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Shipboard Fault Detection Through Nonintrusive
Load Monitoring: A Case Study

Peter A. Lindahl , Daisy H. Green , Gregory Bredariol, Andre Aboulian, John S. Donnal ,

and Steven B. Leeb

Abstract— As crew sizes aboard maritime vessels shrink in
efforts to reduce operational costs, ship operators increasingly
rely on advanced monitoring systems to ensure proper operation
of shipboard equipment. The nonintrusive load monitor (NILM)
is an inexpensive, robust, and easy to install system useful for
this task. NILMs measure power data at centralized locations in
ship electric grids and disaggregate power draws of individual
electric loads. This data contains information related to the
health of shipboard equipment. We present a NILM-based
framework for performing fault detection and isolation, with a
particular emphasis on systems employing closed-loop hysteresis
control. Such controllers can mask component faults, eventually
leading to damaging system failure. The NILM system uses
a neural network for load disaggregation and calculates oper-
ational metrics related to machinery health. We demonstrate
the framework’s effectiveness using data collected from two
NILMs installed aboard a U.S. Coast Guard cutter. The NILMs
accurately disaggregate loads, and the diagnostic metrics provide
easy distinction of several faults in the gray water disposal system.
Early detection of such faults prevents costly wear and avoids
catastrophic failures.

Index Terms— Monitoring, sensors, power measurement, load
modeling, fault detection, fault diagnosis, condition monitoring.

I. INTRODUCTION

OVER the past several decades, the US Navy, US Coast
Guard (USCG), and the commercial maritime indus-

try have all reduced crew sizes on ships in an effort to
decrease operational costs [1], [2]. As such, ships increas-
ingly rely on advanced monitoring systems to ensure proper
operation of mechanical and electrical systems [3], [4]. These
systems range from individual machine sensors measuring
motor or generator shaft torque, speed, and vibration [5]–[7],
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to bulk electrical system measurements for power system state
estimation and fault detection [8], [9].

Bulk electrical power data can also provide information on
individual loads through nonintrusive load monitoring (NILM)
techniques. NILM is the process of disaggregating individual
electric loads, e.g., a motor or heater, from electrical measure-
ments taken at a centralized location. This sort of monitoring
can work in a number of ways, most notably by either solving
for a combination of loads that best fits the aggregate mea-
sured power (non-event based) or by detecting characteristic
changes in the total electric power delivered (event based).
Numerous optimization and machine learning approaches have
been applied for this disaggregation task, and several review
papers (e.g. [10]–[12]) detail the evolution of NILM systems
and current approaches. Generally, the disaggregation algo-
rithms are supervised learning techniques often using event
based methods or unsupervised learning techniques often using
non-event based methods.

Unsupervised approaches attempt to disaggregate bulk elec-
trical measurements into individual load contributions with-
out (or at least with minimal) labelled training data. This
is desirable as collecting training data can be expensive,
laborious, and impractical. Suzuki et al. [13] used an integer
programming approach based on single cycles of current
waveforms from each load to determine which loads are
present in the aggregate current waveform at a given moment.
Bhotto et al. [14] improved upon this approach by incor-
porating linear-programming methods and correcting algo-
rithm outputs based on a state diagram. Other unsupervised
approaches to the load disaggregation task include the use of
Factorial Hidden Markov Models (FHMMs) [15], [16], and
recently, Koutitas and Tassiulas proposed an unsupervised but
event-based method for load disaggregation using a fuzzy logic
approach that can perform well on low-frequency data typical
of low-cost smart meters [17].

Supervised approaches typically outperform the unsuper-
vised approaches in terms of accuracy, but come with the
disadvantage of requiring labelled data. Still, the benefit of
high accuracy can outweigh the data collection cost if the
load monitoring is used to improve a facility’s operations, e.g.,
monitoring for equipment or system faults. Event-based super-
vised learning approaches require the extraction of transient
features from the power stream ( [18] provides a fairly compre-
hensive list of proposed features). Low-frequency meters are
typically limited to steady-state changes in current or power.
As the frequency (and cost) of the meter increases into
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the kHz range however, additional features such as transient
shape metrics [19], harmonic power components [20], [21],
and voltage-current trajectories [22], [23] become available.
Such additional features increase the information contained in
each signature for use by the disaggregation algorithm. A mul-
titude of supervised learning techniques have been applied
for load disaggregation such as support vector machines
(SVMs) [24], [25] and both shallow [26] and deep neural
networks (NNs) [27]. Researchers have also investigated
combinations of algorithms including a committee decision
mechanism combining NNs with unsupervised optimization
techniques [28].

