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The Sinefit Spectral Envelope Preprocessor
James Paris, Zachary Remscrim, Dr. Steven B. Leeb, Dr. Steven R. Shaw

Abstract—This paper presents a new spectral envelope prepro-
cessor based on sinusoid fitting and the Discrete Fourier Trans-
form (DFT). This preprocessor is well-suited for non-intrusive
condition monitoring and diagnostics due to its high noise
resiliency and flexibility. It reduces data storage, transfer, and
processing requirements by extracting only relevant harmonic
signatures, This paper analyzes the resolution and accuracy
benefits of spectral envelopes including the effects of additive
white Gaussian noise and the presence of higher frequency
spectral harmonics.

I. INTRODUCTION

For many electrical systems driven by ac sources, the
“spectral envelope” representation of observed current and
voltage signals has proven to be a widely useful and powerful
metric for classification, diagnostics, and power quality mea-
surement [1]–[5]. Spectral envelopes describe the harmonic
content of the measured signals at integer multiples of the
ac line frequency driving the monitored loads. Such loads
exhibit behaviors that are synchronous with the line frequency.
By extracting spectral envelopes, the preprocessor facilitates
physically based analysis of power and current consumption.

The spectral envelope preprocessor has two primary tasks:
phase and frequency estimation, and harmonic coefficient
calculation. Existing versions of the spectral envelope prepro-
cessor vary in their implementations. For phase and frequency
estimation, common techniques include phase-locked loops
[4], weighted least-squares estimators, and Kalman filters [2].
To reduce computation load, existing implementations have
utilized techniques such as analog multipliers and precom-
puted basis vectors [2], [4].

This paper presents the Sinefit spectral envelope preproces-
sor based on non-linear least-squares sinusoid fitting combined
with the DFT. These techniques focus on accuracy and imple-
mentation flexibility, reflecting the growing availability of high
performance computing resources. The preprocessor is imple-
mented within the NilmDB framework [6], allowing reuse
and replacement of computation components for related or
optimized calculations. Sinefit solves problems with existing
preprocessors by providing more robust phase and frequency
detection, accurate timestamping of spectral envelopes, and
improved and quantifiable accuracy.

II. SPECTRAL ENVELOPES

Spectral envelopes ak(t) and bk(t) are short-term averages
of harmonic content, calculated over sliding windows of
an input signal. Fig. 1 demonstrates spectral envelopes as
computed for an ac load. The first plot is the raw sampled
input from a data acquisition board. The second shows the in-
phase and quadrature components of the first harmonic (60 Hz)
envelopes.
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Fig. 1: Raw ac voltage and current measurements (top) and
computed spectral envelopes (bottom).

A. Definition

For the NILM, we assume that the voltage and current
signals v(t) and i(t) are locally periodic over one ac line cycle.
For a discrete input i[n] sampled at rate fs, one period is of
length N = fs/f0 samples, and we can compute harmonic
coefficients as:

ak =
2

N

N−1∑
n=0

i[n] · sin(k(2πn/N)) (1)

bk =
2

N

N−1∑
n=0

i[n] · cos(k(2πn/N)) (2)

Here, k denotes the multiple of the line frequency to which
a particular coefficient corresponds; for example, k = 1
corresponds to the 60 Hz component and k = 3 to the 180 Hz
component.

Harmonic coefficients can also be calculated in complex
form using the DFT, which is defined as:

Xk = F(x[n]) =

N−1∑
n=0

x[n] · e−jk2πη/N (3)

Using Euler’s formula, we can extract ak and bk in terms of
the DFT as:

e−jw = cos(ωt)− j sinω(t) (4)

ak = − 2

N
imag(Xk) (5)

bk =
2

N
real(Xk) (6)

where, as before, N = fs/f0.
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The values of these coefficients are calculated for successive
or sliding windows of the input signal, and the resulting time-
varying harmonics ak[m] and bk[m] are the spectral envelopes.

