loads.

After the reference load has been attached to every
conductor, the k-by-p matrix

Σ =
[
σ1 · · · σp

]
(3)

is assembled and the eigendecomposition of the k-by-k
matrix ΣΣ′ is computed. Because ΣΣ′ is Hermitian pos-
itive semidefinite, its eigenvalues are non-negative real
numbers and its eigenvectors are orthonormal. Suppose
that the eigendecomposition is given by

ΣΣ′ =
[
ρ1 · · · ρk

] λ1 0
. . .

0 λk


ρ
′
1
...
ρ′k

 (4)

where the ρx are orthonormal k-element column vectors
and λx ≥ λx+1.

Although the columns of Σ are k-dimensional vectors,
they all correspond to valid sensor readings and so they
all lie in an n-dimensional subspace defined by the image
of M . Therefore the rank of Σ is equal to n, and λx = 0
for x > n. In practice, any noise added to the sensor
readings may increase these eigenvalues to be slightly
greater then zero. Reference [6] proves that the gap
between the smallest nonzero eigenvalue and the largest
zero eigenvalue is bounded by the signal-to-noise ratio
of the sensors, so counting the nonzero eigenvalues of
ΣΣ′ is a robust method to determine n.

The eigendecomposition of ΣΣ′ also provides the
matrix

D =
[
ρ1 · · · ρn

]′
. (5)

Reference [6] proves that there exists an invertible U
such that M+ = UD, and furthermore, that M+ is
the only left inverse of M which may be written as a
product of a matrix U with this D. Fig. 3(iv) illustrates
that D projects the columns of M to an n-dimensional
subspace while preserving their lengths and the angles
between them. All that remains is to find the matrix U .

A spectral clustering algorithm [7] is used to group
the vectors σx by conductor. The distance function d

used by the clustering algorithm is the angle between
the lines spanned by two reference load signatures, i.e.

d(σx,σy) = arccos

(
‖σ′xσy‖
‖σx‖‖σy‖

)
. (6)

Because D preserves the angles between reference sig-
natures,

d(σx,σy) = d(Dσx,Dσy)

and the clustering can be performed in n-dimensional
space. The elements of this space are expected to be
clustered near columns of β ·DM , as indicated by the
dashed regions in Fig. 3(iv).

Suppose that the clustering algorithm partitions
Dσ1, . . . ,Dσp into n clusters and selects a represen-
tative element δx for the xth cluster. Because the xth
cluster corresponds to the xth conductor, the reference
load currents are given by

βîx = Uδx.

This equation is solved for U to obtain

U = β
[
δ1 · · · δn

]−1
. (7)

Then

K = UD (8)

and calibration is finished. Fig. 3(vi) shows that mul-
tiplying βM by UD on the left recovers the original
reference currents βîx.

Algorithm 1 Calibration for direct currents with external
path for return current.
Require: each reference load signature present in s is

equal to β times a column of some matrix M , and
all columns of M are represented by reference load
signatures.

Ensure: K is the pseudoinverse of M , up to a permu-
tation of its rows.
function CALIBRATE(s, β)
σ∗ ← FINDREFERENCELOADS(s)
Σ←

[
σ1 · · · σp

]
λ∗,ρ∗ ← EIGENDECOMPOSITION(ΣΣ′)
n← COUNTNONZERO(λ1, . . . , λk)
D ←

[
ρ1 · · · ρn

]′
δ∗ ← SPECTRALCLUSTER(Dσ1, . . . ,Dσp)

U ← β
[
δ1 · · · δn

]−1
K ← UD
return K

end function

Algorithm 1 summarizes the method for determining
M+ from s that was derived in this section. In summary,
it is used in the following manner:
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1) Attach a reference load which draws a constant
current of β to each conductor of the instrumented
cable in turn.

2) Call the function CALIBRATE(s, β), where s is
a range of sensor data that includes all of the
reference load runs. The result is the matrix M+.

3) To perform regular monitoring of currents, multi-
ply the sensed magnetic field s(t) by M+ on the
left to obtain the current i(t).

III. ALTERNATING CURRENTS

The calibration algorithm is next extended to the case
of AC systems. The same algorithm that was developed
for DC systems is applied to the Fourier transform of
the AC sensor data. An important difference is that the
Fourier transform is complex-valued and includes both
magnitude and phase information. In this section, it is
still assumed that an unmonitored conductor carries the
return currents and that a modulated reference load is
used for calibration. The AC reference load is a resistive
device, i.e. when it is switched on it draws an alternating
current that is in phase with the applied voltage.

