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Abstract—Analogous to the way a good driver is aware of
neighboring cars, electrical loads can coordinate with other
loads within a building or section of a distribution grid. This
paper develops methods that enable groups of cyclic loads
(devices that turn on and off periodically to maintain setpoints)
to reduce their peak aggregate power demand. The methods
accommodate a wide variety of cyclic loads, including those with
nonlinear or unknown dynamics, and can be implemented in a
fully distributed fashion. This paper targets settings with a few
hundred cyclic loads or fewer, where the methods developed here
could reduce demand peaks significantly while maintaining or
improving quality of service. This could save ratepayers money
on monthly demand charges, decrease fuel use in microgrids, or
extend the life of power delivery equipment.

Index Terms—Demand Response, Peak Shaving, Cyclic Loads,
Thermostatically-Controlled Loads

NOMENCLATURE

L Number of loads.
` Load index.
L Set of load indices.
K Number of discrete time steps.
k Time index.
K Set of time indices.
∆t Time step duration (h).
P`(k) Electric power (kW).
P ` Electric power capacity (kW).
P cap Aggregate power cap (kW).
d` Duty cycle.
u`(k) On/off control input, in {0, 1}.
y`(k) Measured output, normalized to [0, 1].
A(k) Set of load indices dispatched under conventional

bang-bang control.
s`(k) Priority score.
s?(k) Priority score threshold.
x`(k) Consecutive on-time (h).
T`(k) Indoor temperature (◦C).
T set
` (k) Indoor temperature setpoint (◦C).
θ`(k) Outdoor temperature (◦C).
Q̇`(k) Exogenous thermal power (kW).
R` Thermal resistance (◦C/kW).
C` Thermal capacitance (kWh/◦C).
η` Coefficient of performance.
a` Discrete-time dynamics parameter.
ε` Allowed deviation from setpoint (◦C).
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T des
` Design indoor temperature (◦C).
θdes
` Design outdoor temperature (◦C).
Q̇des

` Design exogenous thermal power (kW).
P des
` Design electric power (kW).
ρ` Oversize ratio relative to design load.

I. DEMAND PEAKS AND CYCLIC LOADS

PEAKS in electricity demand shape power system opera-
tions at various scales. In bulk transmission grids, demand

peaks drive generation capacity expansion and increase the use
of inefficient peaking plants. This paper focuses on smaller-
scale applications, such as a large apartment building or hotel,
a microgrid, or a section of a distribution grid covering a
neighborhood or city block. At these scales, there are several
motivations to reduce peak demand. In large buildings, fees
based on monthly demand peaks can comprise 30–70% of
electricity bills [1]. In microgrids, demand peaks can increase
fuel use by triggering dispatch of backup generators, or
by causing generators to operate at higher load and lower
efficiency [2]. In sections of distribution grids, demand peaks
can stress transformers and power lines, increasing the risk of
equipment failure [3].

To reduce demand peaks at these scales, this paper de-
velops control techniques for aggregations of cyclic loads,
meaning fixed-speed electrical devices that turn on and off
periodically to regulate a measured variable within a band
centered on a setpoint. Specific demonstrations are made for
thermostatically-controlled loads (TCLs) – cyclic loads that
regulate temperature – as TCLs such as air conditioners and
heat pumps are key drivers of demand peaks. However, the
control techniques developed here also apply to a variety of
other cyclic loads, such as fixed-speed pumps, fans, compres-
sors, dehumidifiers, and vacuum systems.

Fig. 1 illustrates the operating cycle of a thermostatically-
controlled air conditioner. The air conditioner is initially off,
so the indoor air warms until it reaches the thermostat’s
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Fig. 1. A thermostatically-controlled air conditioner cycles off and on to keep
the measured indoor temperature (red) within a band centered on a setpoint.
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Fig. 2. Individual (top) and aggregate (bottom) power of two cyclic loads. At left, the loads are briefly on at the same time, but in the center column they
coordinate to stagger their operation. The variable-speed case (right) lower-bounds the peak aggregate demand (dashed red lines) that can be achieved.

upper temperature limit. The air conditioner then switches on,
driving the temperature down to the lower limit, at which point
the air conditioner switches off and the process repeats.

TCLs have played an important role in demand-side man-
agement efforts since the energy price shocks of the 1970s
[4]. Early approaches to TCL peak shaving involved utilities
turning TCLs off during system peaks, using either a direct
load control signal or a phone call to the TCL operator.
Later approaches involved subtler methods, such as raising
air conditioner temperature setpoints during afternoon peaks.

While these approaches are simple and effective, they may
cause significant inconvenience or discomfort to users. For
example, turning air conditioners off or raising their tempera-
ture setpoints can make buildings uncomfortably hot, humid or
stuffy. This paper investigates an alternative approach that does
not sacrifice quality of service. This non-intrusive approach
is based on the observation that demand peaks in cyclic load
aggregations are driven in part by an unfortunate and avoidable
coincidence: occasionally, an unnecessarily large fraction of
the loads will happen to run at the same time. Loads can
avoid this coincidence by coordinating to interleave their
operation. This coordination can shave peaks substantially
while maintaining quality of service.