Spectral envelopes can be extracted from any periodic or
quasiperiodic input signal, and are typically computed for the
current, using the voltage as the phase and frequency reference.
When computed separately for voltage v[n] and current i[n],
we denote the coefficients as avk, bvk, aik, and bik. Then, first
harmonic real and reactive power are:

P1 = av1 · ai1 Q1 = bv1 · bi1 (7)

For relatively “stiff” and harmonic-free utility voltage, av1 and
bv1 can be assumed to be constant, in which case

P1 ∝ ai1 Q1 ∝ −bi1 (8)

B. Phase Rotation

The coefficients ak and bk in (5) and (6) are calculated
with sliding or successive windows over the input data. These
windows must be phase-aligned with a reference, typically the
utility voltage, such that n = 0 corresponds to, for example,
the the zero crossing. Then, ak and bk will refer to the “in-
phase” and “quadrature” spectral components, respectively.

In the more general case, the spectral coefficients can be
computed over any window [n, n + N ], where the reference
phase corresponding to sample n is φ[n] = φ0 6= 0. Then,
a correcting rotation of −kφ0 can be applied to the complex
DFT coefficient Xk:

X ′k = Xk · eφ0·jk (9)

There are four common cases that require this phase rotation:

1) When calculating harmonic coefficients with a sliding
window that is shifted by a non-integer number of
periods, the start of each successive window will have
a different phase φ0, which must be accounted for by a
rotation of Xk on a per-window basis.

2) For three-phase ac systems, it is common to use a single
voltage VϕA as a phase reference. When computing
spectral envelopes corresponding to IϕA, IϕB , and IϕC
using this reference, phase rotations of 0◦, 120◦, and
240◦ should be applied, respectively.

3) Current transformers or transducers may introduce a
fixed phase offset in their measurement, typically 0-
1◦. Correcting this offset with phase rotation of the
preprocessor output can significantly reduce error at
higher harmonics.

4) Multi-channel data acquisition cards that sample sequen-
tially rather than simultaneously will introduce a similar
phase offset between samples. For example, evenly-
spaced, 6 channel, 8 KHz sampling of a 60 Hz signal
inserts a phase rotation of 0.45◦ between each channel.

In subsequent discussion, the first case is referred to as φshift,
and the others are collectively referred to as φextra.

nilm-sinefit nilm-prep

Sine fit data
t, A, f0, C

Spectral Envelopes
t, a1, b1, a3, . . .

NilmDB

Data
Acquisition

Raw data
t, v[n], i[n]

t, i t, f0t, v

Fig. 2: Block diagram of signal flow in the Sinefit spectral
envelope preprocessor.

III. IMPLEMENTATION

Existing preprocessors such as the Kalman-filter spectral
envelope preprocessor, described in [2], have been heavily
used in non-intrusive load monitoring and diagnostics [3],
[7]–[9]. However, a number of practical shortcomings of
this preprocessor have been identified [6]. To address these,
a new approach to spectral envelope preprocessing has been
developed within the NilmDB framework, a unified system for
managing and processing NILM data [6].

The new preprocessor has a modular, transparent design that
allows for easy replacement and reuse of components, such
as the phase alignment or harmonic coefficient calculation. It
also fully supports the capabilities of NilmDB by utilizing its
stream and metadata metaphors, and by incorporating accurate
timestamping for all data. The preprocessor uses a phase and
frequency estimation algorithm that is robust when presented
with highly variable or truncated voltage waveforms. Finally,
it focuses on correctness and implementation simplicity by
taking advantage of the significant advancements in computing
power since the existing preprocessors were developed.

Here, the spectral envelope preprocessor is split into two
independent components. The first, an algorithm and code
module called “nilm-sinefit”, performs least-squares fits
of sinusoids to successive windows of the input waveform in
order to mark zero crossings, frequency, and amplitude. The
second, “nilm-prep”, performs spectral envelope extraction
using (5), (6) and (9) over sliding windows of the input and
sine fit data. The signal flow in the new spectral envelope
preprocessor is shown in Fig. 2, and the implementations of
these components are detailed below.

A. 4-Parameter Sinusoid Fitting

In order to accurately estimate the unknown frequency and
phase angle from a voltage waveform, the preprocessor finds
the best fit of a sinusoid to the data, using the method identified
in IEEE Std 1241-2010 Annex B.2 [10]. Fig. 3 demonstrates
this optimal fit for two representative waveforms.

Mathematically, given an arbitrary waveform vector v of
length N sampled at frequency fs, we wish to calculate the
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(a) Sine fit on a noisy waveform.
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(b) Sine fit on a voltage that is zero for the first 1/4 of the window. Frequency
and phase are still identified with reasonable accuracy.

