
1

NilmDB: The Non-Intrusive Load Monitor Database
James Paris, John Donnal, Steven B. Leeb

Abstract—This paper presents NilmDB, a comprehensive
framework designed to solve the “big data” problem of non-
intrusive load monitoring and diagnostics. It provides the central
component of a flexible, distributed architecture for the storage,
transfer, manipulation, and analysis of time-series data. NilmDB
is network-transparent and facilitates remote viewing and man-
agement of large data sets by utilizing efficient data reduction
and indexing techniques.

Energy monitoring and smart grid applications have rapidly
developed into a multi-billion dollar market [1]. The continued
growth and utility of monitoring technologies is predicated
upon a necessity to economically extract actionable informa-
tion from acquired data streams. User and operator needs
define the nature of relevant information regarding power
consumption and operation of the distribution system. The
scale of this information can vary greatly in time, frequency,
and amplitude or dynamic range. Basic energy-scorekeeping
might be accomplished with time series data of real and
reactive power consumption; essentially, information at or
near line frequency. Power quality monitoring might require
knowledge of line current and line voltage harmonics an
order of magnitude higher in frequency. Diagnostic monitoring
might require knowledge of non-integer-multiple frequencies
of the line, e.g., tracking the principal slot harmonic of an
important rotating machine. All of this data, and other streams
as well, might be needed on time scales ranging from fractions
of a second, for a transient study, to months or years, for
energy scorekeeping and behavior tracking.

One of the largest roadblocks to effective analytics for
power data arises from the disparities of scale inherent in
data collection and processing, which often limits the speed
and resolution at which data can be captured and effectively
managed. This, in turn, affects the ability to extract action-
able information from the data. The failure of several high-
profile attempts at delivering such analytics to users, such as
Google PowerMeter and Microsoft Hohm [2], demonstrates
the difficulty of the problem. Similarly, “smart meters” may
in many cases ultimately prove too limited in their feature set,
communication requirements, and adaptability to justify their
installation expense.

The non-intrusive load monitor (NILM) has been shown
to be an effective and efficient energy monitoring system,
and has been applied to a wide variety of systems [3]–[6].
With its ability to perform high-speed and high-resolution
data acquisition, NILM also provides significant advantages
for condition-based monitoring and diagnostics. This paper
presents NilmDB, a comprehensive framework for solving the
“big data” analytics problem of energy monitoring applications
[7]. NilmDB is a network-enabled database that supports
efficient storage, retrieval, and processing of vast, timestamped
data sets. It allows a flexible and powerful separation between

on-site, high-bandwidth processing operations and off-site,
low-bandwidth control and visualization, through the use of
unique indexing and data compression techniques. Specific
analysis of NILM data can be performed as data is acquired,
or retroactively as needed, using short filter scripts written in
Python and transferred to the monitor. The NilmDB framework
takes advantage of inexpensive contemporary computing to
place adaptable processing power at locations in the utility
best suited to minimize communications requirements, while
preserving almost unlimited data analytics flexibility.

Large-scale power monitoring analytics poses a variety of
unique challenges related to storage, transfer, and processing
of data. Specific challenges include:

1) Data Relationships: Tracking the interrelationships be-
tween independent data streams, both raw and processed.

2) Data Uniformity: Managing the non-uniformity of data
rates, and the potential unreliability of data capture
across larger systems.

3) Efficient Storage: Supporting large amounts of stored
data, which can easily exceed hundreds of billions of
samples.

4) Analytic Flexibility: Supporting the extraction, and
processing, and insertion of arbitrary time-ranges of
data.

5) Network Transparency: Connecting distributed moni-
toring systems and users.

6) Simultaneous Access: Supporting simultaneous, error-
free access from multiple programs and users.

7) Data Visualization: Developing compression methods
and storage techniques to permit fast, efficient visual-
ization of data with minimal network bandwidth usage.

8) Disaggregation: Extracting information about individual
loads from aggregate data, and supporting diagnostics
that target these loads.

The NilmDB framework runs on any conventional Linux
platform, from a desktop to a Raspberry Pi [8]. It provides
provides powerful solutions to all of these challenges, as
detailed in the following sections.