Fig. 2 illustrates this unfortunate coincidence and the op-
portunity to avoid it. In the left column of Fig. 2, two cyclic
loads are briefly on at the same time, as can be seen from
the overlapping individual power profiles in the top left plot.
This coincidence causes a peak aggregate demand (the dashed
red line in the bottom left plot) of P 1 + P 2, where P ` (kW)
is the electric power capacity of load `. In the center column
of Fig. 2, by contrast, the loads coordinate to avoid being
on at the same time, as can be seen from the staggering
of the individual power profiles in the top center plot. This
coordination reduces the peak aggregate demand (the dashed
red line in the bottom center plot) to P 1. In Sec. V, this paper
develops methods to coordinate arbitrary numbers of loads for
similar peak reductions.

The right-hand column of Fig. 2 illustrates the operation

of two hypothetical variable-speed loads that could replace
the cyclic loads. While each cyclic load alternates between
turning off and running at full capacity, variable-speed load
` would run continuously at partial capacity P `d`, as can be
seen in the top right plot. Here d` is the duty cycle (the ratio
of ‘on’ time to total operating time) of cyclic load `. The
bottom row of plots in Fig. 2 shows that the aggregate power
of the variable-speed loads, P 1d1 + P 2d2, is a lower bound
on the peak demand that can be achieved by coordinating the
two cyclic loads. In Sec. IV, this paper establishes that this
lower bound is not specific to the simple two-load example in
Fig. 2, but in fact provides a fundamental performance bound
for any number of cyclic loads and any coordination method.
The variable-speed bound illustrated in Fig. 2 is therefore a
valuable benchmark for practical control systems.

In Sec. VI, this paper simulates TCL coordination using
the methods developed in Sec. V. In these simulations, the
methods reduce peak demand to the variable-speed bound
under a wide range of boundary conditions, load character-
istics and device parameters. This suggests that the control
methods are essentially optimal for the problem considered
here: they reduce peak demand as much as possible without
compromising quality of service. Simulations also show how
the potential peak reduction scales with the number of loads.
The potential is significant for aggregations of a few hundred
loads or fewer.

II. LITERATURE REVIEW AND CONTRIBUTIONS

There is an extensive literature on providing grid services
from cyclic loads, particularly TCLs. For example, research
has shown that TCL aggregations can arbitrage dynamic
energy prices [5]–[8], track aggregate power reference signals
for frequency regulation or renewable supply following [8]–
[16], and reduce peak demand [16]–[28]. This literature review
focuses on the peak shaving studies [16]–[28], as they are most
relevant to the current scope. While shifting load based on
wholesale prices can indirectly reduce peak system demand,
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wholesale price spikes may not coincide with local demand
peaks at the small scales considered here.

Within the TCL peak shaving literature, most studies control
the loads’ on/off states directly [17]–[24], [26], and this paper
uses the same approach. By contrast, [16] and [25] control
on/off states indirectly by adjusting temperature setpoints and
supply voltages, respectively. To decide control actions, some
studies use numerical optimization, typically solving linear
or mixed-integer linear programs [16], [17], [20], [23], [27].
Optimization problems are solved statically [17], [20], [23]
or in a receding-horizon fashion [16], [27]. Another group of
studies uses scheduling heuristics that prioritize loads based on
a variety of scoring metrics [18], [19], [21], [22], [26]. This
paper generalizes these heuristics to accommodate arbitrary
priority-scoring metrics, as well as hard constraints such as
maximum switching frequencies or minimum on- or off-times.
This paper also shows how priority-based control can be
implemented in a fully distributed fashion. The methods here
have conceptual similarities to the market-based approach in
[24], where loads submit price and quantity bids to a central
agent that clears the market.

Most TCL peak shaving studies assume that TCLs have low-
order linear time-invariant (LTI) dynamics [16], [17], [20]–
[27]. While this assumption simplifies control design and
may be realistic in some situations, it is not always a good
approximation. In [29], for example, Xu et al. find signifi-
cant inaccuracies in both first- and second-order LTI water
heater models. Model inaccuracies may arise from lumped
approximations to continuous temperature distributions [30],
from nonlinearities due to thermal radiation or temperature-
dependent convection coefficients [31], or from the time-
variation of device efficiencies that depend nontrivially on
ambient temperatures. By avoiding restrictive modeling as-
sumptions, model-free approaches such as [19] can accommo-
date a wider class of loads, including non-thermal loads and
loads with high-order, nonlinear, time-varying, or unknown
dynamics. Model-free approaches also avoid the need for
physics-based modeling or system identification and are not
vulnerable to structural or parametric model errors.

Most TCL peak shaving studies also propose central control
architectures, where one agent makes control decisions for all
loads [16]–[26]. This approach carries significant cybersecu-
rity risks, particularly vulnerability to denial-of-service attacks
on the central agent [27]. By avoiding dependence on a single
point of failure (the central agent), fully distributed approaches
such as [27] can improve robustness. This paper develops a
peak shaving control framework for cyclic loads that is both
model-free and fully distributed. To the best of the authors’
knowledge, this is the first such framework in the literature.

