
Computer-Aided Design and Application of 
Sinusoidal Switching Patterns 

Steven R. Shaw Deron K. Jackson 

Abstmct- This paper discusses the design of discrete 
switching sequences for synthesizing sinewaves in power- 
electronic circuits and drives. The discrete-level sinewave 
approximations described in this paper can be implemented 
with reduced switching losses, in comparison to typical 
pulse-width modulation patterns, and with user-selectable 
harmonic content. We present two design algorithms, in- 
cluding an algorithm based on simulated annealing. The 
algorithms allow the engineer to  select switching sequencer 
that meet desired objectives or characteristics in almost any 
context. In addition, we demonstrate the use of these se- 
quences experimentally in a practical application. 

I. BACKGROUND 
The energy conversion efficiencies achievable with 

switching power circuits have been touted for decades [l]. 
One common switching strategy for power-electronic cir- 
cuits is fixed-frequency pulse-width modulation (PWM). 
With PWM, a duty-ratio command is varied to adjust fea- 
tures of the switched waveform. In an inverter circuit for 
a motor drive, for example, the duty ratio might be varied 
periodically to create a switched waveform whose short- 
time average value closely follows the value of a reference 
sinewave. Many switch cycles will occur during one cycle 
of the reference sinewave. Because the frequency of the 
PWM approach is fixed, a set number of switch transitions 
occur during each cycle of the fundamental. 

Switching transitions contribute to conversion losses and 
inefficiency. The losses result from switch dissipation - 
particularly in circuits that do not employ resonant, soft- 
switched transitions - and also from gate- or base-drive 
losses. In addition, the PWM waveform will have signifi- 
cant harmonic energy around and above the switching fre- 
quency. In some cases the switching-frequency harmonic 
may be larger in amplitude than the component at the fre- 
quency of the sinusoidal PWM reference. A low-pass filter 
can be used to attenuate switching-frequency harmonics, 
but low-frequency harmonics in the passband still affect 
the waveform quality. 

Several methods have been proposed to minimize the 
low-frequency harmonic content of PWM circuits [2], [3], 
141. The methods use analytical techniques, such as Fourier 
or Walsh function analysis, to express the harmonic content 
in terms of the PWM duty ratio. The resulting equations 
are then solved to minimize distortion. In many cases the 
resulting fixed-frequency PWhl waveforms are discretized 
in time so that they may be implemented using digital 
circuitry [5]. These “programmed” PWM waveforms are 
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essentially long, repeating, discrete-time binary switching 
sequences which serve as approximations to a sinewave. 

In general, switching sequences can be created with 
switch transitions that do not occur at a fixed frequency. 
A technique in (11, which eliminates harmonics by zeroing 
or “notching” a square wave, is one example. Other possi- 
bilities and design criteria are described in [S] and [7]. For 
example, a fixed-length sequence can be used to construct a 
discrete approximate to a reference sinewave. The number 
and position of the “ones” and “zeroes” can be selected to 
mininiize the distortion without regard to fixed-frequency 
constraints. In general, it is possible to create low distor- 
tion sinewave approximations that use fewer switch tran- 
sitions per cycle than a cornparable PW‘M patterns [SI. It 
is also possible to tailor or place the harmonic content of a 
switching sequence to suit particular applications. The bit 
patterns of the binary switching sequence can be stored in 
a memory and clocked out at a fixed rate or generated in 
real time using a simple state machine or microcontroller. 

The achievable amplitude of the target fundamental is 
proportional to the percentage of ones in the binary se- 
quence. Therefore, it is possible in many cases to simply 
search all M-point sequences with the desired number of 
ones. A simple algorithm is described in the next section to 
determine the harmonic content of a specified bit sequence. 
Analyzing long switching sequences, hoxvever, quickly be- 
comes unwieldy; the multiplicity of possible bit patterns 
grows exponentially with M. A simulated annealing tech- 
nique is presented which allows the designer to quickly sat- 
isfy requirements such as the number of transitions, har- 
monic content, or other metrics of interest. The applica- 
tion of annealed switching sequences in an AC inverter is 
presented. 

11. PATTERN DESIGN 
A switching sequence could in principle be created by 

assuming any number of discrete output levels. For typical 
power-electronic inverter circuits, two convenient assump 
tions regarding output discretization are shown in Fig. 1. 
The tri-level waveform could be produced by a full-bridge 
inverter circuit, and the bi-level waveform could be created 
by a half-bridge inverter. In practice, the tri-level waveform 
is assumed to have half- or quarter-wave symmetry. The 
symmetry simplifies inverter construction and improves ef- 
ficiency by allowing one leg of the inverter to switch only 
once per half-cycle. The symmetry assumptions also reduce 
the design of a tri-level waveform to one of a bi-level subset. 
The complete tri-level sequence can be constructed from 
the bi-level subset. For example, the second half-period of 
a sequence with half-wave symmetry is a replication of the 
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e-jnfT are common to all terms in the summation over i .  
For purposes of determining the presence or absence of Ire- 
quency content at  a given harmonic frequency, these terms 
can be removed from further consideration. Assuming a 
periodic sequence, the analysis of the presence or absence 
of the higher harmonic content of a periodic switching se 
quence reduces to the discrete-time Fourier series: 