Fig. 3: Results of 4-parameter sinusoid fitting.

four parameters A′, B′, C, and f0 that best satisfy:

v′ = A′ cos

(
2πn

f0
fs

)
+B′ sin

(
2πn

f0
fs

)
+ C (10)

such that the least-squares residual
∑

(v[n]− v′[n])2 is mini-
mized. Note that this system is non-linear.

The algorithm that estimates these parameters is as follows.
First, an initial estimate of f0 is found by calculating the DFT
of v, locating the DFT index L with the largest magnitude,
and computing f0,est = L ·fs/N . This frequency is accurate to
within the resolution of the DFT. Other estimatation techniques
can be used; for example, the implementation in §III-B uses
the more accurate interpolated DFT described in [11], which
may improve convergence of the sinusoid fit for small N .

Now, perform the iterative fit of (10). Define the starting
conditions as:

A0 = B0 = C0 = 0 (11)
ω0 = 2π · f0,est (12)

For each iteration i = {0, 1, 2, . . . ,m}, perform a least-squares
fit on a linearization of the system. Given an assumed small
deviation from ωi of ∆ωi, the Taylor series expansion of
(10) around the current estimated parameters gives the linear
equation:

v′i = Di ·
[
Ai Bi Ci ∆ωi

]T
(13)

where

Di =
[
cos(ωit) sin(ωit) 1 di

]
(14)

di = Bit ◦ cos(ωit)−Ait ◦ sin(ωit) (15)

t =
[
0, 1, . . . , (N − 1)

]
/fs (16)

The least-squares solution to this system gives the updated
estimates for the next iteration as:

Ai+1

Bi+1

Ci+1

∆ωi+1

 =
(
Di

TDi

)−1 (
Di

Tv
)

(17)

ωi+1 = ωi + ∆ωi+1 (18)

Note that the least-squares fit in (17) can be computed with
a more numerically-stable method such as Q-R decomposi-
tion [10]. The solution converges rapidly, and the preprocessor
stops after a fixed number m = 7 iterations. The fitted
parameters for (10) are:

A′ = Am B′ = Bm (19)

C = Cm f0 =
ωm
2π

(20)

Finally, we convert this fit into the equivalent polar form:

v[n] = A · sin
(

2πn
f0
fs

+ φ0

)
+ C (21)

by computing:

A =
√
A2
m +B2

m (22)

f0 =
ωm
2π

(23)

φ0 = atan2(Am, Bm) (24)
C = Cm (25)

This form is preferable because the parameters [A, f0, φ0, C]
are more directly applicable for computing spectral envelopes.

B. Implementation of nilm-sinefit

The nilm-sinefit tool, implemented in Python, uses
successive 4-parameter sine wave fits to find and mark every
positive zero crossing (φ = 0) of an input voltage waveform.
Each mark includes the amplitude A, frequency f0, and offset
C of the following period. Given the expected line frequency
fexp and sampling rate fs, the fits are calculated over sliding
windows of

N = 3.5 · fs/fexp (26)

samples of voltage. This corresponds to approximately 3.5 pe-
riods, although the actual number will vary with f0. If the fitted
f0 falls outside predetermined bounds, or the amplitude A is
too low, the window is skipped to avoid spurious marks.

Fig. 4 demonstrates the fit and marking over a window of
length N . To avoid potentially double-marking a zero crossing
that occurs near window boundaries, the point Ns is calculated
as the last point within [0, N ] with phase angle π

2 . Only zero
crossings prior to Ns are marked, and the next window is
shifted to [Ns, Ns +N ]. This ensures that any particular zero
crossing will only fall squarely within one window, even as
sine fit parameters change.

The nilm-sinefit processing tool takes as input a single
NilmDB stream, and marks zero crossings using data from a
user-specified column in the input stream. Output marks are
written to a new stream consisting of a timestamp t and three
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Fig. 4: Windowing algorithm of nilm-sinefit. Sine fit is
performed over the window [0, N ], and positive zero crossings
are marked as shown by the circles. The next window starts
at Ns, the last point with phase angle π

2 .

Parameter Default Description
Nharm 4 Number of odd harmonics to store.
Nshift 1 Number of shifted windows for which to

compute coefficients, per zero crossing.
φextra 0 Extra phase rotation to apply, to correct for

known phase offsets.