In this paper, we present a full NILM framework featuring
a two hidden-layer NN for load disaggregation, with the NN
approach chosen due to its general flexibility and track-record
of good performance for disaggregation [10]. The NILM sys-
tem features high frequency (8 kHz) smart meter hardware
to extract transient shape metrics from the real and reactive
power streams for input into the NN. From the disaggre-
gated load information, the NILM system calculates operation
metrics correlated to system level faults of the ship’s on-off
controlled systems. These controllers can mask component
faults which do not result in total system failure [29]. These
faults, however, can increase energy consumption, place wear
on machinery, and reduce system performance. Data collected
from two NILMs installed on engine-room subpanels aboard
the USCG Famous class cutter SPENCER showcase the
NILM’s ability to accurately disaggregate load information and
reveal strong correlations between the calculated metrics and
faults observed in ship systems. Thus, the major contributions
of this paper are the presentation of a full-NILM framework
capable of performing fault detection and isolation (FDI)
via NN-based disaggregation, and the demonstration of the
system’s performance in a real-world military ship setting.

This paper expands upon the preliminary work originally
presented in [30]. Namely, we replace the previously presented
correlation method for load identification with the NN-based
method which significantly improves accuracy. Additionally,
we analyze the NILM performance over a longer time period
allowing the detection of additional machinery faults beyond
the single fault presented in [30]. Finally, we present three
additional operational metrics important for fault detection
and identification. We demonstrate their usefulness through
histogram comparisons of normal and faulty machinery oper-
ation and their empirically derived likelihoods of missing
faults or incorrectly reporting faults.

II. US COAST GUARD CUTTER SPENCER

The USCG cutter (USCGC) SPENCER (Fig. 1) is a Famous
class, 270 ft. (82 m), medium endurance vessel based in
Boston, MA. The ship maintains a 100-person crew and an
operational tempo of 185 days deployed per year. Typical
patrols require one to two months at sea with operation pur-
poses including environmental stewardship, law enforcement,
fisheries protection, and national security.

When at sea, two 475 kW V12 Caterpillar ship-service
diesel generator (SSDG) sets provide power to the ship’s

Fig. 1. The USCGC SPENCER at sea [31].

TABLE I

ENGINE ROOM LOADS MONITORED THROUGH THE TWO NILM SYSTEMS

microgrid, a delta-configured 60 Hz, 254/440V system. These
generator sets, along with the twin ALCO V18 main diesel
engines (MDE) propelling the ship, are located in the ship’s
engine room. Each diesel machine requires auxiliary elec-
trical equipment, e.g., fluid pumps and heaters, to maintain
operational readiness when in standby mode. Two electrical
subpanels (port subpanel and starboard subpanel) power these
loads along with several other engine room loads (see Table I)
critical for ship operation. Many of these loads operate under
closed-loop hysteresis control and in tandem with other loads
as part of a larger controlled system, e.g., the keep-warm
systems of the diesel machines. We installed NILM meters
on the two subpanels to track the operation of these engine
room systems and to develop and test methods for condition
monitoring.

III. NON INTRUSIVE LOAD MONITORING

Fig. 2 shows a conceptual overview of the NILM system
along with an image of the port subpanel NILM installed
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Fig. 2. (a) Overview of the Nonintrusive Load Monitor platform and (b) the
port subpanel NILM installation on the USCGC SPENCER.

on the SPENCER. The NILM meter measures the 3-phase
voltages and currents supplied to the subpanel. A data acqui-
sition unit (DAQ) samples the sensor outputs and transmits the
data via ethernet to a host computer. This computer processes
the current and voltage data into power streams, which are
then stored in a NILM-optimized database (NilmDB [32]) and
made available to the NILM Manager [33], a platform for
creating and operating custom load identification and condition
monitoring algorithms.