In summary, this paper makes three main contributions.
First, it develops model-free, fully distributed peak shaving
control methods for a wide class of fixed-speed loads. In
these methods, each load quantifies the urgency of its energy
needs via a priority score, which it shares with its neighbors.
Lower-priority loads turn off to make room for higher-priority
loads. The control methods have the additional advantages
of requiring little communication or computation and no
information about user behavior. Second, this paper establishes

a new and fundamental bound on the peak demand that any
coordination method can achieve without sacrificing quality
of service. This bound is a valuable benchmark for practical
control systems. Third, this paper simulates peak shaving
control of heterogeneous aggregations of air conditioners
during California’s extreme heat wave of mid-August, 2020,
which caused rolling blackouts throughout the state. In these
simulations, the control methods developed here achieve the
peak shaving bound while maintaining or improving quality
of service. In addition to building confidence in the proposed
methods, these simulations illustrate how the achievable peak
reduction scales with the number of loads and their degree of
oversizing. In particular, this paper shows that non-intrusive
peak shaving is fundamentally a small-aggregation problem, a
result not found in existing literature.

III. MATHEMATICAL FRAMEWORK

The mathematical framework in this paper involves a set
L = {1, . . . , L} of cyclic loads and a discrete time span
K = {1, . . . ,K}. At each time k ∈ K, each load ` ∈ L
observes a local output y`(k) and potentially receives addi-
tional information from other loads. Each load ` then decides
the control input

u`(k) ∈ {0, 1} , (1)

with 0 meaning ‘off’ and 1 meaning ‘on’. Given the control
inputs u1(k), . . . , uL(k) and the system state at time k, the
system evolves to a new state at time k+1. This evolution may
involve exogenous inputs related, e.g., to weather or human
behavior. Load ` then measures y`(k + 1) and the process
repeats. The constraint

0 ≤ y`(k) ≤ 1 (2)

encodes the requirement that the measured output remain
within a given band. The input and output are defined so that,
all else being equal, y`(k+1) will be larger if u`(k) = 1 than
if u`(k) = 0. Beyond these assumptions, the system dynam-
ics are arbitrary. They could be nonlinear, high-dimensional,
stochastic, time-varying, coupled across loads, etc. The con-
troller requires no additional measurements beyond y`(k),
which conventional controllers also require.

For example, a pump might turn on and off periodically
to maintain the measured water level h(k) (m) in a reser-
voir between minimum and maximum levels, h and h (m),
despite water withdrawals. This pump defines the output
y`(k) = (h(k) − h)/(h − h), so that (2) holds if and only
if h ≤ h(k) ≤ h. All else being equal, the scaled water level
y`(k + 1) will be larger if the pump is on (u`(k) = 1) than
off (u`(k) = 0), as the framework requires.

IV. NON-INTRUSIVE PEAK SHAVING BOUND

To satisfy its operational constraints (2) under given bound-
ary conditions, each load ` requires a certain duty cycle
d` ∈ [0, 1] over the time span K [32]. More precisely, the
control inputs u`(1), . . . , u`(K) must satisfy

∆t
∑

k∈K u`(k)

K∆t
=

‘on’ time
total time

= d`,
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where ∆t (h) is the time step duration. In terms of the device
powers P`(k) = u`(k)P , this requirement can be stated as∑

k∈K

P`(k) = KP `d`. (3)

The problem of minimizing peak aggregate demand subject to
the on/off power constraint (1) and the duty cycle constraint
(3) can therefore be stated as

minimize maxk∈K
∑

`∈L P`(k)
subject to

∑
k∈K P`(k) = KP `d`, ` ∈ L

P`(k) ∈
{

0, P `

}
, k ∈ K, ` ∈ L.

(4)

In (4), the decision variables are the device powers P`(k). The
problem data are the duty cycles d` and device capacities P `.

Appendix A establishes a lower bound on the optimal value
of (4):

max
k∈K

∑
`∈L

P ?
` (k) ≥

∑
`∈L

P `d`, (5)

where P ?
` (k) (kW) denotes any optimal solution to (4). The

left-hand side of (5) is the peak demand under any control
scheme that is feasible and optimal for (4). The right-hand
side of (5) can be interpreted as the peak demand of a fleet
of ideal1 variable-speed loads that hypothetically replace the
cyclic loads, with variable-speed load ` operating at constant
power P `d`.

The bound (5) provides a fundamental limit on the non-
intrusive peak shaving that any method for coordinating cyclic
loads can achieve. If peak demand is reduced below this limit,
then not all setpoints can be maintained.

Analogies between fixed- and variable-speed loads have
provided useful insights elsewhere in the literature. In Lemma
1 of [32], for example, Mahdavi et al. show that a single
TCL’s duty cycle is approximated within a certain error by
the part-load ratio of an ideal variable-speed load. While this
lemma and the variable-speed bound (5) both draw an analogy
between on/off and variable-speed devices, the contexts and
conclusions are quite different. The context here is a load
aggregation, rather than one load; the conclusion here is an
exact lower bound on the achievable peak demand, rather than
an approximation of the duty cycle.

V. CONTROL DESIGN

A control system that limits the peak demand of cyclic
loads should satisfy the on/off constraint (1) and the output
constraint (2). It should also limit peak demand:

max
k∈K

∑
`∈L

u`(k)P ` ≤ P cap, (6)

where P cap (kW) is a given power cap. In practice, P cap could
be set based on historical data or adaptively tuned. It is not
always possible to satisfy both (2) and (6); when a conflict
occurs, the output constraint (2) should take precedence. To

1The variable-speed loads in this analogy are ideal in that they perfectly
maintain their setpoints under steady conditions, and use the same amount
of energy as the corresponding fixed-speed loads. Real variable-speed loads
typically use less energy than fixed-speed loads, as efficiencies are higher at
part load than at full load.

reduce wear and tear on devices, the control system should
also limit the fleet-average device switching frequency,

1

KL∆t

∑
`∈L

∑
k∈K

|u`(k)− u`(k − 1)| . (7)

A. Conventional Bang-Bang Control

Conventionally, most cyclic loads use a form of bang-bang
control. In this approach, each load’s controller independently
keeps its output in the acceptable range with no communica-
tion. The resulting control law is

u`(k) =


0 if y`(k) > 1

1 if y`(k) < 0

u`(k − 1) otherwise.