Table 1: Parameters for nilm-prep.

floating-point values A, f0, and C. These values correspond
to the parameters from (21), as calculated for the crossing
detected at time t.

C. Implementation of nilm-prep

The nilm-prep tool, implemented in Python, reads
two data streams: an input waveform i[n], and the zero
crossing and f0 estimates for each period as marked by
nilm-sinefit. Other parameters that control its behavior
are shown in Table 1. For each identified zero crossing at time
t with frequency f0, the spectral envelopes are calculated with
the following algorithm:

1) Initialize N = fs/f0 and φshift = 0.
2) Extract N samples starting at time t+ (φshift/(2πf0)).
3) Use the Fast Fourier Transform to calculate Xk of i[n],

as defined in (3).
4) Apply rotation from (9) using φ0 = φextra − φshift to

obtain X ′k.
5) Calculate and store the first Nharm odd harmonic coeffi-

cients from X ′k using (5) and (6).
6) Increment φshift by 2π/Nshift.
7) Repeat from step 2 until φshift ≥ 2π.

This results in Nshift sets of coefficients per period of the
input waveform, by applying successive overlapping DFTs.
This sliding-window approach may be useful in some cases, as
it can help retain additional information about energy content
at harmonics that are not otherwise stored by this implemen-
tation, such as the even harmonics. For waveforms known
to consist primarily of the low-numbered odd harmonics,
Nshift = 1 is sufficient and results in the most space savings.

Output from nilm-prep is stored in a new NilmDB
stream where each row contains a timestamp and 2 ∗ Nharm
floating-point values numbers, in order {a1, b1, a3, b3, . . .}.
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Fig. 5: Quantization error, as would be introduced by a linear
ADC. The continuous function sin(x) is compared to the
same function represented discretely with only 4 and 2 bits
of resolution.

IV. COMPRESSION BENEFITS

Physical modeling of ac loads shows that there are often
useful bounds on the number and types of harmonics that are
present in the load current. By omitting these higher harmonics
from stored data streams, the spectral envelope preprocessor
performs a domain-specific form of compression that greatly
reduces data storage and transfer requirements. A typical
NILM data acquisition is 16-bit samples at a rate of 8 KHz. For
a three-phase system, 6 channels are recorded. Assuming one
64-bit timestamp is also stored with each sample, the storage
requirements for raw data are:

8 KHz · (64 + 16 · 6) bits = 13.8 GB / day. (27)

Preprocessor output is harmonics ak and bk for k = 1, 3, 5, 7
as 32-bit floating point values with a 64-bit timestamp, for
each of the three phases. One set of coefficients is calculated
per 60 Hz period, so the total storage requirements for pre-
processed data are:

60 Hz · (64 + 32 · 8) bits · 3 = 0.62 GB / day. (28)

Thus, the preprocessor reduces the data to only 4.5% of its
original size, while preserving all information about three-
phase power usage up to the 7th harmonic. Even doubling
this and storing up to the 15th harmonic still uses only 8.1%
of the original raw data space.

Other reductions of the data could instead be applied, for
example, simply recording aggregate real power averaged over
every period or second. However, such data would not reflect
the detailed short term variations that would occur in real
power, nor would it reflect any of the behavior of the higher
harmonics. Time-varying spectral envelope coefficients strike
a balance between the usefulness of the retained data and the
storage and transmission requirements of that data.

V. RESOLUTION AND ACCURACY

The original digital samples of the current and voltage
waveforms have limited precision due to quantization. As
shown in Fig. 5, the continuous input signal is divided into
B discrete regions, and each region is mapped to a unique
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Fig. 6: Example of the error caused by estimating signal
amplitude using the peak quantized sample value alone. Here,
A = 0.996, N = 128, B = 8.

digital code during the sampling process. This quantization
can be stated explicitly as

i[n] =
⌊
2B · i(t) + 0.5

⌋
(29)

where i(t) is normalized to the range [0, 1]. The preprocessor
input consists of N values of i[n] over one period of the line
voltage.

For power estimation and load identification purposes, it is
desirable to find the average power of the input signal, but
the quantization error affects this measurement. Using raw
data to directly estimate power is less accurate than using
preprocessed spectral envelopes to do the same. To compare
the accuracy, we begin by considering estimation of power
when the current waveform is a simple sinusoid of the form

i(t) = A sin(ωt) (30)

Here, total power is proportional to the amplitude A of the
sinusoid. More complex input waveforms are addressed in
§V-E.