A. Data Acquisition and Preprocessing

The DAQ samples sensor outputs at 8 kHz per channel with
16-bit resolution. This high sample rate and high resolution
allows the precise measurement of power transients useful
for identifying individual loads changing states. To reduce
memory requirements while maintaining transient information,
the host PC preprocesses the raw sensor data using the Sinefit
algorithm [20], which extracts spectral envelopes for each
phase current over each measured voltage line cycle. That is,
in-phase and quadrature current components are calculated as,

ak[m] = 2

N
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)
, (2)

respectively. Here, m represents the time-index for a particular
line-cycle (thus ak[m] and bk[m] are calculated at a rate
of 60 Hz), N represents the number of data points collected
over that line cycle, and k is the line-frequency harmonic
(e.g. k = 1 corresponds to 60 Hz, and k = 7 to the

420 Hz component). With the ship’s phase voltages well
approximated as having fixed amplitudes, the real and reactive
power components can be calculated as,

Pk[m] = Vphak[m] (3)

Qk[m] = Vphbk[m], (4)

respectively. Here, Vph is the phase voltage amplitude
(254 Vrms ).

This spectral conversion has two major benefits. First,
it converts the time-dependent amplitudes and phases of the
currents into data streams useful in disaggregating individual
loads in the power network. When a load turns on or off,
there is a corresponding transient step in P1[m] and Q1[m].
The size of the transient corresponds to the size of the load
and the direction of the step in P1[m], positive or negative,
indicates if the load turned on or off. For non-linear loads,
e.g., lighting ballasts, variable speed motor drives, and even
some conventional motors [34], transient steps in the harmonic
streams (k > 1) accompany those in the fundamental streams
(k = 1).

The distribution of the transient in P1[m] and Q1[m]
provides information about the load type. Loads that are
dominantly resistive, such as heaters, cause transients in P1[m]
but not in Q1[m], while loads that have an inductive compo-
nent, e.g. induction motors, cause transients in both. Further,
the transient shapes of these step changes also correspond
to the physical operation of the loads. The ship’s heaters
have resistivities that are stable with temperature so transients
are flat steps with no overshoot. The ship’s motors however
draw substantial in-rush currents during start-up leading to
transients with large peaks followed by decays to steady
state. Thus, monitoring these power streams for these transient
characteristics allows for better load identification.

The second benefit for the spectral conversion process is
that it effectively compresses the 8 kHz current and voltage
data into 60 Hz power streams with a compression factor,

Cr = fs

Nk fl
(5)

where fs is the sample rate, Nk is the number of harmonic
envelopes calculated including the fundamental, and fl is the
line frequency, 60 Hz. The NILM systems installed on the
SPENCER calculate the real and reactive power components
for each phase at the fundamental (k = 1) and 3rd, 5th,
and 7th harmonics (k = 3, 5, 7). Thus, Nk = 4, and the
effective compression ratio (Cr ) is 33, but the spectral streams
still maintain the important amplitude, phase, and harmonic
information contained in the 8 kHz current waveforms.

This sample frequency was chosen to accommodate accurate
spectral streams for all harmonics. For these NILM systems
monitoring up to the 7th harmonic (420 Hz), the minimum
sample rate required according to the Nyquist Theorem is
840 Hz, however in practice an often used rule of thumb
is to increase the sample rate by an approximate factor
of 10 beyond the Nyquist rate. In addition to accommodating
for any higher frequency content in the line currents, increas-
ing the sample rate also benefits measurements of the lower
frequency content. Considering (1) and (2), ak[m] and bk[m]
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are the averaged product of the measured current and the
corresponding sinusoid across all sampled data points during
a line cycle. The effects of noise in this current measurement
therefore diminish as the sample rate increases, leading to an
increase in the signal-to-noise ratio of Pk [m] and Qk[m].

