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Abstract— Many electrical loads seek to maintain a measure-
ment, such as a temperature, pressure, flow rate, fluid level or
charge state, near a setpoint. In some cases, setpoints can be
adjusted slightly without noticeably affecting quality of service.
Small setpoint adjustments have an indirect effect on power
use that, when aggregated over a large number of loads, can be
significant. This paper develops a framework to provide services
to the power grid by adjusting device setpoints. The framework
has several practical advantages: it scales to very large load
aggregations; accommodates a wide variety of loads, including
those with nonlinear behavior; and requires little sensing or
communication and no private information. The framework
involves (1) learning a model to predict aggregate power
under baseline operation, (2) exciting the system to identify
a model relating setpoint perturbations to aggregate power
perturbations, and (3) embedding baseline predictions and the
perturbation model in load-shifting optimization. Simulations
of a 50,000-load, 115-MW aggregation in the Texas storms of
February, 2021, suggest that this framework can reduce peak
demand, arbitrage dynamic energy prices or carbon intensities,
and provide utility demand response or wholesale ancillary
services.

I. BACKGROUND AND MOTIVATIONS

Between 2008 and 2018, global electricity production
from the wind and sun grew by factors of 5.7 and 47.3,
respectively [1]. As power systems integrate more of these
variable, uncertain renewables, the need for grid-balancing
services increases [2]. Generators have traditionally provided
these services, but aggregations of controllable loads also
can [3]. Recent research has demonstrated the potential of a
wide variety of loads to provide a similarly wide variety of
services. For a few examples, load aggregations can respond
to dynamic energy prices [4], [5], provide operating reserve
[6], [7], [8], limit peak demand [9], [10], [11], and curtail
load for distribution-level demand response [9], [10], [12].
Commonly-studied loads include electric vehicles [4], [9]; air
conditioners, heat pumps, refrigerators and water heaters in
residential buildings [5], [6], [11]; heating, ventilation and
air conditioning (HVAC) systems in commercial buildings
[7], [10]; and water pumps [8], [12].

This paper develops a unifying control framework that
incorporates all of the loads and services mentioned above.
The scope includes any load that normally maintains a
measurement near a setpoint, but can tolerate small changes
to that setpoint. In this framework, illustrated in Fig. 1, a
central controller sends a normalized setpoint perturbation
signal to all controllable loads. Each load scales this signal
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Fig. 1. One normalized setpoint adjustment is sent to all controlled loads.
Only the aggregate power, which includes uncontrolled loads, is measured.

according to its current flexibility, then adjusts its setpoint
accordingly. This indirectly affects each load’s power use,
causing an aggregate response that can be shaped to provide
grid services.

The idea of adjusting device setpoints to shape aggregate
load is not new. For example, one research thread has demon-
strated the potential to provide distribution-level demand re-
sponse [13] and frequency regulation [14], [15] by adjusting
room temperature setpoints in commercial buildings. That
approach is generalized here to accommodate a wider variety
of loads and services.

Other methods exist to provide grid services from big,
diverse load aggregations. In [16], Kraning et al. used dis-
tributed optimization to coordinate thermal loads, appliances,
and electric vehicles, as well as generators and energy stor-
age, under network constraints. In [5], [17], virtual battery
models were developed to control aggregations of air condi-
tioners, heat pumps, refrigerators and water heaters for fre-
quency regulation and price-based load shifting. Subsequent
work extended this approach to commercial building HVAC
systems [18], as well as appliances and electric vehicles [19].