I. DATA RELATIONSHIPS: STREAMS

Complex relationships often exist between collected data
sets. At the acquisition stage, a load monitoring system must
track each data source and its relationships to other data. For
example, three voltage waveforms may be related in that they
are three phases of the utility supply. Three currents may
represent the current draw from that utility, for a particular
motor. At a higher level, a storage system should be able to
group motors, perhaps by room or building. Computed metrics,
such as total power computation and power harmonics, also
require such details to be tracked.

2

Fig. 1: NilmDB data streams contain homogenous data in a
wide variety of formats. Streams are organized in a tree-like
hierarchy.

Fig. 2: Data contained within a NilmDB stream. A stream
contains a fixed number of columns of a homogeneous type,
and can be conceptually viewed as a table with an unbounded
number of rows. Each row holds a single unique timestamp
and the data for that time.

NilmDB achieves this by organizing all data in “streams”.
Streams contain time-series data from a particular source. This
data can represent physical quantities, computed values, or
any other timestamped information. Examples include voltage,
current, temperature, vibration, spectral envelopes, system
run-time and health metrics, error and event indicators, etc.
Streams are organized and identified in the database using a
tree-like path structure that mirrors an arrangement of files and
folders, as shown in Fig. 1.

Streams contain recorded or generated waveforms. They can
be viewed conceptually as large tables of data, as shown in
Fig. 2. Each row contains a unique timestamp and data that
matches the stream’s layout, which is determined when the
stream is created and indicates the number of columns and
their data type.

Besides timestamped data, NilmDB also supports storing
metadata with any number of arbitrary key/value pairs for each
stream. These key/value pairs can be used for any ancillary
information that should be stored alongside the stream. For
example, a “scale factor” key with a value of “1.337” might
be used to indicate a conversion ratio. Other uses for metadata
include adding appropriate labels for columns, or denoting the
source from which a processing filter read its input.

Fig. 3: Data intervals within a stream. Intervals mark ranges of
time for which data is present; within these ranges, individual
timestamped data values can be stored. Here, A and B contain
the same data, but different intervals; C and D are equivalent.

II. DATA UNIFORMITY: INTERVALS AND TIMESTAMPS

The data stored in streams may be non-uniform in time. For
example, a remote acquisition source that nominally captures
at 8 kHz may vary sample rate slightly with temperature or
battery state. Streams containing data like spectral envelope
harmonics typically store one sample per line period of the
utility voltage waveform, which can vary greatly, particularly
on isolated generator systems. Other types of load-monitoring
data may not follow any regular pattern at all, such as a stream
that identifies the turn-on events of a particular load.

Stream data may also be non-uniform due to unreliability
of the capture or data transfer process. A system that collects
data from remote sensors may periodically lose connection to
those sensors, leading to missing periods of data. A robust data
analytics system should handle these cases, allowing filters and
other processing to easily identify regions of time for which
data is and is not available.

In NilmDB, the time coverage of stream data is managed
through the tracking of non-overlapping data intervals, and
every sample of data within these intervals carries a unique
timestamp. Fig. 3 demonstrates four streams, their intervals,
and the data samples contained within those intervals. For
every half-open interval [S→ E〉, the timestamp t of any
sample stored within this interval satisfies the relationship

S ≤ t < E. (1)

Two streams can differ based on their intervals even if they
contain the exact same data samples, as demonstrated in
Fig. 3 in streams A and B. Similarly, two contiguous intervals
[T1 → T2〉 and [T2 → T3〉 are functionally equivalent to the
one long interval [T1 → T3〉, as shown in streams C and D.

Intervals in a stream are immutable. Creating an interval
and inserting data into that interval is a combined operation;
once created, no data can be added to, or removed from, that
particular interval. Instead, new non-overlapping intervals can
be created in the same manner, or intervals or segments thereof
can be removed together with their data. These constraints
allow for efficient storage, lookup, and retrieval of data within
NilmDB.

3

Fig. 4: The “Bulkdata” storage system. Stream data is stored
in fixed-size files, in a multi-level structure that prevents any
individual directory from growing too large. Removed data
segments are tracked so that their space can be freed.