Further, increasing the sample rate also reduces the effects
of spectral leakage caused by non-integer ratio relationships
between the ship’s electrical frequency and the sample rate.
Spectral leakage causes consecutive line-cycle estimates of
Pk[m] and Qk [m] to exhibit step-changes when the number
of samples in a given line-cycle increases or decreases by one
from the previous line-cycle. These steps decrease in size, and
thus look less like loads turning on or off, as the sampling rate
increases. While perfectly matching the sample rate to be an
integer multiple of the nominal electrical system frequency
in theory eliminates this effect, in practice fluctuations in
the ship’s electrical system frequency (measured to be up to
± 0.5 Hz around the nominal 60 Hz on the SPENCER) make
this impractical. Ultimately, the sample rate of 8 kHz produces
sufficiently authentic Pk [m] and Qk [m] streams from which
transient features (described below) are extracted with high
repeatability.

B. Transient Detection and Feature Extraction

The first step towards identifying load state changes is to
detect transients in the phase-B power stream as this phase
powers all monitored loads including the single-phase lube oil
load (Table I). For this task the NILM employs a step-detector.
First, it filters the real power (P1[m]) stream through a 101-
point moving median filter to smooth the data, and then it
applies a first order difference filter with the form,

y[m] = x[m] − x[m − 1], (6)

where x is the real power after passing through the median
filter. If y[m] is greater than a positive threshold �Pth (set to
300 W on the SPENCER), the NILM identifies ton = t[m] as
the location of a turn on event. If y[m] is less than the negative
of this threshold, the NILM identifies tof f = t[m] as the time
of a turn off event. To reduce the number of false detections,
the NILM imparts a minimum time between consecutive turn
on events or turn off events.

For each detected transient, the NILM system calculates
a set of features on each phase. Turn on event features
include the changes in steady state real and reactive power,
the transient peaks of both the real and reactive powers, and
the transient duration. Fig. 3a provides a reference diagram of
these feature metrics for a conceptual turn on transient.

To calculate the duration of the start-up transient (�ttran)
the NILM again applies the difference filter of (6), but in this
case x is the unfiltered real power. Then the NILM calculates
the absolute value of a three-point moving average,

|ȳ[m]| = 1

3
|y[m − 1] + y[m] + y[m + 1]| (7)

The end of the start-up transient, tend = t[m], is defined as
the time when |ȳ[m]| is less than a set threshold, �Ptran

Fig. 3. Signature features extracted from (a) turn on transient and
(b) turn off transient.

(set to 10 W on the SPENCER). With tend and ton , the NILM
calculates the transient duration as,

�ttran = tend − ton. (8)

This metric effectively determines the time it takes for the
load to reach steady-state. Therefore, changes in steady state
real and reactive powers after a load turns on are calculated
as the difference between their median values over windows
�tM seconds in length before and after this transient, i.e.,

xφ,on = M{xφ(tend < t ≤ tend + �tM)}
− M{xφ(ton − �tM ≤ t < ton)}. (9)

Here, M{·} represents the median function, x can be either
the real or reactive power streams, and φ represents the phase
(A, B, or C). These windows are shown in blue in Fig. 3a,
and are set to �tM = 1s for this study. The transient real and
reactive peak values are calculated as,

xφ,peak = max{xφ(ton ≤ t < tend )}
− M{xφ(tend < t ≤ tend + �tM )}. (10)

These values correspond to the maximum in-rush currents of
the load as it turns on.

During turn off however, there is no peak in the power
streams (Fig. 3b) as loads are simply disconnected via con-
tactors, so the salient features are the real and reactive power
steady-state step changes. These are calculated as,

xφ,of f = M{xφ(tof f < t ≤ tof f + �tM )}
− M{xφ(tof f − �tM ≤ t < to f f )}. (11)

As a final prevention against falsely detected transients,
the NILM ignores any transient without at least one phase
showing a steady-state change in real or reactive power larger
in magnitude than 300 W / VAR.
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C. Load Identification

The NILM implements two fully-connected neural net-
works (NNs) with two 10-node hidden layers for load iden-
tification from the extracted signature features. Each NN was
trained off-line using back-propagation and stochastic gradient
descent (SGD) [35]. Separate NNs are used for the turn on
events and turn off events on each of the two panels, with the
input layer receiving the signature features described above.
Thus, for the turn on NNs, the input layers have 13 nodes,
while the turn off NNs have six nodes.