Of the methods mentioned above, [16] and [19] accom-
modate particularly large and diverse load aggregations.
However, these methods assume linear load models and
exact knowledge of model parameters. A complementary
body of work has used reinforcement learning to avoid these
restrictive assumptions. Wang and Hong reviewed this litera-
ture in [20], including applications to HVAC systems, water
heaters, refrigerators, windows, lights, distributed generators,
and energy storage. While reinforcement learning can handle
diverse and nonlinear loads, its scalability suffers from the
curse of dimensionality: computational complexity grows
exponentially with the dimensions of the state and action
spaces. Tellingly, only 14% of the papers reviewed in [20]
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considered more than ten control points.
The approach in this paper has several practical advantages

over existing methods. It requires no device-level information
or models, so it applies to a wide variety of devices,
accommodates nonlinear loads, and protects user privacy.
Its sensing, computation and communication requirements
are independent of the number of loads, so it scales to very
large aggregations and could be deployed at relatively low
cost. The only required measurement is the aggregate power,
which could include both controlled and uncontrolled loads.
This measurement could be read from a single meter on a
building, neighborhood, or entire distribution grid; or it could
be the sum of many individual meters. At the device level,
only a network connection and the ability to adjust a setpoint
are needed. Communication requirements are low: network-
wide, one number is broadcast per time step.

This paper is organized as follows. §II describes the
control framework at a high level. A variety of example
loads are discussed in §III. §IV presents simulation results
for an aggregation of these loads providing several grid
services during the Texas blackouts of February, 2021. §V
summarizes the paper and discusses possible extensions.

II. CONTROL FRAMEWORK

The control framework in this paper involves a discrete
time span K = {1, . . . ,K}, time index k ∈ K, aggregate
power measurements P (k) (kW), and normalized setpoint
perturbations u(k) ∈ [−1, 1]. At each time k, an aggregate-
level controller decides u(k) and broadcasts it to all loads.
Each load scales u(k) in proportion to its current flexibility
and adds it to its baseline setpoint. This scaling is done such
that u(k) = 0 corresponds to baseline operation, u(k) = ±1
gives the highest or lowest acceptable setpoint perturbation,
and all else being equal, each load uses more power when
u(k) increases.

For example, a heating load that tolerates deviations of
magnitude ε(k) (◦C) from an ideal load temperature T ?(k)
(◦C) implements the perturbed setpoint T set(k) = T ?(k) +
ε(k)u(k). With this scaling, the setpoint T set(k) equals its
baseline value T ?(k) when u(k) = 0 and reaches its highest
or lowest acceptable value when u(k) = ±1. Power use
increases with u(k), as required. Similarly, a cooling load
implements T set(k) = T ?(k)−ε(k)u(k), so that the setpoint
decreases (power increases) as u(k) increases. The tolerance
ε(k) may vary over both loads and time. A water heater
might tolerate ±4 ◦C swings at any time, while a heat pump
or air conditioner might tolerate ±1 ◦C while its building
is occupied and ±2 ◦C while unoccupied. If a device is
unavailable at time k, it simply sets ε(k) = 0.

Each device is assumed to be capable of determining a
setpoint perturbation tolerance that respects its operational
constraints, such as protecting equipment or maintaining
quality of service. Device-level controllers should react sta-
bly to setpoint changes within this tolerance. Beyond this,
no assumptions are made about loads. Dynamics could be
nonlinear, stochastic, coupled across loads, high- or infinite-
dimensional, or entirely unknown. Devices could be on/off,

multi-stage or variable-speed.

A. Baseline Prediction

The proposed control framework has three phases. In the
first phase, a model is learned to predict aggregate power
under baseline operation. This is a time-series forecasting
problem. The required data are historical aggregate power
measurements and predictive features such as weather condi-
tions or the hour, weekday or season. Model options include
neural networks, linear time-series models, regression trees,
and support vector machines. In [21], Yildiz et al. compared
all of these methods and found that a feedforward neural
network best predicted baseline power. That model structure
is used here, with one hidden layer, ten neurons, and the
outdoor temperature and hour of day as features.

B. Perturbation System Identification

In the second phase, the system is excited to learn how
the aggregate power responds to setpoint perturbations. The
system is excited by implementing a sequence of nonzero
setpoint perturbations. This drives the measured powers P (k)
away from the baseline powers P̂ (k) (kW). Data from the
excitation phase are then used to train a model that predicts
P (k)− P̂ (k) based on current and past values of u(k).