The Fourier transform F is defined by(
Fy(f)

)
(t) =

√
2

∫ 1

0
f(t− Tτ)e2πijτ dτ (9)

where T denotes the period of the alternating current. In
other words, Fy(f) is the yth Fourier coefficient of f
over a sliding window with a length of one period. The
normalization factor is chosen so that the magnitude of
Fy(f) is equal to the RMS amplitude of the correspond-
ing sinusoid.

The power transmission over one period is defined as

px(t) = F1(vx)(t) · F1(ix)(t),

where the real part of px is the real power transmitted
on the xth conductor and the imaginary part of px is the
reactive power on the xth conductor. Suppose that the
phase of the voltage vx(t) on the xth conductor is θx,
so that

vx(t) = Ax cos(2πt/T + θx).

The amplitude Ax is known in advance, so the calibration
procedure is only responsible for determining the rotated
current

cx(t) =
px(t)

|F1(vx)(t)|
= e2πjt/T+jθx · F1(ix)(t).

This equation can be written in vector form as

c(t) = e2πjt/T ·Θ · F1(i)(t) (10)

where

Θ =

e
jθ1 0

. . .
0 ejθn

 .
It happens that c(t) is directly related to the Fourier

transforms of the sensed magnetic fields. These trans-
forms are given by

b(t) = e2πjt/T · F1(s)(t) (11)

where e2πjt/T is a phase shift to compensate for the
alignment of the transform window. Since F1 is a linear
operator, equation (1) implies that

F1(s)(t) =M · F1(i)(t). (12)

Combine (10), (11), and (12) to obtain

b(t) =MΘ′c(t) (13)

and the inverse relation

c(t) = ΘM+b(t). (14)

Equations (13) and (14) are analogous to (1) and (2)
from the DC case.

In order to compute b from s, it is necessary to deduce
e2πjt/T from measurements of the conductor voltages.
(This prevents the inevitable problem of clock skew
between the supposed time t and the actual phases of
the voltages.) Suppose that a capacitively-coupled non-
contact voltage sensor [1] is used to measure an arbitrary
mixture vm(t) of the conductor voltages. Since the the
time t may be shifted by any constant factor, suppose
without loss of generality that vm(t) is a “zero phase”
signal, i.e.

F1(vm)(t)

|F1(vm)(t)|
= e2πjt/T . (15)

Equations (11) and (15) are combined to obtain

b(t) =
F1(vm)(t)

|F1(vm)(t)|
· F1(s)(t) (16)

which allows b(t) to be determined without the need for
a synchronized clock.

With this framework in place, an AC system is easily
calibrated using algorithm 1:

1) Attach a reference load which draws a constant-
amplitude sinusoidal current of β (in phase with
the voltage) to each conductor of the instrumented
cable in turn.

2) Use (16) to compute b over an interval of time
which includes all runs of the reference load.

3) Call the function CALIBRATE(b, β). The result is
the matrix ΘM+.
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4) To perform regular monitoring of currents, com-
pute b(t) from s(t) using (16). Then multiply by
ΘM+ on the left to obtain the desired output c(t).

In other words, the DC calibration procedure seamlessly
handles AC phase shifts when it is applied to complex-
valued signals.

IV. RETURN CURRENTS

This section extends the DC and AC calibration algo-
rithms to the common case where the currents through
a multiple-conductor cable are required to sum to zero.
For example, in residential AC distribution systems, any
current drawn through one of the line conductors is
returned through the neutral conductor. We begin by
considering the DC case. Suppose that i1(t), . . . , in−1(t)
are the supply currents and in(t) is the return current.
The reduced-length current vector is defined by

ir(t) =

 i1(t)
...

in−1(t)

 .
and includes the supply currents but not the return
current. Using the constraint that i1(t)+ · · ·+ in(t) = 0,

i(t) =Hir(t) (17)

where

H =


1 0

. . .
0 1
−1 · · · −1

 .
Combine (1) and (17) to obtain

s(t) =MHir(t) (18)

and the inverse relation

ir(t) = (MH)+s(t). (19)

This is exactly the setup needed to apply algorithm 1:
1) Attach a reference load which draws a constant

current of β to each supply conductor in turn. The
return conductor always returns a current of −β.

2) Call the function CALIBRATE(s, β), where s is a
range of sensor data that includes all of the refer-
ence load runs. The result is the matrix (MH)+.