(a) rri-iCvei wavefm 

@)Bi-level waveform M-1 

X [ k )  = z j e - w ,  (4) 
i=O 

Fig. 1. Bi-level and tri-level sinewave approximations. 

first half-period with a sign inversion. This symmetry has 
the added benefit that all even harmonics are eliminated 
from the final sequence. Quarter-wave symmetry addition- 
ally eliminates any cosinusoidal content from the switch- 
ing sequence. The algorithms presented here will assume 
quarter-wave symmetry. Although we make symmetry as- 
sumptions in this paper, the techniques can be extended to 
more general sequences. 

For illustration purposes, we will focus on the design 
of a tri-level sequence z with quarter-wave symmetry and 
a length M = 4N. Because the waveform is symmetric, 
the problem is to find the first quarter-period of length N, 
which consists only of ones and zeros, with fixed energy 

N-1 

E =  Czj 
i r O  

that minimizes some loss function V ( z ) .  The loss function 
V ( z )  is typically a weighted function of the harmonic con- 
tent of the sequence z and the number of transitions in the 
sequence. Other criteria may also be included in the loss 
function. 

A candidate switch sequence can be analyzed as a super- 
position of M identical square bits shifted in time. In the 
frequency domain, the harmonic content of the sequence is 
a superposition of sinc functions [8], 

multiplied by a phase associated with each bit's relative 
time offset. The factor zi is the trinary amplitude that 
determines whether the i-th pulse amplitude is one, zero, 
or minus one. 

The switching sequence z will be periodic in time with 
a period MT, where T is the duration of one bit in the 
sequence. The harmonic content is, therefore, multiplied 
by a series of delta functions, 

where k is the harmonic frequency index and i is the index 
of a bit in the sequence. To eliminate the presence of a 
particular harmonic k, the xi must be chosen such that the 
sum of the phases adds to zero. 

Two other conditions can simplify the analysis. First, if 
the sequence has half-wave symmetry, then all even har- 
monics are zero. Second, if the sequence has quarter-wave 
symmetry, then only sinusoidal components are present, 
and only the first N points of the M-point sequence must 
be considered in the frequency content summation, as fol- 
lows: 

2nki 
M 

N-1 
X [ k ]  = - Zi  sin(-) 

is0 
121 

for odd values of k. Designing the symmetric switching se- 
quence is, therefore, reduced to selecting the first N values 
of zj to suppress higher-order harmonics of concern. 

The analysis of the phase summations is compactly 
solved using matrix multiplication. A matrix, 

represents all possible N-length sequences containing a 
specified energy: each row is one possible quarter-period 
of a full switching sequence. A second matrix, 

sin(0) sin(0) sin(0) 
1 sin(l9) sin(36) sin(56) 

p = ( sin(26) sin(66) sin(l06) - -  - 

represents the phase content from each bit i in the switch- 
ing sequence, where 0 = 27r/M. Each row in P represents 
the phase offset of a single bit for a series of harmonics, 
and each column represents the phase shift of all N bits 
for a particular harmonic. The total number of columns in 
P is determined by the number of harmonics of interest. 

n f )  = (3) Multiplication of these two matrices 

Z = B . P  (8) sin(7rfT) 1 k M-1 

Cd(f - &. e-j+fT zie-i2+/Ti ,- __ 
i=O r f  MT 

gives the net phase coefficient for each possible bit pattern 
at the harmonic frequencies of interest. Each column in the 
resulting matrix identifies the net phase summation for a 

For any particular harmonic frequency f = &, of the 
fundamental frequency &, both the sinc and phase term 
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particular harmonic; the rows correspond to the harmonic 
series for a specific bit pattern. To choose a switching se- 
quence, a row in the matrix 2 is chosen that has zeros in the 
appropriate columns (harmonics) of interest. Alternatively, 
a vector W of weights can be designed. This vector might 
correspond to magnitude samples of the transfer character- 
istic of the output filter in an inverter circuit. A switching 
sequence could be selected by finding the minimum entry 
of the vector Z - W to minimize harmonics passed by the 
output filter. 

A computational challenge arises in actually specifying 
each row of the matrix B.  For an N-point quarter-wave 
sequence, there are 2N possible binary combinations. That 
is, with the worst case of no particular energy constraint, 
the matrix B has N columns and 2N rows! For a particular 
energy constraint, i.e., if we limit B to include only rows 
with at least E ones, the number of possible rows r of the 
matrix B as a function of N and E is 

(9) 
N !  

( N  - E)!E!’ r ( N , E )  = 

Using the Stirling approximation [9], 

r ( N ,  E )  a /Z2Ne-2(E-N/Z)’/N. TN (10) 

As N increases, and E = aN, i.e., the normalized energy is 
constant, the multiplicity of candidate sequences increases 
exponentially with N .  The “direct” pattern generation ap- 
proach outlined in this section is superb for short length, 
e.g., 30 point, sequences on fast computers. For large se- 
quences, e.g., M = 1000 or more, it quickly becomes nec- 
essary to find another design approach. 