Unlike the baseline model, the perturbation model is
restricted here to be linear in the setpoint perturbations:

P (k)− P̂ (k) =

m∑
i=1

ai(k)u(k −m+ i) + e(k). (1)

The linearity restriction is justified to an extent by Taylor’s
theorem, which suggests that output (power) perturbations
should respond approximately linearly to small input (set-
point) perturbations. Nevertheless, (1) is only an approxima-
tion of the true input-output behavior, which is nonlinear
in general. Linearity is imposed here for tractability of
optimization in the third phase. Unmodeled nonlinearities
influence the model errors e(k); the optimization is designed
to be robust to these errors.

The structure of (1) is a finite impulse response model.
This structure is a standard instrument in system identifica-
tion [22], although the time-varying coefficients ai(k) used
here are non-standard. Time-varying coefficients are used
here to accommodate two unique characteristics of electrical
loads. First, load behavior often varies with weather con-
ditions. Air conditioners, for example, are typically turned
off in cool weather and therefore unresponsive to setpoint
perturbations. Second, load behavior often varies with the
time of day. A typical electric vehicle charger in a home, for
example, will actively charge overnight but be disconnected
during most days.

In the examples in this paper, the time-varying model
coefficients ai(k) have the form

ai(k) =

p∑
j=1

βijfij(k).

Here the βij are time-invariant model parameters that are fit
to training data. The time-varying features fij(k) are known
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functions of the weather conditions and hour of day. With
this form of the ai(k), the sum in (1) becomes

m∑
i=1

u(k −m+ i)

p∑
j=1

βijfij(k)

= u(k −m+ 1)f1(k)>β1 + · · ·+ u(k)fm(k)>βm

=
[
x1(k)> . . . xm(k)>

] β1...
βm

 ,
with the definitions

fi(k) =

fi1(k)
...

fip(k)

 , βi =

βi1...
βip


xi(k) = u(k −m+ i)fi(k).

Therefore, the full perturbation model (1) can be written in
standard linear regression form, y = Xβ + e, where

y =

 P (1)− P̂ (1)
...

P (K)− P̂ (K)

 , β =

β1...
βm

 , e =

 e(1)
...

e(K)



X =

 x1(1)> . . . xm(1)>

...
...

x1(K)> . . . xm(K)>

 .
The full model (1) is trained offline in a batch fit by forming
the data matrix X and target vector y, then computing the
least-squares estimate β̂ = (X>X)−1X>y of the parameter
vector β. The model could also be trained online using a
linear Kalman filter, but this is not investigated here.

Predicting the power perturbation P (k) − P̂ (k) at some
future time k requires evaluating the trained model coeffi-
cients

âi(k) =

p∑
j=1

β̂ijfij(k)

at that future time. For this reason, the model should only
use basic features fij(k) for which accurate forecasts are
available. The examples in this paper use features

fi1(k) = 1, fi2(k) = max{0, θ0 − θ(k)}, fi3(k) = P̂ (k)

fi4(k) = sin(πk∆t/12), fi5(k) = cos(πk∆t/12)

fi6(k) = sin(πk∆t/6), fi7(k) = cos(πk∆t/6)

for all i. Forecasts of the outdoor temperature θ (◦C) are
readily available, as is the output P̂ (k) of the baseline
prediction model from §II-A. The hyperparameter θ0 (◦C)
is hand-tuned.

To train the model (1) efficiently, the excitation signal
should maximize the information content of the aggregate
power response. This paper uses random binary input se-
quences, where each u(k) is drawn independently from a
discrete uniform distribution on {−1, 1}. These sequences
maximize information content for input-constrained systems
[22]. The hyperparameter m in (1), which determines the
model’s memory, is hand-tuned.