3) To perform regular monitoring of currents, multi-
ply the sensed magnetic fields s(t) by (MH)+

on the left to obtain ir(t).
The only difference when a return conductor is present
is that the result of calibration is ir instead of i.

The method is similar for the AC case. Analogous to
(10), define the reduced-length rotated currents

cr(t) = e2πjt/T ·Θ · F1(ir)(t). (20)

Combine (11), (18), and (20) to obtain

b(t) =MHΘ′cr(t) (21)

and the inverse relation

cr(t) = Θ(MH)+b(t). (22)

Once again, we apply algorithm 1:
1) Attach a reference load which draws a constant-

amplitude current of β (in phase with the voltage)
to each line conductor in turn. The neutral conduc-
tor always returns a current of amplitude β that is
180 degrees out of phase with the line voltage.

2) Use (16) to compute b over an interval of time
which includes all runs of the reference load.

3) Call the function CALIBRATE(b, β). The result is
the matrix Θ(MH)+.

4) To perform regular monitoring of currents, com-
pute b(t) from s(t) using (16). Then multiply by
Θ(MH)+ on the left to obtain cr(t).

The only difference when a return conductor is present
is that the result of calibration is cr instead of c.

V. AC DELTA-CONNECTED SYSTEMS

In the special case of AC delta-connected power dis-
tribution systems, the conductor currents are required to
sum to zero, but there is no designated return conductor.
None of the conductors are at zero potential. A reference
load must be attached between two line conductors, and
draws a current that is in phase with the difference
between the two voltages but out of phase with either
of the individual voltages.

For example, consider a three-phase system. The volt-
ages on all three conductors have the same amplitude,
but the voltages on any pair of conductors are separated
in phase by 120 degrees. Suppose that φx is the phase of
the voltage signal vx(t), θ1 is the phase of the difference
v1(t) − v3(t), and θ2 is the phase of the difference
v2(t)− v3(t).

A reference load is first attached between conductors
1 and 3, and then between conductors 2 and 3. The pre-
vious algorithm for AC systems produces cr according
to (20), where

Θ =

[
ejθ1 0
0 ejθ2

]
.

However, the desired result in this special case is

c(t) = e2πjt/T ·Φ · F1(i)(t) (23)
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where

Φ =

ejφ1 0 0
0 ejφ2 0
0 0 ejφ3

 .
Equations (17), (20), and (23) are combined to obtain

c(t) = ΦHΘ′ · cr(t). (24)

It follows from (22) and (24) that

c(t) = ΦH(MH)+ · b(t). (25)

Therefore the special goal of three-phase delta calibra-
tion is to determine the matrix ΦHΘ′, which is then
multiplied by Θ(MH)+ (the result of the previous AC
calibration algorithm) to obtain the matrix ΦH(MH)+

which recovers c(t) from b(t).
In a three-phase system, the voltages on any pair of

conductors have the same amplitude but are separated
in phase by 120 degrees. Thus there are only two
possibilities for the phase relationships between the three
voltages:

ejφ1/ejφ3 = e±2πj/3

ejφ2/ejφ3 = e∓2πj/3

ejθ1/ejφ3 = e±5πj/6

ejθ2/ejφ3 = e∓5πj/6.

and

ΦHΘ′ =

e±πj/6 0

0 e∓πj/6

e∓πj/6 e±πj/6

 . (26)

All that remains is to determine which signs the expo-
nents take.

Observe that ΦH(MH)+ is the product of a di-
agonal matrix Φ and a real-valued matrix H(MH)+.
Thus every row of ΦH(MH)+ is equal to a complex
scalar times a real row vector. However, if the incorrect
choice of ΦHΘ′ is made, the last row of the incorrect
ΦH(MH)+ cannot be expressed as a complex scalar
times a real row vector. This provides a mechanism for
deducing the correct value of ΦHΘ′.

Reference [6] shows that the function

r(w) = 1−

∣∣∣∣∣
k∑
x=1

w2
x

‖w‖2

∣∣∣∣∣
2

(27)

is equal to 0 if and only if the vector w has elements wx
which are all real multiples of a single complex number,
and increases with the angle between the vector’s ele-
ments in the complex plane. The function r is applied to
the two candidates for the bottom row of ΦH(MH)+,

and whichever one is closer to zero indicates the correct
choice of ΦHΘ′.

In summary, calibrating a three-phase delta-connected
system proceeds as follows:

1) Attach a reference load which draws a constant-
amplitude current of β (in phase with the applied
voltage) between conductors 1 and 3 and then
between conductors 2 and 3.