A thermostatic air conditioner, for example, switches on if its
load is too hot (y`(k) < 0), switches off if its load is too cold
(y`(k) > 1), and otherwise maintains its previous on/off state.

It will be convenient to write the bang-bang control law as

u`(k) =

{
1 if (y`(k), u`(k − 1)) ∈ A`(k)

0 otherwise,

where

A`(k) =

{
(y, u) ∈ R2

∣∣∣∣∣ y < 0 or
0 ≤ y ≤ 1 and u = 1

}
.

It will also be convenient to write the set of loads dispatched
under bang-bang control as

A(k) = {` ∈ L | (y`(k), u`(k − 1)) ∈ A`(k)} .

B. Priority Control

This section proposes a family of priority-based control
methods aimed at satisfying the peak demand constraint (6).
In the proposed methods, each load locally computes a priority
score s`(k). Only those loads in A(k) whose priority scores
exceed a threshold s?(k) are dispatched:

u`(k) =

1
if (y`(k), u`(k − 1)) ∈ A`(k)

and s`(k) ≥ s?(k)

0 otherwise.
(8)

Constraints are accommodated by allowing the priority scores
to take on infinite values. If load ` must (or must not) run,
for example to respect a short-cycling constraint, then it sets
s`(k) =∞ (or −∞). This ensures that s`(k) ≥ s?(k) (or <)
and that load ` is dispatched (or not dispatched).

Algorithm 1 Priority threshold.

input: P cap, A(k); P ` and s`(k) for all ` ∈ A(k)
initialize A = A(k)
while A 6= ∅, min {s`(k) | ` ∈ A} <∞, and

∑
`∈A P ` >

P cap

remove an `′ ∈ argmin {s`(k) | ` ∈ A} from A
end while
return s?(k) = min {s`(k) | ` ∈ A}
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Fig. 3. Possible communication architectures for centralized (left) and distributed (right) control in a three-load network.

Algorithm 1 computes the priority threshold s?(k) by itera-
tively pruning the lowest-priority elements from the set A(k).
It proceeds until one of three conditions are met: (a) the set is
empty, meaning all loads that would run under conventional
bang-bang control are dispatched; (b) all loads remaining in
the set have infinite priority, meaning they must be dispatched;
or (c) the aggregate power falls below the demand cap.

An important component of priority control is the metric
used to score each load’s priority. To satisfy the output
constraint (2), a natural choice is s`(k) = −y`(k). This
metric prioritizes loads with smaller outputs, meaning an air
conditioner has higher priority if its space temperature is
higher. Other scoring metrics are possible; for example, [13]
and [19] prioritize TCLs by the time remaining until their
temperatures exit their thermostatic bands. Another possible
scoring metric is

s`(k) = −x`(k), (9)

where x`(k) is the on-time of load `, i.e., the duration that
load ` has been consecutively running. The on-time dynamics
are

x`(k + 1) =

{
x`(k) + ∆t if u`(k) = 1

0 otherwise.
(10)

The on-time x`(k) can be viewed as a surrogate for the
normalized output y`(k). For example, air conditioners that
have been on longer (larger x`(k)) tend to have colder space
temperatures (larger y`(k)). On-time is potentially of interest
as a scoring metric if the controller has access to the loads’
on/off states, but not to the internal measurements required
to compute the outputs y`(k). Scoring via on-time can also
reduce communication requirements, as discussed in Sec. V-D.

C. Distributed Implementation

Priority control is straightforward to implement centrally, as
illustrated at left in Fig. 3. At each time k, loads ` /∈ A(k)
turn off (or remain off). Loads ` ∈ A(k) report their priority
scores s`(k) to the central controller. The central controller
runs Algorithm 1 and broadcasts the priority threshold s?(k).
Loads ` ∈ A(k) compare their scores to the threshold and turn
on (or remain on) only if s`(k) ≥ s?(k). Loads ` ∈ A(k) with
s`(k) < s?(k) turn off (or remain off). If multiple loads have
s`(k) = s?(k), various tie-break rules can be used.

Priority control can also be implemented in a fully dis-
tributed fashion, with no dependence on a central agent, as
illustrated at right in Fig. 3. Executing the priority control
law (8) at load ` requires only the measured output y`(k), the

previous control input u`(k − 1), and the priority threshold
s?(k). The measured output and previous control input are
local information, but computing the priority threshold s?(k)
requires nonlocal information: the capacity P ` and priority
score s`(k) for each load ` ∈ A(k). The capacities can be
communicated one time, for example when devices join the
network. The priority scores must be communicated online,
however. Each load can then run Algorithm 1 locally and set
its on/off state according to (8).