C. Load-Shifting Optimization

In the third phase, the baseline predictions P̂ (k) and the
perturbation model (1) are embedded in load-shifting opti-
mization. The general problem is to decide setpoint perturba-
tions u(1), . . . , u(K) and aggregate powers P (1), . . . , P (K)
to

minimize R(f(u(1), . . . , u(K), P (1), . . . , P (K)))

subject to P (k) = P̂ (k) +
∑m

i=1 ai(k)u(k −m+ i)
+e(k), k ∈ K

g(u(1), . . . , u(K)) � 0.
(2)

In (2), f is the objective function and R is a risk measure,
such as the expected value or the worst-case value, taken
over the joint distribution of all uncertain inputs. The symbol
‘�’ denotes component-wise inequality. The vector-valued
function g encodes the constraints |u(k)| ≤ 1 and possibly
others. For example,

∑
k∈K u(k) = 0 ensures that perturba-

tions are zero-mean, and δ ≤ u(k)−u(k−1) ≤ δ constrains
setpoint ramp rates. The deterministic input data are the
past perturbations u(2 − m), . . . , u(0) and the aggregate
power baseline P̂ (1), . . . , P̂ (K). The coefficients ai(k) and
disturbance e(k) may be random, so (2) is a stochastic
optimization problem in general.

If the objective and constraint functions f and g are
convex and the risk measure R is convex and nondecreasing,
then (2) is a convex optimization problem. If, additionally,
the joint distribution of all uncertain inputs is known and
R can be evaluated exactly, then (2) can be reduced to a
deterministic convex problem and solved to global optimality
in polynomial time using interior-point methods [23]. If
some distributional information is unknown or R cannot
be evaluated exactly, then sample-based methods such as
sample-average approximation [24], [25] or scenario convex
optimization [26] can be used. The optimization can also
be implemented in a model predictive control (MPC) frame-
work. In MPC, at each time step the uncertain inputs are
predicted over a receding planning horizon, a version of (2)
is solved, and only the first resulting setpoint perturbation is
implemented. The system then evolves and the process re-
peats. By continually updating forecasts and state estimates,
MPC can improve performance over static optimization.

Examples in §IV of this paper use scenario convex opti-
mization. In this approach, S samples are generated inde-
pendently from the joint distribution of all uncertain inputs.
These samples are indexed by s ∈ S = {1, . . . , S}. The risk
measure R, which in these examples is the worst-case value,
is approximated by the sample-wise maximum. The resulting
problem is to

minimize maxs∈S f(u(1), . . . , u(K), Ps(1), . . . , Ps(K))

subject to Ps(k) = P̂ (k) +
∑m

i=1 ai,s(k)u(k −m+ i)
+ es(k), k ∈ K, s ∈ S

g(u(1), . . . , u(K)) � 0.
(3)

Probabilistic optimality guarantees based on the sample size
S can be obtained from [26].
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III. EXAMPLE LOADS

This section models heat pumps, resistance space heaters,
air conditioners, heat-pump water heaters, resistance water
heaters, refrigerators, water pumps, and electric vehicles. The
models and parameters in this section are not used in the
control framework, but are presented here to demonstrate
the framework’s broad applicability. They are also used in
simulations in §IV.

Each device has electric power constraints of the form

P ` ≤ P`(k) ≤ P `,

where ` indexes devices and P ` and P ` (kW) are the device’s
power limits. Each device seeks to track a user-specified
setpoint that is time-varying in general. The power required
to perfectly track this setpoint is denoted P ?

` (k). In the
simulations in §IV, P ?

` (k) is calculated by discretizing the
load’s continuous-time dynamics (presented in the subsec-
tions below), then solving the discrete-time dynamics for
the power required to drive the load from its current state
to the desired setpoint at the next time step. During baseline
operations, each device is assumed to either perfectly track
its setpoint (using power P ?

` (k)), or to saturate at a capacity
limit:

P`(k) = max
{
P `,min

{
P `, P

?
` (k)

}}
.

These saturation nonlinearities make all of the load models in
this section nonlinear. Several of the models have additional
nonlinearities.

A. Heat Pumps and Air Conditioners

Conditioned spaces are modeled here as second-order
thermal circuits with two states: the temperatures T and Tm
(◦C) of the indoor air and the building’s lumped thermal
mass. The air temperature dynamics are

CṪ (t) =
θ(t)− T (t)

R
+
Tm(t)− T (t)

Rm
+ Q̇c(t) + Q̇e(t).