A. Resolution of Power From Raw Data

A straightforward approach to estimating A from raw sam-
pled data is to locate the peak of the waveform. However, as
shown in Fig. 6, finding the amplitude in this manner leads
to measurement error, because the single point at the peak is
subject to the same quantization as any other point. Of the 2B

possible quantized sample values, the positive peak will reside
in the upper half, resulting in a total of 2(B−1) discernable
amplitudes. This corresponds to an overall resolution of

log2 2(B−1) = B − 1 (31)

bits of precision, slightly less than the original sampling
precision of B bits.

B. Resolution of Power From Preprocessor Output

The preprocessor improves effective power reesolution by
averaging over time. Specifically, nilm-prep uses not only
the quantized value at the peak, but all N sampled data
points over one or more periods. For example, the preprocessor
discards all but the low, odd-numbered harmonics; the sinusoid
in (30) contains no harmonics other than for k = 1. Thus,
the nilm-prep output encapsulates all information about
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Fig. 7: Sweeping through all input amplitudes of a single
fundamental frequency from 0 to 1, in order to enumerate
the number of possible quantized inputs. By symmetry, only
the first N/4 samples need to be considered.

the original signal. Since the analogous DFT is invertible,
this means that every unique sampled input has a unique
corresponding preprocessor output.

We can use this to determine how many discernible outputs
the preprocessor will produce as the amplitude A of the input
sinusoid changes. The sampling process that generates i[n]
is limited in resolution, and so there are necessarily a finite
number U of unique sampled i[n] waveforms. Because of the
1:1 relationship of the DFT, there are the same number U of
unique preprocessor outputs, and we can therefore discern U
different values of A.

To calculate U , consider sweeping A from 0 → 1, as
demonstrated in Fig. 7. By symmetry, let us consider only
the first N/4 samples. At A = 0, all samples are zero. As
A increases, there will be some transition where a single
quantized sample i[n] will increase by one. More specifically,
as A increases from 0 to 1, samples will monotonically
increase according to the following pattern:
• The first sample at n = 0 never increases.
• The peak sample at n = N/4 increases 2(B−1)−1 times.
• For each sample between these extremes, the number of

“increases”, or effective quantization steps, is given by:

Un =

⌊
(2(B−1) − 1) sin

(
2πn

N

)
+

1

2

⌋
(32)

where bxc denotes floor(x).
Each increase creates a new input to the preprocessor, which
results in a new output. Thus, the total number of unique
outputs from the preprocessor is one corresponding to the
initial case (i[n] = 0), plus one for each time a sample in
i[n] increases.

U = 1 + 0 +

N
4 −1∑
n=1

Un

+
(

2(B−1) − 1
)

(33)

= 2(B−1) +

N
4 −1∑
n=1

⌊
(2(B−1) − 1) sin

(
2πn

N

)
+

1

2

⌋
(34)

Fig. 8 shows this number of unique outputs U as a function of
the input samples N and input quantizer bits B. The number of
output bits are approximately linear with the number of input
bits, and increase logarithmically with N . As a representative
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data point, sampling at values N = 128 and B = 10 gives an
overall output resolution of about B = 13 bits.

Note however that the unique outputs of the preprocessor
are not linearly distributed among the input amplitudes. For
example, for amplitudes less than the first quantized bit level
of 1/(2B − 1), all quantized input samples are zero, and so
there is only one unique preprocessor output. Fig. 9 shows the
number of unique outputs as a function of the input amplitude,
as enumerated computationally via binary search (described
later in Algorithm 1). As the input amplitude is swept along
the x-axis from left to right, the cumulative number of unique
outputs are counted and plotted along the y-axis. Inflection
points in the curve correspond to the quantization levels. This
is because small changes in amplitude affect more samples
when the peak of the sinusoid is near a quantization level,
causing relatively more unique outputs in these areas.

From Fig. 9, a measure of effective resolution as a function
of input amplitude can be developed. If a change of amplitude
from A to (A + ∆A) causes the preprocessor to output a
new unique value, then discerning these values corresponds
to discriminating between input amplitudes with a resolution
of β = log2 (1/∆A) bits around operating point A. Fig. 10
shows this resolution as a function of input amplitude. Here,
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the input bits B = 4 and samples N = 512, and the output
resolution varies between β = 4 and 18 bits, with an average
around 10 bits.