2) Use (16) to compute b over an interval of time
which includes all runs of the reference load.

3) Call the function CALIBRATE(b, β). The result is
the matrix Θ(MH)+.

4) Use (26) and (27) to determine the correct value
of the matrix ΦHΘ′.

5) Form the product

ΦH(MH)+ = ΦHΘ′ ·Θ(MH)+.

6) To perform regular monitoring of currents, com-
pute b(t) from s(t) using (16). Then multiply by
ΦH(MH)+ on the left to obtain c(t).

If (26) and (27) do not clearly indicate which is the
correct value of ΦHΘ′, then the initial assumption of
symmetric three-phase power distribution was incorrect.

VI. ELIMINATING THE REFERENCE LOAD

In some cases, it is not feasible to attach a special
calibration device to each conductor. In a typical energy
monitoring appplication, most of the calibration process
can be carried out “implicitly” using only the standard
electrical devices which are already attached to the
conductors. The former requirement that each σx is
equal to β times a column of M is relaxed to allow
each σx to be an arbitrary scalar times a column of M .
Thus each σx can be the change in magnetic field due
to an arbitrary load switching on, rather than just the
change in magnetic field due to a known reference load
switching on.

However, the demodulation scheme is no longer appli-
cable for separating the magnetic field due to a particular
load from the magnetic fields due to background loads
which are operating simultaneously. Instead, s(t) is
passed through a high-pass filter and the local extrema of
the resulting signal are adopted as the new σx. Since it is
very unlikely for independent loads attached to different
conductors to switch on or off at exactly the same instant,
these values of σx indeed represent separate columns
of M . The revised calibration procedure is given in
algorithm 2.

Implicit calibration differs from standard calibration in
that (i) p may be much larger than n, and (ii) the vectors
Dσx in a cluster may have different magnitudes. The
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Algorithm 2 Implicit calibration (without a reference
load) for direct currents with external path for return
current.
Require: the majority of step changes present in s are

scaled columns of some matrix M , and all columns
of M are represented by step changes.

Ensure: K is the pseudoinverse of M , up to a permu-
tation of its rows and constant scaling factor applied
to each row.
function IMPLICITCALIBRATE(s, β)
ŝ← HIGHPASSFILTER(s)
σ∗ ← FINDLOCALEXTREMA(ŝ)
Σ←

[
σ1 · · · σp

]
λ∗,ρ∗ ← EIGENDECOMPOSITION(ΣΣ′)
n← COUNTNONZERO(λ1, . . . , λk)
D ←

[
ρ1 · · · ρn

]′
δ∗ ← SPECTRALCLUSTER(Dσ1, . . . ,Dσp)

U ← β
[
δ1 · · · δn

]−1
K ← UD
return K

end function

former is not important because the eigendecomposition
and clustering algorithms scale well to larger datasets.
The latter means that U and K can only be determined
up to a constant scaling factor multiplying each row.
However, in any building that is outfitted with a low-
bandwidth utility-provided power meter, the non-contact
sensor measurements may be compared with the utility’s
power measurements over a longer period of time to
determine the unknown scaling factors.

VII. RESULTS

In any real application of non-contact sensors, it is
impossible to know the matrices M or Θ in advance.
This section begins with a numerical example so that the
calibration procedure can be tested with full knowledge
of the unknown parameters. Following this analytical
demonstration of the algorithm, this section also presents
results comparing a non-contact power sensor with a
conventional power meter in an actual experiment on
a three-phase power service.

Suppose that there are three sensors instrumenting a
household service entrance cable with two high-voltage
conductors and a neutral return, such that the sensor
matrix is given by

M =

0.5 0.3 0.7
0.3 0.5 0.7
0.4 0.4 0.8

 .
This poorly-conditioned matrix is typical of service

entry cable with a braided neutral conductor surrounding

the line conductors, similar to the cable illustrated in
Fig. 1.

Further suppose that the line voltages are 2π/3 radians
apart, and the reference phase is 0.5 radians behind the
first conductor voltage, so that

Θ =

[
e−0.5j 0

0 e2πj/3−0.5j

]
.

The reference load is run four times (twice on each
conductor). Each time, it draws an RMS current of
β = 2.2A between a line conductor and neutral. If
the reference load signature σx corresponds to the yth
conductor, then we simulate

σx = βe−jθyM (̂iy − î3) + nx (28)

where nx is a randomly generated complex noise vector
that is scaled to perturb each σx by about 2%.