The input signals are the outdoor air temperature θ (◦C),
thermal power Q̇c (kW) from controlled heating or cooling
equipment, and exogenous thermal power Q̇e (kW) from the
sun, lights, plug loads and body heat. The parameters are the
thermal capacitances C and Cm (kWh/◦C) of the indoor air
and thermal mass, the thermal resistance R (◦C/kW) between
the indoor and outdoor air, and the resistance Rm (◦C/kW)
between the indoor air and mass. The mass dynamics are

CmṪm(t) =
T (t)− Tm(t)

Rm
.

Each heat pump and air conditioner is modeled through
its coefficient of performance (COP) η (-), which depends
in general on indoor and outdoor temperatures and device
loading. Heat pumps and air conditioners use power P =
±Q̇c/η, with the plus sign for heating and minus for cooling.
Resistance heaters are modeled as heat pumps with η = 1.

This paper simulates heat pumps with COPs of 2.5–3.5
serving single-family homes with 170–200 m2 of floor area.
The capacitance C is set by multiplying the floor area by

Arrival Departure
Time

Initial

Desired
Energy

Fig. 2. Baseline (red) and perturbed (black) energy setpoint trajectories for
a charging electric vehicle. The gray area contains all acceptable trajectories.

a ceiling height of 2.9–3.1 m to calculate the indoor air
volume. This volume is multiplied by the density and specific
heat of air, then multiplied by 2–4 to account for other,
tightly-coupled material. The resistance R is tuned to a 14–
21 kW thermal load under steady design conditions of −10
◦C outdoor, 19–25 ◦C indoor, and 4–7 W/m2 from plug loads
and body heat. The capacity P is oversized relative to design
load by 50–75%, resulting in 4–8 kW. The ratios Cm/C and
Rm/R are 10–12 and 5–7, based on the fits in [27].

At each time step, the solar thermal power is set by
multiplying the global solar irradiance on a horizontal surface
(in W/m2) by the floor area, then rescaling to peak at 2–
4 kW. Thermal powers from plug loads, lights and body
heat at each time step are the products of floor area and
the respective intensities of 0.5–2, 1.5–5 and 0.5–2 W/m2.
Half of the buildings have constant 19–25 ◦C air temperature
setpoints. Their setpoint perturbation tolerances are ±1 ◦C at
all hours. The other half of the buildings have setpoints in the
same range during most hours, but 2–4 ◦C lower overnight.
Their tolerances are ±1 ◦C normally and ±2 ◦C overnight.

B. Electric Vehicles

Electric vehicle battery dynamics are modeled here as

Ė(t) = −rE(t) + Pc(t).

The state E (kWh) is the energy stored in the battery, r (1/h)
is the dissipation rate, and Pc (kW) is the chemical charging
power. The electric power exchanged with the grid is

P (t) =

{
Pc(t)/η+ if Pc(t) ≥ 0 (charging)
η−Pc(t) if Pc(t) < 0 (discharging),

where η+ and η− (-) are the charging and discharging
efficiencies. The piecewise electric power curve makes this
model nonlinear. The battery has energy capacity E (kWh)
and charging and discharging power limits P and P , with
P negative if vehicle-to-grid discharging is allowed. Each
day, the vehicle arrives at time ta with energy Ea and
desires energy Ed by its departure time td. Between arrival
and departure, the battery seeks to track an energy setpoint
trajectory from Ea to Ed, as illustrated in Fig. 2. This trajec-
tory could be decided by the vehicle’s on-board software to
optimize charging efficiency, battery health or other criteria.
The tolerance for perturbations about the setpoint trajectory
may vary with time, and shrinks to zero at td to ensure that
the vehicle departs with its desired charge.
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The batteries simulated here dissipate 1–3% of charge in
24 hours. Energy capacities are 60–80 kWh. Charging and
discharging capacities are 7–11.5 and 2.5–3.5 kW. Efficien-
cies are 85–95%, arrival times are 4–8 PM, and departures
are 6–9 AM. Vehicles arrive with batteries 20–40% full and
seek to depart 70–90% full. Energy setpoint trajectories are
linear, with setpoint perturbation tolerance

ε(t) =

{
λmin

{
Ea, E − Ea

}
if t ∈ [ta, td)

0 otherwise.