C. Accuracy of Preprocessor Output

For load identification, the ability to simply discern inputs
may be sufficient. As shown, the preprocessor can provide
a high resolution estimate of input waveform amplitude. In
some cases, such as in power level measurement and energy
scorekeeping, high accuracy is also desired.

When the characteristics of the input waveform are known,
the accuracy can often be directly determined. To continue the
previous example, consider a single sinusoidal waveform at the
fundamental line frequency and amplitude A, corresponding
to power P . This waveform is sampled, quantized, and passed
through the spectral envelope preprocessor. Fig. 11 shows a
plot of the error between the preprocessor output P1 and the
actual power P , as a function of P . Like the resolution, the
error varies with signal amplitude. Note that the maximum
absolute error corresponds to approximately one part in 2B ,
where B is the quantization bits. Thus, the plot shows that the
error of the preprocessor output is always less than or equal
to the quantization error of any individual sample.
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D. Accuracy in the Presence of Noise
The previous analysis has been calculated and simulated

based on ideal waveforms. In practice, there are many po-
tential sources of noise or interference in non-intrusive load
monitoring. This noise can be broadly split into two categories,
correlated and uncorrelated signals.

Correlated interference refers to any introduced signal or
distortion that is related to the loads being monitored or is
otherwise nonrandom. Examples include magnetic coupling
between adjacent current transducers, pickup of stray 60 Hz
electric fields from other shielded wiring or lighting fixtures,
and aliasing effects in the data acquisition process. This sort
of coupling can potentially be complex and relate closely to
specific installation details, which means that its effect on
preprocessor accuracy is highly variable. In general, the net
effect of correlated noise has been extremely low in observed
systems [5].

Uncorrelated noise is statistically independent from the
input waveforms. One such type of noise is additive white
Gaussian noise (AWGN), which is normally-distributed around
zero and might be expected to appear as a result of thermal
noise in the sensors or data acquisition. This form of noise
often sets the limit of sampling resolution in the monitoring
system.

The preprocessor is particularly well-suited to handle such
disturbances. To analyze the effect of AWGN on preprocessor
accuracy, we again consider the example of a single sinusoid,
with added noise N (t):

i(t) = A sin(ωt) +N (t) (35)

By sweeping A from 0→ 1, we can generate data in the same
manner as Fig. 11, simulating the sampling process and calcu-
lating the preprocessor power estimate P1(A) corresponding
to each actual power input A. Define the overall root-mean-
square error of this data as:

ERMS =

√∫ 1

0

(P1(A)−A)
2
dA (36)

This RMS error will vary with the amount of noise N (t) that
is being added to the sinusoid. We describe this amount using
the signal-to-noise ratio (SNR), the ratio of power in the full-
amplitude sinusoid to the power of the added white Gaussian
noise. Note that the amount of noise is held constant as A is
swept.

Fig. 12 shows the calculated overall RMS error versus the
SNR of injected noise. Two approaches to estimating power
are shown: the preprocessor P1 estimate, and the simple peak-
estimation technique described in §V-A. As expected, the
preprocessor estimate offers an improvement over the raw peak
estimate in all cases, reducing overall error by more than half.

In some cases, the addition of noise will actually reduce
error. Here, noise levels around 30 dB provide a slight ac-
curacy improvement. This is due the dithering effect of the
white Gaussian noise on the sampling quantization which,
combined with the averaging effect of the spectral envelope
calculation, serves to decouple the quantization error from the
input waveform [12]. The preprocessor can therefore be seen
as even more useful in the presence of noise.
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Fig. 12: Total RMS error of power estimates for a single sinu-
soid over all amplitudes A = 0 → 1, with simulated additive
Gaussian white noise injected at the specified signal-to-noise
ratio. At some levels, white noise can improve preprocessor
accuracy by introducing dither into the quantization process.
The sampling parameters are B = 4, N = 512.

E. Resolution and Accuracy with Complex Waveforms

Real-world systems often draw energy content at more har-
monics than just the fundamental line frequency. The analysis
of preprocessor resolution and accuracy can be extended past
single sinusoids to take these harmonics into account. For
such waveforms, closed-form solutions to find the number of
discernable power levels like (34) may not necessarily exist.