Each hidden layer node uses a rectified linear unit (ReLU)
activation function,

f (z) = max(0, z) (12)

where z is the node’s input. The output layer for each NN is
a softmax layer, with each node producing a value,

f (z) j = exp(z j )∑K
k=1 exp(zk)

for j = 1 . . . K (13)

where z j is the input to the j th node, while K is the
total number of nodes and corresponds to the number of
potential classifications. The choice of a softmax output layer
enables multi-class classification. The output is a vector of
probabilities that sums up to 1, with the prediction made by
selecting the classification that has the highest probability.

As indicated in Table I, many of the monitored loads
comprise a larger system and frequently turn on or off simul-
taneously. This is particularly true for the MDE keep-warm
system. To improve classification accuracy, we created addi-
tional load classes for combinations of this system’s loads. The
DO purifier is also comprised of multiple electrical or electro-
mechanical loads, two of which are monitored (notably,
a variable-power electric heater is powered from a separate
panel). The total power drawn by this system varies during
the oil purification cycle as the volume of oil and water varies
in the separation chamber and impurities are periodically
discharged. Most significantly though, a flushing sequence
near the end of the cycle causes a detectable step-up in power.
However, the sequence ends with a slow decay in power rather
than a step down. Thus, we include an output class for this
flushing sequence in the turn on NN, but not the turn off NN.
In total, the port panel turn on NN has 14 output classes, while
the turn off NN has 12 output classes (the turn off NN has
no class for the flushing sequence and no class for all three
MDE auxiliary loads turning off simultaneously).

D. Training and Performance Evaluation

To train and test the performance of the NNs, approximately
one month of data in-port (Dec. 2016) and one month of data
at sea (latter half of Sept. 2016 and latter half of Jan. 2017)
was manually labelled based on crew operational logs and
physical load parameters [36]. This data was then randomly
split into three sets: training, validation, and testing, while
ensuring equal distributions of each labeled load class. The
validation data set’s prediction error was used as a stopping
criterion during training [37], while the testing data set was
used to ensure the model did not over-fit on the training and

validation data. This process was repeated 10 times (Monte
Carlo cross-validation) to generate statistical metrics of the
NNs performance and variability.

Due to the wide disparities in usage schedules between
loads, there is a large imbalance in the number of samples
for each class. For example, over the course of a month, gray
water pumps turn on and off hundreds of times, while other
loads such as the ASW Pump only turn on and off a few times.
To prevent the NNs from simply predicting the most common
class, the training data was “balanced” by both over-sampling
the minority class and under-sampling the majority class. For
minority classes, the algorithm applies the synthetic minority
over-sampling technique (SMOTE) [38]. In SMOTE, rather
than over-sampling with replacement, the minority class is
over-sampled by creating synthetic examples along the line
segments that join the feature values of the nearest neighbors
in the minority class.

The accuracy of the neural networks can be evaluated across
each load class by considering two commonly used metrics for
classification algorithms, precision and recall [39]. In terms of
load identification, recall states the likelihood that the NILM
will report when a load turns on (or off). Precision states
the likelihood that a reported turn on (or off) event actually
happened. More plainly, recall answers the question, “do true
events get reported?”, while precision answers the question,
“are reported events true?”

To calculate these metrics, we tally-up the number of true
positive (TP), false positive (FP), and false negative (FN)
events for each load class of each NN. For turn on events,
these metrics are defined as:

• TP (True positive): The NILM correctly reports that the
load turned on.

• FP (False positive): The NILM reports that the load
turned on, but it was either a different load that turned
on or no load turned on.

• FN (False negative): The NILM does not report that the
load turned on when it did. The NILM may have mis-
classified the turn on event as a different load or missed
the event entirely.

Analogous metrics can be defined for turn off events.
Precision and recall are then calculated, respectively, as,

Pr = TP

TP + FP
(14)

and

Re = TP

TP + FN
. (15)

Table II reports the average and standard deviation (σ ) in
the number of TPs, the precision, and the recall of the port
panel NILM’s transient identification across the 10 randomly
selected test data sets. Similar results were achieved on the
starboard subpanel. In this table, the performance of each NN’s
classification accuracy of MDE components are reported by
individual load. If the NN correctly identified simultaneous
load transients, then each individual load tallied a TP. If the
NN misidentified the simultaneous load transient, then any
subset of individual loads correctly identified tallied a TP,
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TABLE II

ACCURACY OF CLASSIFYING ON-EVENTS

any load incorrectly identified tallied an FP, and any load
missed tallied an FN. The total tallies of TPs, FPs, and FNs
were used to calculate the precision and recall in accordance
with (14) and (15).