The tunable parameter λ ∈ [0, 1] is set here to 0.25.

C. Water Heaters and Refrigerators

Water heaters and refrigerators are modeled here as first-
order thermal circuits with dynamics

CṪ (t) =
θ(t)− T (t)

R
+ Q̇c(t) + Q̇e(t).

For both devices, θ is the temperature of the surrounding air
and Q̇c is the controlled thermal power. For water heaters, T
is the water temperature, C is the water capacitance, R is the
resistance between the water and surrounding air, and Q̇e is
the thermal power from water withdrawals. For refrigerators,
T is the inside temperature, C is the inside capacitance, R
is the resistance between the inside and surrounding air, and
Q̇e is the thermal power from door-openings, food additions,
etc. Water heaters and refrigerators use electric power P =
±Q̇c/η ∈ [0, P ] (kW), with the plus sign for water heaters
and minus for refrigerators. Resistance water heaters have
η = 1; for heat-pump water heaters, η is significantly higher.

The water heaters simulated here have cylindrical tanks
with 0.19–0.38 m3 volumes and 0.3 m radii. The capacitance
is the product of the density, specific heat and volume of
water. The resistance is set by dividing an R-value of 6–8
◦F·ft2/BTU/h (1060–1410 ◦C·m2/kW) by the tank’s vertical
surface area. Heat-pump water heaters, 25% of the units,
have COPs of 2–2.5. The other 75% are resistance units with
η = 1. Thermal capacities are 4–5 kW. Water temperature
setpoints are 43–54 ◦C and perturbation tolerances are 4 ◦C.
Thermal powers of 0.25–1.3 kW from water use occur during
morning and evening busy periods, which are randomized
over units. The mean withdrawal is 5.4 kWh per day.

The refrigerators simulated here have C = 0.4–0.8
kWh/◦C and R = 80–100 ◦C/kW. Electrical capacities are
0.7–0.85 kW and COPs are 1.5–2.5. Door-openings and food
additions during busy morning and evening periods, which
are randomized over units, cause thermal power injections
of 25–35% of thermal capacity. Temperature setpoints are
2–3.5 ◦C and perturbation tolerances are 1 ◦C.

D. Water Tanks and Pumps

Water storage tank dynamics are modeled here as

ḣ(t) =
qc(t)− qe(t)

A
.

The state h ∈ [0, h] (m) is the water level in the tank, A
(m2) is the tank’s cross-sectional area, qc (m3/s) is the inflow

Fig. 3. True (black) and predicted (red) aggregate power under baseline
operation on a typical validation day.

from a controlled pump, and qe (m3/s) is the outflow from
uncontrolled water withdrawals. The pump uses power

P (t) =
ρgh(t)qc(t)

η
∈ [0, P ],

where ρ = 997 kg/m3 is the density of water, g = 9.8×10−3

km/s2 is the acceleration of gravity and η (-) is the pump
efficiency. The h(t)qc(t) product makes this model nonlinear.

The water tanks simulated here are cylinders with 5-
6 m radii and 2.2–2.6 m heights. At each time step, the
outflow is 0–100% of the worst-case outflow, which absent
pumping would drain the tank in 4.5–5.5 hours. Design
inflows completely refill tanks in four hours under the worst-
case outflow. Pumps are 20–40% oversized relative to design
inflow. Pump efficiencies are 70–90%. Each pump seeks to
maintain the water level at a setpoint of 95% of the tank
height and tolerates ±5% perturbations about this level.