III. EFFICIENT STORAGE: BULKDATA

Low bandwidth, higher-level data in NilmDB, such as the
list of intervals for a particular stream, the stream names, and
metadata variables, are stored in a standard SQL relational
database. However, standard database engines are unable to
store the vast quantities of data generated by a typical non-
intrusive load monitoring system, which can easily exceed
1012 samples per monitored system, per year, equivalent to
terabytes of data. Instead, the majority of NilmDB data is
handled by the “bulkdata” storage system. Bulkdata is an
addressable row store, meaning that each sample of NILM
data is stored under, and can be retrieved by, a unique row
number. It provides three fundamental operations:
• Extract data from a specified row number.
• Insert new data, and return the row numbers correspond-

ing to the starting and ending rows of that new data.
• Remove data corresponding to a range of row numbers.

The rows of data are stored as raw binary on disk. The
format of each row is derived from the stream layout, and
each row of a stream takes up a fixed number of bytes,
denoted Brow size. The structure of the bulkdata storage is
shown in Fig. 4. Stream paths, such as “/stream/one”, are used
as a directories in the filesystem. The data itself is stored in
numbered files inside these directories. The number of rows
in each data file, Nrows per file, is determined automatically
at stream creation time, based on stream layout, so that the
data file size is approximately 128 MiB. Depending on the
underlying operating system, there may be a limit to how many
files can efficiently be stored in a single directory. To avoid
this issue, the data files are further grouped inside numbered
directories. The group size is typically Nfiles per dir = 32768.

A. Bulkdata Row Extraction

Extraction of data from a particular row or range of rows is
straightforward. Because each row takes up a fixed amount of
space in the binary storage, the location of row n in a given
stream is fixed. The group directory number is given by:

group num = bbn/Nrows per filec/Nfiles per dirc (2)

Similarly, the file number is:

file num = mod (bn/Nrows per filec, Nfiles per dir) (3)

The specific offset of the row in the file is:

file offset = mod(n,Nrows per file) ·Brow size (4)

The binary data for the requested is then read out from the
Brow size bytes at offset 〈file offset〉, in the file 〈file num〉, in
the directory 〈group num〉.

B. Bulkdata Row Insertion

The bulkdata storage is append-only; that is, all newly
inserted data is appended to the last existing file, and the
corresponding row numbers for the new data will be greater
than any other data in the stream. The system tracks the
maximum row number Nmax ever used for a particular stream.
When inserting m rows of data, the new data is written to file
offsets corresponding to row (Nmax +1) through (Nmax +m),
with file offsets calculated as they were for data extraction,
and Nmax is updated accordingly.

C. Bulkdata Row Removal

Every data file, such as “0000”, can have an associated row
tracking file, “0000.removed”. This file contains a serialized
representation of a list, created in the Python “pickle” format
[9]. Each entry in this list is a pair of row numbers [start,
stop], indicating a range of “removed” rows that are no longer
referenced by any intervals and will no longer be accessed.
As more rows are removed, more entries are added to this
file. Finally, when every row in a particular data file has been
marked as removed, both the data file and its tracking file
are completely deleted from disk, freeing the space previously
used.

IV. ANALYTIC FLEXIBILITY: INTERVAL TREE AND DATA
EXTRACTION

Data analysis and processing within the NilmDB frame-
work is accomplished through the use of filters, which query
NilmDB in order to extract and process data from arbitrary
time intervals. The database provides analytic flexibility in this
regard, by being able to efficiently supply any requested time
range [SR → ER〉 of data, even if this time range does not
match up directly with one of the previously-inserted intervals
of data in the stream.

The arbitrary data extraction is based on the stream interval
tracking and the stream data timestamps. Rather than searching
through each interval in a linear fashion to locate the requested
data, or creating and maintaining a database index on the
timestamps, extraction is performed quickly and efficiently by
first utilizing an interval tree, as shown in Fig. 5. The interval
tree is a red-black tree, a form of binary search tree with a
per-node “coloring” [10]. The coloring is used to guarantee a
balanced structure by maintaining the following invariants:
• The root node is black.
• If a node is red, its children are both black.