The high average accuracy metrics across most load classes
combined with the generally small standard deviations indicate
that the NNs are not overfitting the training and validation
data and that there is good consistency between iterations.
The primary exception to this is the relatively low precision
of the SSDG LO heater. This load is unique from the others in
that its the salient single-phase load powered from the panel.
During training, the NN tends to use this load as a “catch-
all” for incorrectly detected transients, i.e., those detected by
the step-detector of (6) not corresponding to a labeled event.
On average, the step-detector incorrectly detects 11 transients
during the turn on testing data set with an average of eight
incorrectly categorized as an SSDG LO heater; during the
turn off testing data set, the step-detector incorrectly detects
14 transients with an average of nine categorized as an SSDG
LO heater. The NILMs are configured to identify loads as the
class with the maximum probability as reported by the NNs,
even when no class is significantly more probable than the
others. Thus, these added FPs for the SSDG LO heater could
potentially be reduced by relaxing this restriction and allowing
erroneously detected transients to be classified as “no known
load.”

Comparing the recall performance of the turn on NN
with that of the turn off NN reveals a slight trend for the
turn on NN to perform worse than the turn off NN. While
these differences are statistically insignificant according to
a two-sample Kolmogorov-Smirnov test for 5% significance,
the general trend does correspond to slightly more FNs across
the loads for the turn on NN than the turn off NN. These
FNs often correspond to FPs for the wrong loads (the NN
identifies the wrong load, but the transient is not missed by the
event detector). For example, while missed turn on events are
very rare for the gray water pumps (99% recall on average),
when they are missed they are often misidentified as MDE
prelube pump turn on events. This in turn leads to the lower
precision score for the MDE prelube pump turn on events.
While the turn on NN has more feature inputs useful for load
identification, these inputs have more variance across events

than do the those of the turn off events due to the in rush
currents of the pumps and the need for automated detection
of the transient time-length in (8). With these two loads of
similar rated powers, there are occasional overlaps in feature
values. Still, for the purposes of this paper the performance of
the NNs are sufficient for application towards shipboard fault
detection.

IV. DIAGNOSTIC INDICATORS FOR FAULT DETECTION

Many of the engine room loads on the SPENCER operate
under closed-loop hysteresis control, regulating machine sys-
tem operating points such as the temperature of the SSDG
lube oil and the water level of the gray water holding tank.
While these control systems free crew members from manually
monitoring and controlling equipment, closed-loop control can
mask underlying electromechanical faults [29], [40]. Without
perceivable changes to the operating points, subtle prob-
lems that do not result in complete system failure often go
undetected. These problems, however, can increase energy
consumption, impose excessive wear on electromechanical
systems, and eventually result in catastrophic failure. For
these systems, monitoring run-time and run-frequency metrics,
in addition to those used for load disaggregation, provides a
useful diagnostic framework for fault detection and identifica-
tion.

Fig. 4 shows the simulated closed-loop operation of an
SSDG JW heater when the generator is in standby. During
this time, the heater works in tandem with a circulation pump
(powered from an unmonitored panel) to ensure the generator
remains at a temperature conducive for startup, between 90◦F
(32◦C) and 120◦F (49◦C). As shown in the figure, when
the circulating water temperature drops to this lower limit,
the heater turns on until the water reaches its high temperature
limit. At this time, the heater turns off and the temperature
drops again.

The outputs of the NNs provide these turn on and turn off
times for each load, making it easy to calculate two additional
metrics, the time duration that a load is on, Td , and the
period between runs, Tp . These metrics have been shown to
be useful diagnostic indicators for detecting pressure leaks in
vacuum pumps and compressed-air systems under closed-loop
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Fig. 4. Simulated operation of a ship service diesel generator jacket water
heater under closed-loop hysteresis control.

hysteresis control [29]. These times are labeled for the SSDG
jacket water heater example in Fig. 4.