Instead, we develop a model f(A) that describes the current
waveform shape as a function of power level A = 0 → 1.
This approach is suitable for loads that exhibit correlations
between fundamental and higher harmonic components, such
as a3 and a5. For example, one such model is described in
[13] for variable-speed drive (VSD) systems, where harmonic
contents are related to the total apparent power A by functions
of the form: √

a2k + b2k = bAp (37)

In many systems, including VSDs, these relationships are
nearly linear. Here, we consider a similar class of waveforms
where the ratios between harmonics are fixed in proportions
A3 and A5:

f(A, t) = A · (sin(ωt) +A3 sin(3ωt) +A5 sin(5ωt)) (38)

We wish to determine the effective resolution of the pre-
processor for systems following this model as we vary A.
As with the single sinusoid in §V-B, we do this by counting
the number of unique preprocessor outputs as we sweep
A = 0→ 1. For every value of A, we use the model f(A) to
find the waveform for this power level, numerically simulate
the sampling and quantization, and compute the preprocessor
output. To efficiently enumerate all potential outputs, we apply
the binary search algorithm described in Algorithm 1, and
count the resulting number of unique outputs U to determine
the effective number of bits as log2(U).

Note that the binary search in Algorithm 1 assumes a
monotonically increasing preprocessor output as A increases.
For more complex models f(A) where this does not hold true,
the algorithm can be augmented or replaced with a slower
linear search that steps through A by sufficiently small ∆A
and counts the total number of unique outputs seen.
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outputs ← [ ]
function ENUMERATE(f,Alow, Ahigh)

Plow ← PREPROCESS(SAMPLE(f(Alow))))
Phigh ← PREPROCESS(SAMPLE(f(Ahigh))))
if Plow 6= Phigh then

Amid ← (Ahigh +Alow)/2
ENUMERATE(f,Alow, Amid) . Search 1st half
ENUMERATE(f,Amid, Ahigh) . Search 2nd half

else if Plow not in outputs then
outputs ← outputs + Plow . Add if unique

ENUMERATE(f, 0, 1)
return SORT(outputs)

Algorithm 1: Binary search to enumerate unique preprocessor
outputs as power A varies, given waveform model f(A).
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Fig. 13: Effective bits of preprocessor resolution as relative
amounts of harmonic content A3 and A5 are varied in (38).
The harmonics are held at a fixed ratio while the overall
waveform scaling is swept from A = 0 → 1. Sampling
parameters are B = 8, N = 128.

The enumeration process was performed for varying com-
binations of harmonic content ratios A3 and A5 in (38). Since
varying harmonic content can change the peak amplitude of
the current waveform, the sampling process was scaled such
that the bits-per-amp ratio is fixed for all trials, to maintain
consistency. Fig. 13 shows a plot of the calculated effective bits
of resolution. The base resolution is 9.8 bits for A3 = A5 = 0.

These results demonstrate that adding harmonic content
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Fig. 14: Full-amplitude waveforms corresponding to the min-
imum and maximum resolution from Fig. 13. In general,
increasing complexity increases the effective resolution, al-
though some combinations of harmonics reduce it slightly due
to “flat” regions that do not vary much with power scaling.

often increases the effective resolution of the preprocessor.
Some particular combinations of A3 and A5 also reduce it, to
a smaller extent. Fig. 14 shows the waveforms corresponding
to the minimum (9.6 bits) and maximum (10.6 bits) resolu-
tions over this parameter range. Informally, the cases where
resolution is reduced are those where the total signal amplitude
is lowered, or where the waveform has “flat” regions that do
not vary much as the parameter A is scaled. Cases where the
final waveform exhibits more complexity will generally see
improvements in preprocessor output resolution.

VI. CONCLUSIONS

The spectral envelope preprocessor has accurately extracts
relevant harmonic information while providing data storage
reduction. The applicability of the preprocessor to complex
systems such as multi-phase systems and variable speed drives
has been improved by the development of a more flexible and
modular “sinefit” preprocessor design with improved phase
and frequency estimation. The new preprocessor is designed
to integrate with the NilmDB framework and builds upon its
ability to correlate, manipulate, and retrieve interrelated data
streams.
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