4

Fig. 5: Red-black interval tree, used to efficiently locate and
manage the intervals in which data is stored. The structure is
maintained such that the height of a tree with n nodes is at
most 2 · log2 (n+ 1).

function EXTRACTDATA(SR, ER, I)
result ← [] . Initialize empty result list.
for all intervals i in I do . For each interval.

(S,E, ρS , ρE) ← i . Get interval parameters.
ρSR
← LOCATETIME(SR, ρS , ρE) . Locate start.

ρSE
← LOCATETIME(SE , ρS , ρE) . Locate end.

for n← (ρSR
to (ρSE

− 1)) do
result ← result + bulkdata[n]

return result . Return all matched rows.

Algorithm 1: Data extraction from an arbitrary time range
[SR → ER〉, given the set I of all stream intervals that
intersect this range.

• All paths from the bottom of the tree to a particular node
contain the same number of black nodes.

When inserting or deleting nodes from the tree, these invariants
can be maintained in O

(
log2 n

)
time by recoloring and moving

nodes as necessary [10]. The maximum height of a balanced
tree with n nodes is at most 2 · log2 (n+ 1), and so search
operations also take O

(
log2 n

)
time. Thus, the time needed to

insert, remove, and locate a specific interval in a stream grows
with the logarithm of the number of intervals present. This is
used to efficiently locate the set I of all intervals that intersect
the requested time range [SR → ER〉.

Given I , the NilmDB database layer proceeds to find the
bulkdata rows, corresponding to these intervals, that specif-
ically contain timestamps in the range [SR → ER〉. Since
any particular interval in the bulkdata storage stores only
monotonically-increasing timestamps, the rows can be found
efficiently with a binary search. The algorithms EXTRACT-
DATA and LOCATETIME, shown in Algorithms 1 and 2, are
used to perform this search. They return the rows of data
corresponding to the requested interval, completing the data
extraction.

V. NETWORK TRANSPARENCY: CLIENT/SERVER MODEL

Modern energy monitoring systems are increasingly dis-
tributed in nature. Sensors and data acquisition systems may
involve a variety of network-connected or wireless compo-
nents that are often capable of doing nontrivial computation
themselves. As the complexity of data processing and analytics

function LOCATETIME(t, ρS , ρE)
ρlow ← ρS . Initial search range is all of the rows
ρhigh ← ρE
while ρlow < ρhigh do . Repeat until row is found

ρmid ← b(ρlow + ρhigh)/2c . Find midpoint
if bulkdata[ρmid].timestamp < t then

ρlow ← ρmid + 1 . Narrow search to right half
else

ρhigh ← ρmid . Narrow search to left half
return ρlow

Algorithm 2: Binary search to locate the first bulkdata row in
the range [ρS , ρE〉 with a timestamp greater than t.

Fig. 6: NilmDB system architecture. Client programs and
filters interact with NilmDB via Hypertext Transfer Protocol
(HTTP), which supports local and remote connections equally
well.

grows, the use of distributed or “cloud” computing models is
crucial to maintain required performance levels.

NilmDB supports these forms of networked computing by
following a client/server model. The general architecture of
the NilmDB server is shown in Fig. 6. Multiple clients, or
end users, can access the server, and perform requests and
actions. Users and systems can utilize a variety of interfaces to
communicate with the server, such as command-line or web-
based applications. Regardless of the source, all interaction
with the NilmDB server eventually takes place through a stan-
dard HTTP/1.1 compliant interface [11]. The HTTP defines
methods that perform actions on particular resources, which
are identified by Uniform Resource Locator (URL). These
actions correspond to the fundamental NilmDB operations,
such as creating a stream, listing available intervals, and
inserting or extracting data.

In order to fully support a distributed computation model,
the NilmDB framework includes a secondary server, NilmRun,
which gives clients the ability to control the execution of
software on remote NilmDB hosts. For example, consider
a system where a remote NilmDB server is collecting and
storing data, and a local client wishes to manipulate this data in
some way, to extract a single metric. Using NilmRun, the client

5

Fig. 7: Serialization of database operations. Incoming HTTP
requests are handled by a multi-threaded server, which per-
forms lower-level database operations through a serializer
thread. All operations are then run in a single thread, in the
order they were enqueued.

can transmit short processing filters to the remote machine,
execute them there, and retrieve the status and results. This
conserves bandwidth, and increases throughput, compared to
the client pulling down the data and computing the metric
itself.