IV. SIMULATIONS

The simulations in this section are set in winter in Texas.
They include 10,000 heat pumps, water heaters, refrigerators,
water pumps and electric vehicles, for 50,000 loads total.
The time step ∆t is one hour. Within each load class, model
parameters vary from load to load to emulate diversity in
device ages, sizes, efficiencies, usage patterns, etc. Parame-
ters are drawn independently and uniformly from the ranges
in §III. Simulations use Austin weather data for 2012 and
2015 (the historical years available at [28]) and the extreme
storm from February 12–20, 2021, that caused widespread
power outages. The 2012 and 2015 data are used for training
and validation, respectively. Results are presented for the
2021 storm. The monetary values in these results are highly
atypical, as energy and ancillary service prices spiked during
the storm, but they illustrate the value that a load aggregation
could provide during emergencies.

Under baseline operation, the aggregate load averages 77
MW and peaks at 115 MW. Fig. 3 shows the true and
predicted baseline power on a typical validation day. The
baseline model’s training and validation R2 values are 0.98
and 0.97. To fit the perturbation model, the system is excited
for 30 days using random binary setpoint perturbations. Fig.
4 shows the true and predicted power perturbations on a
typical validation day. The perturbation model’s training and
validation R2 values are 0.95 and 0.92. The perturbation
model is significantly less accurate than the baseline model,
but still proves useful for optimization.
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Fig. 4. True (black) and predicted (red) aggregate power perturbation under
excited operation on a typical validation day.

A. Minimizing Peak Demand

In this example, the goal is to minimize the peak aggregate
power used in a day. An accurate weather forecast is assumed
to be available, so all uncertainty lies in the perturbation
model errors e(k). These errors are treated as independent
zero-mean Gaussian random variables with the validation
error standard deviation of 5.9 MW. The optimization uses
a worst-case risk measure over S = 100 samples:

minimize maxs∈S maxk∈K Ps(k)

subject to Ps(k) = P̂ (k) +
∑m

i=1 ai(k)u(k −m+ i)
+ b(k) + es(k), k ∈ K, s ∈ S

|u(k)| ≤ 1, k ∈ K
δ ≤ u(k)− u(k − 1) ≤ δ, k ∈ K∑

k∈K u(k) = 0.
(4)

Fig. 5 shows optimization results for February 20, 2021.
In the top plot, the red curve is the baseline aggregate power
prediction. The black curve is the actual aggregate power,
calculated by simulating the true system dynamics under the
optimal setpoint perturbations from (4). Each gray curve is a
scenario of what the aggregate power might have been under
the optimal setpoint perturbations and a different sample
from the model error distribution. The true power (black
curve) stays within the gray ‘cloud’ of power scenarios,
suggesting that the optimization is robust to model errors.
The bottom plot shows the optimal setpoint perturbations.
Peak demand is reduced by ‘discharging’ (u < 0) the
aggregation during the morning peak and ‘charging’ (u > 0)
after. In this simulation, peak demand is reduced by 16%,

Fig. 5. Aggregate power (top) and setpoint perturbations (bottom). Peak
demand on this day is reduced by 18 MW (16%).

Fig. 6. Aggregate power (top), setpoint perturbations (middle) and energy
prices (bottom). Energy costs on this day are reduced by $1.1 million (12%).

from 115 to 97 MW.

B. Minimizing Energy Costs or Carbon Emissions

In this example, the goal is to minimize the worst-case
cumulative energy cost over S = 100 scenarios,

max
s∈S

∆t
∑
k∈K

π(k)Ps(k), (5)

subject to the constraints in (4). The energy prices π(k)
($/kWh) are assumed to be known in advance.

Fig. 6 shows optimization results for February 14, 2021.
Prices are from the Electric Reliability Council of Texas (ER-
COT) day-ahead energy market. The aggregation is ‘charged’
during the relatively low-price periods and ‘discharged’
during the morning and evening price spikes, as can be seen
from the bottom two plots. This perturbs aggregate power
(top plot, black curve) below the baseline (red curve) during
price spikes. In this simulation, the energy cost is reduced
by 12%, from $9.2 to 8.1 million.