In summary, a fully distributed implementation of priority
control is the following:

1) Each load ` /∈ A(k) turns off (or remains off).
2) Each load ` ∈ A(k) broadcasts its priority score.
3) Each load ` ∈ A(k) runs Algorithm 1 locally to compute

the priority threshold s?(k).
4) Each load ` ∈ A(k) executes the control law (8).

Step 3 involves some redundant computation. In the cen-
tral implementation, the central controller executes Step 3
once, then broadcasts s?(k) to all loads. In the distributed
implementation, by contrast, all loads ` ∈ A(k) run Step 3
simultaneously. The associated loss of efficiency is small, as
the computation involved in Algorithm 1 is essentially sorting
a vector of length L, which takes only O(L logL) flops. These
computing requirements are much lower than optimization-
based approaches. With L = 100, for example, Algorithm 1
runs in 0.0003 s in Matlab on a 2.7 GHz processor. This likely
permits implementation on a low-cost microcontroller.

D. Communication Requirements

The data required to implement priority control using
Algorithm 1 include the demand cap P cap and the device
capacities P 1, . . . , PL, which can be communicated offline.
In real time, only the priority scores s`(k) for each ` ∈ A(k)
must be communicated. (The set A(k) does not need to be
communicated, as A(k) is just the set of loads that broadcast
their priority scores.) In the worst case, at most L floating-
point numbers need to be communicated at each time step.
These communication requirements are low: with 50 loads, a
one-minute time step, and 16-bit floating-point representation,
the worst-case network-wide data rate is 13.3 bits per second
(less than one bit per second per load).

Communication requirements can be reduced if the on-time
metric (9) is used for priority scoring. In this case, loads do not
need to broadcast their priority scores at each time step, but
only to broadcast notifications when they switch off and on.
Given these notifications, each load can keep track of all other
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θT R

Q̇− ηP C

Fig. 4. A 1R1C thermal circuit. The temperature θ and thermal power Q̇−ηP
play the roles of voltage and current sources, respectively.

loads’ on/off states and on-times. At each time step, the only
input to Algorithm 1 that is not known locally by every load is
the set A(k), which contains the loads that would be on under
conventional bang-bang control. Therefore, it suffices for each
load ` ∈ A(k) to broadcast a notification that it ‘wants to turn
on’. Given these notifications, all loads can run Algorithm 1
locally, then execute the priority control law (8).

How much communication this saves depends on how often
loads cycle. In the worst case, where each load switches at
every time step, L switching notifications are broadcast at each
time step. At most L ‘I want to turn on’ notifications are also
broadcast, for a total of 2L notifications. Assuming two-bit
representation for the three notifications (e.g., 00 for ‘I turned
off’, 01 for ‘I turned on’, and 10 for ‘I want to turn on’),
the worst-case data rate is 4L/∆t. In practice, however, loads
typically switch a few times per hour and only a small fraction
of loads ‘want to turn on’ at any given time. With 50 devices,
a one-minute time step, six switches per device per hour, and
|A(k)| = 15 at each time step, the network-wide data rate is
0.67 bits per second.

This data rate is likely low enough for reliable power-line
communication [33], [34]. In fact, recent work shows that load
switches can be detected by observing the power-line voltage
waveform at high sampling rates [35]. This could eliminate the
need to broadcast ‘I turned off’ and ‘I turned on’ notifications
in on-time priority control; the switches themselves would
act as notifications. This could introduce occasional errors
in switch detection, however. More generally, relying on the
power line (or any lossy channel) would risk communication
errors. Work may be needed to ensure robustness to these
errors in priority control. A simple method to ensure graceful
failure is for a load to revert to conventional bang-bang
control if its communication reliability degrades, but more
sophisticated methods might perform better.

VI. CONTROL DEMONSTRATIONS

This section simulates a heterogeneous fleet of air condition-
ers under a variety of control methods. These simulations use
a standard TCL model from the literature [16], [20]–[24], [26],
[27]. The TCL model serves illustration purposes only. The
priority control algorithms simulated here do not have access
to the model structure or parameter values. These algorithms
readily handle mixed aggregations including water heaters,
refrigerators, pumps, fans, vacuum systems, etc. Due to space
limitations, however, this section models air conditioners only.

Fig. 4 illustrates the TCL model. The state is the load
temperature T (◦C). The input signals are the electric power

TABLE I
BASELINE SIMULATION PARAMETERS

Parameter Value or range
Number of loads, L 50
Time step, ∆t 1 minute
Time horizon, K∆t 24 hours
Thermal resistance, R 2–3 kW/◦C
Thermal capacitance, C 1.5–2.5 ◦C/kWh
Coefficient of performance, η 2.5–3.5
Thermostat deadband halfwidth, ε 0.5 ◦C
Design outdoor temperature, θdes 40 ◦C
Design indoor temperature, T des 23–26 ◦C
Design exogenous thermal power, Q̇des 2.25–3.5 kW
Oversize ratio, ρ 1.5–2.5

P (kW) used by the TCL, the surrounding temperature θ (◦C),
and the thermal power Q̇ (kW) from exogenous sources such
as the sun, electronics, lights, bodies, etc. The parameters are
the resistance R (◦C/kW), capacitance C (kWh/◦C), power
capacity P (kW), and coefficient of performance η (-).