The networking capabilities of NilmDB are heavily used by
NILM Manager, which is fully described in [12]. NILM Man-
ager is a unified and centralized management infrastructure for
the distributed NilmDB system. It connects to remote NilmDB
systems through a secure virtual private network (VPN), pro-
viding a simple, user-friendly and web-based interface to any
authenticated user with an Internet connection. This interface
includes a wide variety of tools, including configuration of
servers and streams, real-time data visualizations, and the
interactive testing and development of new data processing
filters.

VI. SIMULTANEOUS ACCESS: SERIALIZATION

Support for simultaneous access from multiple clients is
a requirement for real-time load monitoring applications, as
analytics must continuously be performed while data is being
captured. In order to support this use case, the HTTP server
interface of NilmDB is multi-threaded, and supports client
connections and requests that can come in at any time.
Receiving these requests, or sending responses, might proceed
slowly, depending on network conditions, and so the server
supports and can transfer data on any number of simultaneous
connections. However, operations that modify the database
state generally need to be performed one at a time, in order
to maintain internal consistency of the stored data and state.
While complex fine-grained locking and ordering may allow
some database operations to run concurrently, NilmDB uses
a more straightforward approach where direct database access
must be performed from one thread only.

Single-threaded access is accomplished through the use of
the “serializer” module, which allows any running thread to
enqueue a function call “request” and wait for the result. When
the database is not busy, the serializer will retrieve the earliest
request from the queue, perform its function call in a single,

Fig. 8: Visualization of NilmDB streams through the NILM
Manager. The NILM Manager provides a user-friendly inter-
face that allows interactive nagivation and zooming of arbitrary
NilmDB data streams.

global thread, and return the result to the original thread. Thus,
the serializer ensures that any operations on the database are
serviced one at a time, in first-in, first-out (FIFO) order. The
process of running queued requests in the serializer thread is
shown in Fig. 7.

Some HTTP requests may take an unbounded amount of
time to complete, such as extracting data from a large interval.
To ensure fairness between clients, the NilmDB database
layer may choose to only perform a portion of the requested
operation before returning, which gives other threads that
are waiting for the serializer a chance to run. The HTTP
server handles such occurrences automatically, resubmitting
the remainder of the operation to the serializer until it is
complete. The client sees it as single HTTP request and
response.

VII. DATA VISUALIZATION: NILM MANAGER AND
DECIMATION

Visualization of data provides significant benefits to load
monitoring. In the installation and testing phases of a non-
intrusive load monitor, the ability to visually explore stored
data enables real-time refinement of sensor networks. During
the research and development of specific models, performance
metrics, and reports, a visual display of initial, intermediate,
and final processing results provides significant insight into the
analytics under development. For end-users, the ability to plot
and explore data trends, energy usage, reports, and diagnostic
indicators leads directly to actionable results.

The NILM Manager, shown in Fig. 8, provides a power-
ful data visualization and nagivation interface for NilmDB
systems [12]. This interface forms a central component of
the manager, and is used both as a standalone tool for
exploring NilmDB streams, and as an embedded component
for controlling and visualizing the output of other tools. The
features of the plot engine include:

6

Fig. 9: Decimation of stream data. Each decimation level
tracks the minimum, mean, and maximum of a block of values
from the previous level. The total storage requirement for
N original samples is only 2N , regardless of the number of
levels.

• Live, draggable, zoomable plots with “Google Maps-like”
navigation.

• Dual y axes with independently adjustable scaling and
positioning.

• Simultaneous plotting of data with compatible units.
• Overview window to facilitate navigation of large data

streams.
• Antialiasing of high frequency data through shading of

signal envelopes.
• Support for discontinuous data and gaps in streams.

Crucially, the plotting engine achieves these features while
transferring only a minimal amount of data from the remote
NilmDB server. Typically, the number of data points retrieved
to display a particular window of data is on the order of 1,000
per plotted stream, regardless of zoom level.

The plotting engine achieves these low data transfer rates in
two ways. First, it makes heavy use of the stream and interval
support of NilmDB, particularly when extracting data. For
example, when extracting data corresponding to the currently
displayed x-axis, the server manages all details of finding and
returning only that data which is both present and needed.