Further, the effective duty cycle,

De = Td

Tp
(16)

is a metric that’s both intuitive for engineers and represents
a nonlinear mapping, f

(
Td , Tp

)
, providing an additional

diagnostic dimension. The total number of runs per day for
each load, Nrpd , is a metric intuitively related to short-cycling
failure modes. Finally, the equipment’s steady-state real power,
Pss , derivatively relates to the total work it performs over a
run cycle. Using pumps as an example, an increase in power
draw may indicate aging of the pumps due to inefficiencies
introduced by degradation. Collectively, these metrics,

(
Nrpd Td Tp De Pss

)
, (17)

provide a robust reference frame for diagnosing hysteresis-
controlled system faults. Here, Pss is the three-phase real
power feature associated with the corresponding off tran-
sient, i.e.,

Pss = PA,ss + PB,ss + PC,ss . (18)

System Application: Since installing the NILM meters on
the SPENCER, we have observed multiple faults in the gray
water disposal system. In assessing the diagnostic framework’s
usefulness in disaggregating faulty system operation from
normal operation, we consider the amount of overlap between
metric histograms during individual fault conditions and those
during normal operation. More concretely, we report the
likelihood of Type I and Type II errors (Table III) assuming the
histograms are true representations of metric distributions, and
that given a metric measurement, a fault detection algorithm
will classify the system’s operation as normal or faulty by the
histogram with the higher probability score for the correspond-
ing bin. Here Type I errors refer to incorrectly reported faults
(analogous to FP errors by the NNs), while Type II errors refer
to missed faults (analogous to FN errors).

Fig. 5. Conceptual diagram of the gray water system.

V. GRAY WATER DISPOSAL SYSTEM

The gray water disposal system collects and transfers or dis-
poses the relatively clean water from showers, sinks, washing
machines, and other appliances. As depicted in Fig. 5, gravity
drains transfer the water from individual receptacles to a
138 gallon (522 L) holding tank. When the tank is full, a pump
discharges the water from the tank either overboard or to a
larger storage tank depending on the vessel’s location and
applicable regulations. Two identical pumps (for redundancy)
alternate each cycle to discharge the tank. Conductivity sensors
detect water levels and provide feedback for pump control.
When water reaches the high sensor (92-gallon mark), a pump
turns on and begins discharging. The pump then turns off when
water reaches the low sensor (13-gallon mark). Thus, the pump
expels 79 gallons (300 L) during each normal pump run.

During monitoring, the gray water system experienced two
types of faults, the first a failed high-level tank sensor and
the second likely a failed check valve. Both types of faults
went unnoticed by the crew for extended periods as the gray
water disposal system still performed its job collecting and dis-
posing gray water. However, these faults caused significantly
more pump runs and in some cases short-cycling runs, both
which place undue stress on the system.

Fig. 6 shows the effects of these faults in the feature
space defined in (17) as compared to normal operation. Under
normal conditions, approximately 15 total pump runs occur
each day. Pump runs typically have a duration (Td ) ranging
between 60 seconds to 80 seconds, though the time period
between runs (Tp) varies significantly as pump run frequency
is highly dependent on crew schedules. With often relatively
long times between runs, the effective duty cycle of the system
ranges from near 0% to about 6%.

A. Faulty High-Level Sensor

In December 2015, the high-level sensor failed due to
solid residue shorting its electrodes. This caused premature
high-level readings, which in turn resulted in frequent pump
runs with an effective period on the order of just a couple
minutes. These pump runs were also very short, typically only
one to four seconds, as the tank filled very little between runs.
This fault went unnoticed by the crew, but resulted in almost
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Fig. 6. Histograms showing the effects of two faults on the fault detection
feature space.

10× more recorded pump run events than normal. In fact,
the actual number of pump runs was certainly higher, as in
some cases the runs were too short for the load to reach steady-
state, causing the NILM to ignore the detected transient.