The continuous-time temperature dynamics are

CṪ (t) =
θ(t)− T (t)

R
+ Q̇(t)− ηP (t). (11)

This form represents air conditioning, but the model accommo-
dates heating by changing the sign of ηP (t). Assuming a zero-
order hold on the input signals, the discrete-time dynamics are

T (k + 1) = aT (k) + (1− a)[θ(k)

+R(Q̇(k)− ηP (k))],
(12)

where a = exp(−∆t/(RC)) and ∆t (h) is the time step. The
load temperature should satisfy∣∣T (k)− T set(k)

∣∣ ≤ ε, (13)

where T set(k) (◦C) is a user-specified setpoint and ε (◦C) is
the halfwidth of a band of acceptable temperatures.

The TCL model fits into the mathematical framework of
Sec. III through the definitions u`(k) = P (k)/P and

y`(k) =
T set(k) + ε(k)− T (k)

2ε(k)
. (14)

With these definitions, u`(k) = 0 if the TCL is off (P (k) = 0)
and u`(k) = 1 if it is on (P (k) = P ), as the framework
requires. Furthermore, y`(k) = 0 at the hot end of the
temperature band (T (k) = T set(k) + ε) and y`(k) = 1 at the
cold end (T (k) = T set(k) − ε), so the temperature constraint
(13) is equivalent to the framework’s output constraint (2).
Finally, all else being equal, y`(k+ 1) will be larger (the load
will be colder) if u`(k) = 1 than if u`(k) = 0, as required.

The simulation inputs are drawn from independent symmet-
ric triangular distributions over the ranges in Table I. After
generating its R, C and η, each air conditioner is sized as
P = ρP des, where ρ is the oversize ratio and P des solves (11)
in steady state under the design conditions T des, θdes and Q̇des

in Table I. This sizing method follows industry standards [36],
which recommend oversizing air conditioners by ρ = 1.4. In
practice, installers often oversize equipment well beyond this
guideline. In the field study [37], for example, Djunaedy et
al. found air conditioners commonly oversized by ρ > 2, with
some oversized up to ρ = 4. In the simulations here, ρ varies
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Fig. 5. Outdoor air temperature (left) and global solar irradiance on a
horizontal surface (right) on the simulation day. Hour zero is midnight.

from 1.5–2.5; the resulting electrical capacities vary from 4–8
kW. Indoor temperature setpoints are drawn from the ranges
in Table I. They vary from load to load but are constant over
time.

Simulations are set in Sacramento, California, on August
14, 2020, during an extreme heat wave that caused rolling
blackouts throughout the state. Fig. 5 shows the outdoor
temperature (left) and solar radiation intensity on a horizontal
surface (right) on this day. The outdoor temperature peaked
at 44 ◦C (111 ◦F), well above Sacramento’s cooling design
temperature of 40 ◦C. In simulations, all loads are located in
the same region, so they see the same outdoor air temperature
θ. The thermal power Q̇ from the sun and internal heat sources
varies from load to load, however, to model diverse occupancy
profiles and solar exposures.

Peak shaving is benchmarked here against the variable-
speed bound (5). The variable-speed bound is computed by
substituting each load’s temperature setpoint for the indoor
temperature T in (12), solving (12) for each variable-speed
load’s power consumption, summing the results over loads
to compute aggregate demand, and taking the maximum over
time to compute the peak. This process emulates variable-
speed loads that perfectly track their temperature setpoints.

A. Peak Shaving Performance

Fig. 6 shows the aggregate demand under thermostatic
control (left) and priority control (right) over the day. In
both plots in Fig. 6, the magenta curve is the aggregate
demand under perfect variable-speed control. The dashed red
lines in Fig. 6 show the peak demand over the day for each
control method. The priority control illustrated in Fig. 6 uses
temperature as the priority scoring metric, s`(k) = −y(k),
with y`(k) defined by (14). The priority score is set to ∞ if
y(k) < 0, or if u`(k−1) = 1 and the on-time (10) is less than
five minutes. This ensures temperature constraint satisfaction
and avoids short-cycling. In this simulation, the demand cap
P cap is set to the variable-speed bound. Priority control runs
continuously, but only differs substantially from conventional
bang-bang control near peak hours.

The key message of Fig. 6 is that priority control can reduce
peak demand to the variable-speed bound. In this simulation,
the variable-speed bound is 170 kW. Under thermostatic con-
trol, the peak demand is 236 kW. Priority control reduces the

Fig. 6. Aggregate power under thermostatic control (left) and priority control
(right). Magenta curves are the aggregate power under perfect variable-speed
control. Dashed red lines are demand peaks. Hour zero is midnight.

peak demand in this simulation by 28%. This peak reduction is
achieved with no loss of temperature regulation performance;
the mean absolute temperature error

1

KL

K∑
k=1

L∑
`=1

∣∣T`(k)− T set
` (k)

∣∣
is 0.263 ◦C under thermostatic control and 0.259 ◦C under
priority control. The energy consumption is nearly identical
under thermostatic and priority control. Devices are switched
slightly more frequently under priority control (2.82 switches
per device per hour) than thermostatic control (2.69).

Taken together, this section’s peak reduction result and
temperature regulation result suggest that priority control is
essentially optimal. Priority control reduces peak demand to
the fundamental bound from Sec. IV, and does so while main-
taining or improving temperature regulation. This is the largest
non-intrusive peak reduction possible; if the peak is reduced
further, then not all temperatures can be maintained. To the
authors’ knowledge, no existing methods have demonstrated
optimality in this sense.