The second feature that enables efficient plotting is decima-
tion. Here, decimation is a process by which ancillary streams
of filtered, downsampled data are pre-computed and stored
on the server, similar to the computer graphics technique of
“MIP mapping” [13]. An example of the decimation process
is shown in Fig. 9.

Decimated streams store the mean value for each column
of an input stream, including the timestamp, calculated over
small successive blocks of γ rows. Typically, γ = 4. Thus,
for an input stream with N rows, the first decimation contains
N/4 rows. The process can be repeated in multiple “levels”,
with each level having correspondingly fewer rows, until just
one row remains, containing the average of all the data in
the stream. In addition to the mean, decimated streams also
store the minimum and maximum values of each successive
block. For repeated decimations, these are calculated over the
previously computed extrema.

When a requesting data for a plot, NILM Manager queries
NilmDB for the total number of data rows in the desired
interval. Based on the response, it automatically determines
and requests data from the decimation level that contains the
optimal number of points for display. The means are plotted
as a line, and the minima and maxima are used to plot signal
envelopes in a lighter shade. This helps maintain a visual
indication of the data range of the original stream, similar to
the display of a digital oscilloscope. The averaging operation
also provides a simple low-pass filter, removing aliasing effects
from the plot.

The additional storage requirements for the decimated
streams are modest. Consider a stream with N rows and one
column per row that is decimated by a factor of 4, as shown in
Fig. 9. Decimated streams store three times as many columns
(minimum, mean, and maximum) as the original stream, but
each decimation level contains one-fourth as many rows. The
total number of stored values for the original data plus L
decimation levels is given by the geometric series:

Ntotal = N + 3N ·
L∑

k=1

(
1

4

)k

(5)

= 3N ·
L∑

k=0

(
1

4

)k

− 2N (6)

Taking the limit of this as L→∞ gives:

lim
L→∞

Ntotal = 3N ·
(

1

1− (1/4)

)
− 2N (7)

= 2N (8)

Therefore, storing every decimation level of a stream in
NilmDB will at most only double the storage requirements
of the original data, when decimating by a factor of 4. This
overhead is low enough that it is almost always outweighed
by the resulting bandwidth reduction and visual quality of the
plots.

VIII. DISAGGREGATION: TRAINOLA AND DIAGNOSTICS

One of the defining aspects of non-intrusive load monitoring
is sensor reduction through the acquisition of aggregate power
measurements from a collection of loads. Individual load
identification and diagnostics requires subsequent disaggre-
gation of these loads. Generally, this relies on the existence
of some unique metric or feature of individual systems that
distinguishes loads of interest. Typical metrics include steady-
state power level and transient event shape, amplitude, and
sequencing. In particular, event identification based on ex-
emplar matching has been demonstrated as a particularly
useful technique for identification and diagnostic monitoring
[4], [14]–[16]. To support this, NilmDB and NILM Manager
provide the “Trainola” transient event identification tool.

A. User Interface

Trainola is exposed by NILM Manager as an interactive
workspace, shown in Fig. 10. The lower half of the window
mirrors the data visualization interface, where the user can

7

Fig. 10: “Trainola” exemplar-based event identification. The
user graphically identifies examples of transient events in an
input stream, which can then be automatically located and
marked in an output stream. Matching events are plotted as
vertical lines, overlaid on the input data.

freely select, plot, and navigate NilmDB streams. At the
top, the user can create and name exemplars based on the
data currently in view. Typically, these exemplars correspond
to particular “turn-on” and “turn-off” events, and extend to
include a few seconds of steady-state behavior before and after
each transient event. For streams with multiple columns, such
as spectral envelope preprocessor harmonics, the exemplars
consist of whichever columns are visible when the exemplar
is saved.

To run the automatic identification process, the user visually
navigates to the target data stream and zooms out to the time-
frame over which events should be identified. The exemplars
and target data do not have to come from the same stream,
but the same named columns must be present in both. Then,
the “Run Trainola” button starts an identification process on
the remote machine, which will classify events. During and
after the identification, matched events can be viewed as
vertical lines overlaid on the plot, by selectively enabling each
exemplar. The events are also stored in a dedicated NilmDB
output stream, and can be accessed by other filters and tools.