The method in this section can also minimize carbon emis-
sions by replacing π(k) in (5) with the carbon intensity of
electricity, µ(k) (kg/kWh). Alternatively, costs and emissions
can be jointly optimized by specifying a carbon price πc
($/kg) and replacing π(k) with π(k) + πcµ(k).

C. Maximizing Flexibility Revenue

Distribution utilities and transmission system operators
value the ability to rapidly decrease load by a pre-determined
amount in response to a dispatch call. This service is typi-
cally called emergency demand response at the distribution
level and spinning, synchronized or replacement reserve at
the transmission level. To provide these services, a load
aggregator must determine in advance the flexibility that it
can offer. If accepted, these offers become binding commit-
ments. This gives rise to the problem of maximizing capacity
revenue subject to the constraint that offers can be reliably
delivered, even if they are all accepted and dispatched.

One approach to this problem decides (downward) flexibil-
ity offers f(k) ≥ 0 (kW) and setpoint perturbation scenarios
us(k) ∈ [−1, 1] corresponding to model error scenarios
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Fig. 7. Flexibility offers (top) and prices (bottom) in ERCOT’s replacement
reserve market. Revenue on this day is $2.4 million.

es(k). The objective is to maximize flexibility revenue,

∆t
∑
k∈K

π(k)f(k), (6)

where π(k) ($/kW-h) is a flexibility price, treated here as
deterministic. In each scenario s, the power Ps(k) is defined
by the perturbation model (1) with us and es replacing u
and e. To ensure that offers can be delivered despite model
errors, curtailed load in each scenario should meet or exceed
the flexibility offer:

P̂ (k)− Ps(k) ≥ f(k). (7)

Fig. 7 shows the results of maximizing the flexibility
revenue (6) subject to (1), (7) and |us(k)| ≤ 1 with S =
100 scenarios. Prices are from the ERCOT replacement
reserve market on February 17, 2021. Offers (top plot) are
high during some but not all price spikes. This is because
flexibilities are coupled over time. For example, a possible
curtailment in the morning reduces the capacity to curtail in
the afternoon. Due to very high prices, the aggregation earns
$2.4 million on this simulated day.

The method in this section can optimize flexibility offers
for other grid services. For example, some grid operators
value the capacity to increase load. This can be handled by
changing (7) to

Ps(k)− P̂ (k) ≥ f(k), (8)

and maximizing ∆t
∑

k∈K π(k)f(k), where π(k) ($/kW-h)
and f(k) (kW) are the upward flexibility price and offer.
Other grid operators value the capacity to symmetrically
increase or decrease load. This can be handled by imposing
both (7) and (8) and maximizing

∆t
∑
k∈K

π(k) min
{
f(k), f(k)

}
,

where π(k) ($/kW-h) is the symmetric flexibility price.

V. SUMMARY AND EXTENSIONS

This paper has proposed a general framework for pro-
viding a variety of grid services by adjusting device set-
points in load aggregations. The framework involves base-
line power prediction, perturbation system identification,

and load-shifting optimization. In all three phases, problem
dimensions are independent of the number of loads, so
this framework can handle gigawatt-scale aggregations. This
paper has discussed a variety of candidate loads, including
some with nonlinear behavior. Simulations of these loads
during Texas’ extreme storm of February, 2021, have shown
the value that the framework could provide to the grid.

There are several opportunities to extend this work. First,
the amount of data required to identify a useful perturbation
model could be investigated and methods could be refined
to make the best use of limited data. Second, this paper
proposed a linear perturbation model to ensure that load-
shifting problems could be solved to global optimality. A
nonlinear perturbation model could be more accurate, but
would require settling for locally-optimal load-shifting solu-
tions. Whether this trade-off is worthwhile is an interesting
question. Third, reinforcement learning could be investigated
to balance trade-offs between exploring system behavior to
refine the perturbation model, and exploiting the current
model to maximize near-term rewards. Fourth, the control
framework could be considered for grid services at time
scales of minutes or seconds, where the closed-loop dynam-
ics of device-level controllers become important. Finally, the
control framework could be evaluated in hardware.
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