This section presents results from a single one-day simula-
tion. However, peak reduction, temperature regulation, energy
consumption and device switching were also investigated in
the wide range of Monte Carlo simulations described in
Sec. VI-C and Sec. VI-D, and in a range of month-long
simulations. The key result of this section – that priority
control can reduce the peak demand to the variable-speed
bound without sacrificing quality of service – was replicated
in all 52,000 simulated days.

The peak shaving demonstrated in this section could have
significant economic value to customers who pay monthly
peak demand charges. For example, according to Table 1 of
[1], the highest peak demand price a California utility charged
in 2017 was 47.08 $/kW. Under this demand price, the 66
kW peak reduction in this simulation would reduce monthly
electricity bills by $3,100, or $62 per load. For comparison, the
load-average energy cost over the full month of August, 2020,
would have been $125 with an energy price of 0.2 $/kWh.

B. Adaptively Tuning the Demand Cap

The demand cap P cap is an important input to the priority
control algorithm. In Sec. VI-A, the demand cap was set a
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Fig. 7. Aggregate power (left) and demand cap (right) in priority control with
the cap initialized at zero and adaptively tuned. The magenta curve is the
aggregate power under perfect variable-speed control. Hour zero is midnight.

priori to the variable-speed bound of 170 kW. This method
may not be viable in practice, as calculating the variable-
speed bound requires exact knowledge of all load models and
parameters. A simple but effective alternative is to initialize
the cap at some low value, allow it to be violated if necessary
to maintain setpoints, and dynamically update the cap if it is
violated:

P cap(k + 1) = max

{
P cap(k),

∑
`∈L

P`(k)

}
.

This update rule can be implemented in a fully distributed
fashion with no additional communication, as each device
can infer all other devices’ power states from the information
exchanged in the distributed priority control in Sec. (V-C).

Fig. 7 shows the results of priority control with this update
rule, initialized with P cap(0) = 0, in the same scenario
discussed in Sec. VI-A. The left plot shows that the aggregate
power peaks at 172 kW, 1% above the priority control in
Sec. VI-A. The right-hand plot shows the evolution of the
demand cap, which starts at zero, increases in a series of
step changes, and stabilizes after crossing the variable-speed
bound of 170 kW. A similar convergence pattern was observed
in other simulation runs: the demand cap stabilizes once the
system observes a peak event, and the final value is slightly
larger than the theoretical limit provided by the variable-speed
performance bound. In this simulation, the mean absolute tem-
perature error was 0.261 ◦C, slightly better than thermostatic
control. These results suggest that the demand cap can be
adaptively tuned with little impact on performance.

C. Achievable Peak Reduction

Fig. 8 shows the achievable peak reduction as a function
of the number of devices L for three fixed values of the
oversize ratio ρ. In this figure, the percent peak reduction
is defined relative to thermostatic control. Each point in Fig.
8 is the sample-average percent peak reduction over 1,000
Monte Carlo runs. With this sample size, estimates of the mean
percent peak reductions are accurate to within ±0.1%.

The simulations underlying Fig. 8 use the same input data
discussed earlier in this section, except that the oversize ratio
is a deterministic parameter. At each (L, ρ) combination, 1,000
one-day Monte Carlo simulations are run. The simulations

Fig. 8. Scaling of the achievable percent peak reduction (relative to thermo-
static control) with the number of devices and oversize ratio.

span 16 values of L, three values of ρ, and two control
methods. Fig. 8 therefore summarizes 246 simulated years.

Three conclusions can be drawn from Fig. 8. First, the peak
reduction opportunity is significant. In the realistic example of
a hotel or apartment building with L = 50 devices oversized
by a ratio of ρ = 2, the peak demand could be reduced by 23%.
Second, the opportunity decreases with the number of loads.
For example, with L = 20 loads and an oversize ratio of ρ = 2,
the peak could reduced by 31%; while with L = 500 loads
and the same oversize ratio, the peak could only be reduced
by 10%. This can be understood through the Central Limit
Theorem. Loosely, the aggregate demand under thermostatic
control is the sum of many independent random variables, so
its standard deviation (and therefore the probability of a high
thermostatic peak) decreases at a rate of 1/

√
L. Third, the

peak-reduction opportunity increases with the oversize ratio.
For example, with L = 50 loads oversized by ρ = 1.5, the
peak could be reduced by 16%; while with L = 50 loads
oversized by ρ = 2.5, the peak could be reduced by 26%. To
the authors’ knowledge, existing literature has not explored
how the achievable peak reduction scales with the number of
loads and their degree of oversizing. The understanding of
these scaling effects presented here could help practitioners
target demand-side management efforts more effectively.

D. On-Time as a Priority Scoring Metric

Table II shows simulation results for four control methods:
(1) perfect variable-speed control, (2) thermostatic control,
(3) priority control with normalized temperature as the pri-
ority scoring metric, and (4) priority control with on-time
as the priority scoring metric. Each entry in this table is
averaged over 1,000 Monte Carlo runs. In each run, all four
control methods are simulated with the same input data.
For temperature-based priority control, 16-bit floating-point
representation is assumed. The on-time priority controller uses
the low-communication implementation discussed in Sec. V-D;
each notification is represented using two bits.