B. Matching Algorithm

The Trainola tool matches the shape of exemplars to the in-
put data using the following algorithm. Consider two sampled
waveforms of equal size N , for example, an observation f [n]
and an exemplar g[n]. After removing dc offset, a measure of
similarity between two waveforms is the Euclidean distance,
defined as:

D =
∑
n∈N

(f [n]− g[n])2 (9)

Fig. 11: Correlation metric for a matching exemplar. A peak
that falls within a detection window around 1.0 indicates that
the exemplar matches at that time.

This expression can be expanded to:

D =
∑(

(f [n])2 − 2f [n]g[n] + (g[n])2
)

(10)

=
∑

f [n]2 +
∑

g[n]2 − 2
∑

f [n]g[n] (11)

which is more conveniently expressed in terms of the dot
product:

D = (f · f) + (g · g)− 2(f · g) (12)

= |f |2 + |g|2 − 2(f · g) (13)

If the waveforms match, the Euclidean distance between them
would be D = 0, and so the equation reduces to:

0 = |f |2 + |g|2 − 2(f · g) (14)

f · g =
|f |2 + |g|2

2
(15)

Furthermore, if the amplitudes match, |f | = |g|, giving:

f · g =
2|g|2

2
(16)

f · g
|g|2

= 1 (17)

Thus, (17) holds when the two waveforms match in ampli-
tude and shape. Non-matching waveforms may also satisfy this
condition in degenerate cases, but in general, M = (f ·g)/|g|2
has been found to be a useful figure of merit to use when
judging power signature similarity [16]. As M approaches 1.0,
it indicates confidence that f and g match, both in shape and
amplitude.

When the full waveform f contains more points than the
exemplar g, the calculation can be performed over sliding
windows of the input data, determining M(t) at each window
offset. As g “slides” over a feature in the f that matches in
shape and amplitude, M(t) will approach a local maximum of
1.0. Fig. 11 demonstrates this metric for a matching exemplar.
In Trainola, a peak-finding algorithm is applied to locate local
maxima, and values that fall within a small detection window
around 1.0 are marked as matched events.

8

C. Diagnostics

Once individual transient events have been identified by
Trainola, processing algorithms can be used to extract ac-
tionable system status information, such as health metrics,
failure indicators, and motor speed estimations. Many such
diagnostics have been developed within the context of the
NILM [6], [15], [17]–[19], and can be applied within the
NilmDB framework.

IX. CONCLUSIONS

The NilmDB data storage and management framework
represents a shift in the design and implementation of load
monitoring systems. It provides a fully structured, consistent,
network-aware architecture that enables the development of
actionable diagnostics across a wide variety of systems. It
provides these services while minimizing demand for network
communication reesources. NilmDB organizes and standard-
izes the collection and processing steps, enabling modular
and reusable filter components to streamline and simplify
the deployment of monitoring systems. With NILM Manager,
NilmDB provides the solution to the “big data” analytics
problem of large-scale power system monitoring. It enables
modern advanced NILM techniques, which can disaggregate
and report the operating schedule of individual loads strictly
from measurements of aggregate current consumption, while
maintaining low network bandwidth requirements and flexible
computing options.

ACKNOWLEDGMENTS

This research was funded by the BP-MIT Research Alliance,
the ONR Structural Acoustics Program, the MIT Energy
Initiative, and The Grainger Foundation.

REFERENCES

[1] D. J. Leeds, “The Soft Grid 2013-2020: Big Data & Utility Analytics For
Smart Grid,” http://www.greentechmedia.com/research/report/the-soft-grid-2013,
GTM Research, Tech. Rep., Dec 2012.

[2] Google, Inc., “An update on Google Health and Google PowerMeter,” Available
http://googleblog.blogspot.com/2011/06/update-on-google-health-and-
google.html, accessed 2013-07-26.

[3] S. B. Leeb, S. R. Shaw, and J. J. L. Kirtley, “Transient event detection in spectral
envelope estimates for nonintrusive load monitoring,” IEEE Transactions on Power
Delivery, vol. 10, no. 3, pp. 1200–1210, July 1995.