The histograms in Fig. 6 show that monitoring for
runs per day, pump duration, and pump period provide a
highly-effective reference frame for detecting this type of fault.
Even including outliers caused by on/off events missed by the
NILM or breaks in recorded data, the normal and sensor fault
runs per day and pump duration histograms have virtually no
overlap (<1% of either Type I or Type II errors). Similarly,
only 1% of the normal period histogram is covered by the
sensor fault’s histogram (Type I error), though 15% of the
sensor fault histogram is covered by the normal’s (Type II
error). Both features show superior separation to that of the
real power features used by the NILM for identifying loads.

B. Storage Tank Backflow Failure

During the months of January to March 2017, the gray
water disposal system exhibited a second fault type. This
fault occurred each time the crew redirected the gray water

TABLE III

LIKELIHOOD OF TYPE I AND TYPE II ERRORS BASED
ON HISTOGRAM DISTRIBUTIONS

system output from overboard to a 6000 gallon (22.7 kL)
storage tank in preparation for docking in a foreign port. After
approximately 10 normal pump runs, the pumps proceeded
to run at a very regular interval, Tp ≈ 7 mins, or roughly
13× more frequently than normal. Simultaneously, the pump
durations increased by approximately 10 seconds resulting in
an effective duty cycle range of approximately 15% to 28%.
The histograms of Fig. 6 and overlap metrics of Table III
show that the runs per day, periods between pump runs, and
the corresponding duty cycle histograms contain very little
overlap between the pumps’ normal operation and during the
backflow fault.

While a 13× increase in water use could also explain
these shifts in feature metrics, the gray water system exhib-
ited these characteristics the entirety of the “inport” status.
Over these times, that much water use would have exceeded
the storage tank’s capacity several times over, though the ship’s
crew did not report emptying this storage tank in their logs,
nor did they mention any overflows. Instead, the system likely
experienced a backflow fault due to a failed check valve. The
gray water expelled from the holding tank into the storage tank
(which sits higher on the boat) flowed back through the broken
check valve after the gray water pump turned off causing the
holding tank to refill and the process to repeat.

C. Signs of Future Pump Failure

The period of normal system operation used in this analysis,
Aug. 6th, 2016 to Nov. 3rd, 2016, also revealed data poten-
tially corresponding to an aging pump. Fig. 7 depicts a scatter
plot of normal pump runs in the Pss vs. Td (real power vs.
run duration) reference frame. The plot reveals two distinct
clusters, the first centered at approximately 62 seconds and
2.8kW, and the second centered at 73 seconds and 3.1kW.
Using the 2-means clustering algorithm to categorize this data
and crosschecking timestamps to ensure an alternating pattern
of pump operation, we can assign the two gray water pumps to
the two clusters as shown in the figure. Doing so suggests that
pump 2 draws approximately 10% more power and operates
11 seconds longer than pump 1. This corresponds to pump
2 requiring nearly 30% more energy for each pump run than
pump 1.

Unfortunately, the crew does not have detailed records
of pump replacements and repairs, though the ship’s chief
mechanic reported that one of the pumps had been replaced
within the last few years. Thus, its reasonable to speculate that
the less efficient pump operates in this manor due to aging,
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Fig. 7. The feature space of pump duration and pump real power draw shows
two distinct clusters corresponding to the two pumps.

and the longer durations and higher power draws might be an
indication of impending failure.

VI. CONCLUSION

As maritime crew sizes decrease, ships increasingly rely
on automated sensor and instrumentation systems to ensure
optimal operation of equipment. In particular, closed-loop
controlled machines benefit from advanced monitoring as
controllers can obscure machinery faults. In the best-case
scenario, the faults cause inefficiencies incurring additional
resource costs. In worst-case scenarios, faults eventually lead
to catastrophic failure resulting in extended system downtime
and significant capital expenditures for machinery replace-
ment.

This paper presented a framework for using nonintru-
sive load monitoring (NILM) for fault detection and isola-
tion (FDI). Two NILMs were installed in the engine room
of the USCGC SPENCER collecting bulk power data on
19 ship loads. Using a neural network classification algo-
rithm, the NILM disaggregates this power information by
load, in turn providing several metrics for fault diagnostics.
We explored this metric space in relation to faults observed in
the ship’s gray water system and showed these metrics provide
information sufficient for effective detection and identification
of fault types. Ultimately, these auto-generated metrics could
be combined with advanced clustering algorithms [41] for
fully automated fault detection and identification [42], [43].
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