Two conclusions can be drawn from Table II. First, on-
time is a reasonable priority scoring metric: like temperature-
based priority control, on-time-based priority control reduces
peak demand to the variable-speed bound with no increase
in energy consumption or setpoint tracking error and a mild
increase in switching frequency. Second, scoring priority via
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TABLE II
AVERAGE RESULTS OVER 1,000 MONTE CARLO SIMULATIONS

Control
method

Peak demand
(kW)

Total energy
(MWh)

Temperature error
(◦C)

Switches per
device per hour

Network-wide
data rate (bps)

Thermostatic 218 1.87 0.264 2.63 0
Perfect variable-speed 167 (-23%) 1.87 0 n/a 0
Temperature priority 167 (-23%) 1.87 0.260 (-1.5%) 2.74 (+4.2%) 13.3

On-time priority 167 (-23%) 1.87 0.261 (-1.1%) 2.80 (+6.6%) 0.04 (-99.7%)

on-time, rather than temperature, decreases communication
requirements by 99.7%, from a network-wide data rate of 13.3
bits per second to 0.04 bits per second. This suggests that on-
time could be an attractive scoring metric if data rates are
limited, as may be the case with power-line communication.

VII. CONCLUSION

This paper has developed control methods that enable cyclic
loads to cooperatively reduce their peak aggregate demand.
In simulations, these methods maintained or improved quality
of service relative to today’s controllers. This suggests that
unlike traditional demand response programs, the framework
developed here could be deployed without needing to recruit
or pay users. A load could simply be shipped or retrofitted
with the control capabilities developed here. Once plugged in,
it could discover neighboring loads and begin coordinating
with them. The system could work with no central controller.

This paper has focused on non-intrusive peak shaving at the
scale of a building, microgrid, or section of a distribution grid.
However, cyclic loads could also trade quality of service for
deeper, ‘intrusive’ peak shaving; they could help the grid in
other ways, such as price-based load shifting or emergency
curtailment; or they could provide services at the scale of
a bulk transmission grid. To achieve these ends, the real-
time control methods developed here could be combined
with a supervisory control system that operates at slower
time scales. The framework developed here could also be
tested in hardware. Robustness to communication errors
and cyberattacks could be investigated in the centralized and
distributed architectures proposed here. Other communication
architectures, such as one where devices communicate only
with nearby neighbors, could also be considered.

APPENDIX A
PROOF OF NON-INTRUSIVE PEAK-SHAVING BOUND

Proving the bound (5) involves a continuous relaxation to
the discrete optimization problem (4),

minimize maxk∈K
∑

`∈L P`(k)
subject to

∑
k∈K P`(k) = KP `d`, ` ∈ L

P`(k) ∈ [0, P `], k ∈ K, ` ∈ L,
(15)

with variables P`(k). The only difference between (15) and
(4) is that in (15), P`(k) may take on any real value between
zero and P `. This allows the power of each device to vary
continuously between zero and its capacity. In (4), by contrast,
P`(k) must be either zero or P `, meaning the device must be
either off or on at full capacity. An optimal solution to (15) is

P̂`(k) = P `d`, k ∈ K, ` ∈ L, (16)

with optimal peak demand

max
k∈K

∑
`∈L

P̂`(k) =
∑
`∈L

P `d`. (17)

This can be seen by verifying the KKT optimality conditions
for an equivalent reformulation of (15):

minimize v
subject to

∑
`∈L P`(k)− v ≤ 0, k ∈ K∑
k∈K P`(k)−KP `d` = 0, ` ∈ L

−P`(k) ≤ 0, k ∈ K, ` ∈ L
P`(k)− P ` ≤ 0, k ∈ K, ` ∈ L.

(18)

The KKT conditions for (18) are the following.
Primal feasibility:∑

`∈L

P̂`(k)− v? ≤ 0, k ∈ K∑
k∈K

P̂`(k)−KP `d` = 0, ` ∈ L

−P̂`(k) ≤ 0, k ∈ K, ` ∈ L
P̂`(k)− P ` ≤ 0, k ∈ K, ` ∈ L.

Dual feasibility:

γ(k)? ≥ 0, k ∈ K
λ`(k)? ≥ 0, k ∈ K, ` ∈ L
µ`(k)? ≥ 0, k ∈ K, ` ∈ L.

Complementary slackness:

γ(k)?

(∑
`∈L

P̂`(k)− v?
)

= 0, k ∈ K

λ`(k)?P ?
` (k) = 0, k ∈ K, ` ∈ L

µ`(k)?(P ?
` (k)− P `) = 0, k ∈ K, ` ∈ L.

Stationarity:

γ(k)? + ν?` = λ`(k)? − µ`(k)?, k ∈ K, ` ∈ L∑
k∈K

γ(k)? = 1.

The KKT conditions hold with primal variables (16) and

v? =
∑
`∈L

P `d`,

as well as dual variables

γ(k)? = 1/K, k ∈ K
λ`(k)? = 0, k ∈ K, ` ∈ L
µ`(k)? = 0, k ∈ K, ` ∈ L

ν?` = −1/K, ` ∈ L.
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Thus, (16) is a solution to (15) with optimal value (17).
The optimal value of the fixed-speed problem (4) is denoted

by p?. As (4) and (15) have the same objective function and
any solution to (4) is feasible for (15), the optimal value of
(15) provides a lower bound on the optimal value of (4):

p? ≥
∑
`∈L

P `d`. (19)

This is the variable-speed bound (5).
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