[4] L. K. Norford and S. B. Leeb, “Non-intrusive electrical load monitoring in com-
mercial buildings based on steady state and transient load-detection algorithms,”
Energy and Buildings, vol. 24, pp. 51–64, 1996.

[5] J. Paris, “A framework for non-intrusive load monitoring and diagnostics,” Master’s
thesis, Massachusetts Institute of Technology, Department of Electrical Engineer-
ing and Computer Science, February 2006.

[6] R. W. Cox, “Minimally intrusive strategies for fault detection and energy moni-
toring,” PhD, MIT, Department of Electrical Engineering and Computer Science,
September 2006.

[7] J. Paris, “A comprehensive system for non-intrusive load monitoring and diag-
nostics,” Ph.D. dissertation, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, September 2013.

[8] Wikipedia Foundation, “Raspberry pi,” Available http://en.wikipedia.org/wiki/
Raspberry Pi, accessed 2013-08-30.

[9] Python Software Foundation, “Pickle - python object serialization,” Available http:
//docs.python.org/2/library/pickle.html, accessed 2013-08-30.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext Transfer Protocol – HTTP/1.1,” IETF, RFC2616, Jun 1999.

[12] J. Donnal, “Home NILM: A Comprehensive Non-Intrusive Load Monitoring
Toolkit,” Master’s thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, June 2013.

[13] L. Williams, “Pyramidal parametrics,” in Proceedings of the 10th annual
conference on Computer graphics and interactive techniques, ser. SIGGRAPH
’83. New York, NY, USA: ACM, 1983, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/800059.801126

[14] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, “Nonintrusive load mon-
itoring and diagnostics in power systems,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 7, pp. 1445–1454, July 2008.

[15] E. Proper, R. W. Cox, S. B. Leeb, K. Douglas, J. Paris, W. Wichakool, L. Foulks,
R. Jones, P. Branch, A. Fuller, J. Leghorn, and G. Elkins, “Field demonstration of
a real-time non-intrusive monitoring system for condition-based maintenance,” in
Electric Ship Design Symposium, National Harbor, Maryland, February 2009.

[16] J. Paris, Z. Remscrim, K. Douglas, S. B. Leeb, R. W. Cox, S. T. Gavin, S. G.
Coe, J. R. Haag, and A. Goshorn, “Scalability of non-intrusive load monitoring
for shipboard applications,” in American Society of Naval Engineers Day 2009,
National Harbor, Maryland, April 2009.

[17] P. R. Armstrong, “Model identification with application to building control and
fault detection,” PhD, MIT, Department of Architecture, September 2004.

[18] W. Greene, J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar, R. Cox,
C. Laughman, and T. J. McCoy, “Non-intrusive monitoring for condition-based
maintenance,” in American Society of Naval Engineers Reconfigurability and
Survivability Symposium, Atlantic Beach, Florida, February 2005.

[19] U. Orji, Z. Remscrim, C. Laughman, S. B. Leeb, W. Wichakool, C. Shantz,
R. Cox, J. Paris, J. Kirtley, and L. Norford, “Fault detection and diagnostics for
non-intrusive monitoring using motor harmonics,” in Applied Power Electronics
Conference, Palm Springs, CA, February 2010.

http://www.greentechmedia.com/research/report/the-soft-grid-2013
http://googleblog.blogspot.com/2011/06/update-on-google-health-and-google.html
http://googleblog.blogspot.com/2011/06/update-on-google-health-and-google.html
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://doi.acm.org/10.1145/800059.801126

	I Data Relationships: Streams
	II Data Uniformity: Intervals and Timestamps
	III Efficient Storage: Bulkdata
	III-A Bulkdata Row Extraction
	III-B Bulkdata Row Insertion
	III-C Bulkdata Row Removal

	IV Analytic Flexibility: Interval Tree and Data Extraction
	V Network Transparency: Client/Server Model
	VI Simultaneous Access: Serialization
	VII Data Visualization: NILM Manager and Decimation
	VIII Disaggregation: Trainola and Diagnostics
	VIII-A User Interface
	VIII-B Matching Algorithm
	VIII-C Diagnostics

	IX Conclusions
	References