Equation (28) is applied to obtain

σ1 =

+0.01 + 0.86j
−0.01 + 0.43j
+0.01 + 0.87j

 σ2 =

−0.39− 0.22j
−0.78− 0.44j
−0.76− 0.43j



σ3 =

−0.39− 0.20j
−0.78− 0.43j
−0.80− 0.42j

 σ4 =

+0.04 + 0.90j
+0.02 + 0.45j
+0.02 + 0.87j

 .
The goal of calibration is to determine the matrix
Θ(MH)+, which is equal to[

+1.81− 0.99j −2.58 + 1.41j −0.52 + 0.28j
+0.07− 2.94j −0.05 + 2.06j −0.01− 0.59j

]
.

However, this matrix must be determined using only the
quantities σ1, σ2, σ3, σ4, and β.

First assemble the σx into Σ and compute

ΣΣ′ =

 1.94 1.57− 0.02j 2.32− 0.02j
1.57 + 0.02j 1.98 2.35 + 0.02j
2.32 + 0.02j 2.35− 0.02j 3.09

 .
The eigenvalues of ΣΣ′ are 6.62, 0.40, and 0.001, so
n = 2. From the eigendecomposition of ΣΣ′,D is given
by[
−0.51− 0.00j −0.52 + 0.01j −0.68 + 0.01j
+0.71 + 0.00j −0.70 + 0.02j −0.00− 0.00j

]
.

The clustering algorithm assigns Dσ1 and Dσ4 to the
first cluster and Dσ2 and Dσ3 to the second cluster,
with cluster centers

δ1 =

[
−0.03− 1.27j
+0.01 + 0.32j

]
δ2 =

[
+1.14 + 0.61j
+0.28 + 0.15j

]
.

Therefore

U = β
[
δ1 δ2

]−1
=

[
−0.02 + 0.85j +0.11− 3.52j
+0.76− 0.41j +3.06− 1.62j

]
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Fig. 4. Data collected by non-contact and traditional power meters.
The turn-on transients depicted are from (i) a 250W incandescent
lightbulb, (ii) a 1500W space heater, (iii) an 0.25 hp induction motor,
and (iv) a 600W bank of dimmable incandescent lightbulbs.

and the matrix UD is equal to[
+0.09− 2.95j −0.02 + 2.03j −0.00− 0.57j
+1.80− 0.95j −2.51 + 1.40j −0.54 + 0.28j

]
,

which differs from the true value of Θ(MH)+ by about
2%. This deviation is caused by the noise added to σx.
The rows are permuted because the order of clusters is
determined arbitrarily, i.e. the two line conductors have
no inherent ordering.

Next, the calibration algorithm was tested with the
non-contact sensor system shown in Fig. 1 installed on
the feeder cable of a three-phase 208/120V laboratory
electrical service. The service provides power to a collec-
tion of electrical loads, including a 250W incandescent
fixture, a 1500W space heater, a quarter horsepower
induction motor pump, and a bank of incandescent lamps
with a total consumption of 600W . Along with this “non-
contact” system, a “traditional” monitor was installed
using high-bandwidth LEM LA-55 current sensors and
ohmic LV-25P voltage sensors. This traditional current
and voltage monitoring equipment was installed on the
AC service entrance cable for comparison.

The non-contact sensors were calibrated using algo-
rithm 1 and the various loads were operated on each of
the three line conductors. Voltage phase is determined

by the sensors shown in Fig. 1 by the capacitive sensors
collocated in each sensor head, permitting the real-time
computation of consumed power. The results of this
experiment are plotted in Fig. 4. The comparison in
Fig. 4 illustrates that the traditional power measurements
and the non-contact power measurements agree to better
than 1% over a dynamic range of 1000W.

VIII. CONCLUSION

The algorithms introduced in this paper permit easy
installation and calibration of non-contact power meters.
Since the calibration algorithm can handle overconstraint
in both the number of sensors and also the number of
calibration measurements, it is not necessary to know a
priori the precise number of conductors in a wire bundle,
as long as an upper bound is known. Knowledge of the
wire and sensor geometry is not required in order to
obtain accurate calibration and measurement results.

Our preliminary field experiments have uncovered
residential and commercial sites where conventional
assumptions about the power wiring do not hold. For
example, we have found homes where signifcant currents
flow or return down the earth or safety ground in a home.
Work is underway to extend the analysis illustrated
in Fig. 3 to provide automatic detection and reporting
of these “stray” or unexpected currents outside of the
conventional service connections.
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