111. SIMULATED ANNEALING 
The method of simulated annealing can be used to find 

an approximate solution to this exponentially increasing 
problem in sub-exponential time. The annealing strategy is 
analogous in some sense to the physical process of annealing 
metals, but the goal here is to minimize the loss function. 
The process begins by heating the system, making random 
perturbation in the loss function, until the movement is 
largely random. The system is then cooled, favoring down- 
hill movements in the loss function toward a towards a 
minimum. Local minima are avoided by allowing positive 
movement depending on the “temperature” of the system. 

A. Algorithm 
In this application simulated annealing is used to mini- 

mize the harmonic content and the number of switch tran- 
sitions for a proposed switching sequence. The strategy 
begins by generating an initial guess for the sequence 2, 
given the length M = 4N and the number of ones E.  Al- 
though the approach is general, quarter-wave symmetry is 
assumed. Next, a change in the configuration of 2 is pro- 
posed, and the loss function for the changed configuration 
is evaluated. The change is either accepted or rejected 
based on a probabilistic criterion. 

For the purposes of this paper, the loss function is the 
sum of two factors, 

v(z) = v D ( 2 )  f VT(2) (11) 

where VD is a distortion factor and VT is a transition factor. 
The distortion factor VD is defined as 

where the X [ k ]  are the discrete-time Fourier-series com- 
ponents of the periodic sequence 3, and W[kJ is a user- 
selectable harmonic weighting function. The loss factor VD 
represents the weighted total harmonic distortion (THD) of 
the sequence. The second loss factor VT is defined as 

where T ( t )  is the number of upjdown switch transitions in 
2, and TT is a user-defined target for the number of transi- 
tions. If the number of transitions exceeds the target, the 
error is weighted linearly by WT. However, if the number 
of transitions is less than the target VT is set to zero. 

Since the object is to find a sequence with E ones in its 
first quarter-period that minimizes VI only configuration 
changes that conserve E are considered. One such recon- 
figuration operator is 

where i l  indexes the I’th 1 and io indexes the m’th 0, and I ,  
n are uniform random deviates. Simply put, the reconfigu- 
ration operator swaps the locations of a randomly selected 
zero and one. The new configuration, which leads to a loss 
function change AV, is accepted or rejected according to 
the Metropolis criterion M(AV, T) below: 

accept if AV < o or q < e+ (15) 
”(“ = { reject otherwise 

where q E [0,1] is a uniform random deviate and T is the 
temperature of the system. The Metropolis criterion will 
accept all configuration changes that cause the loss to de- 
crease, i.e., AV < 0. However, the criterion will also accept 
a positive AV with a probability that increases with the 
temperature T. This probabilistic acceptance of positive 
AV helps the algorithm “jump out” of local minima. When 
a configuration change is accepted, the new configuration is 
compared against the previous “best” configuration. The 
new configuration replaces the “best” configuration if the 
loss has decreased. 

The above steps are repeated S times at a given tem- 
perature. If at  least one configuration change is accepted 
during S iterations, the temperature is decreased by a con- 
stant factor. However, if no changes are accepted, the tem- 
perature is ureheated” according to a prescribed schedule. 
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Fig. 2. Convergence of the simulated annealing algorithm. 

The process is illustrated in Fig. 2. The figure shows a t y p  
ical convergence plot for a 1024-bit switching sequence The 
x-axis indicates the number of the temperature iteration. 
In this case, S = 400 configuration changes occur at each 
temperature. A startup procedure is employed to deter- 
mine a reasonable initial temperature. The temperature T 
is increased by a constant factor until positive AV's, larger 
than about 5%, are accepted. This ensures that the initial 
temperature is high enough to induce large random devi- 
ations. After startup the temperature decreases by about 
1% each step. When the number of acceptances reaches 
zero, the temperature is reheated to 0.5 and then 0.33 times 
its initial value. 

The upper trace in Fig. 2 plots the decrease in the "best" 
value of the loss function as the algorithm progresses. The 
figure illustrates that the loss improves substantially during 
the first cooling cycle. In this case, the reheat cycles pr+ 
vide little additional decrease. Note, the convergence rate 
of the algorithm will vary depending on the loss function 
weighting and the length A4 of the sequence. 

The annealing algorithm was implemented in the C 
programming language for speed. A MATLAB script 
ANNEAL. !I, which is functionally equivalent to the C code, is 
provided in the Appendix. The output of the algorithm is 
shown in Figs. 3 and 4 for two example cases. These cases 
demonstrate the performance and flexibility of the algo- 
rithm. In both cases the algorithm searched for optimal 
1024-bit switching sequences that approximate a sinewave 
with a fundamental amplitude of 1.0. This corresponds to 
a quarter-period length of N = 256 and E = 163. 

In Fig. 3, the parameters of the loss factor VT were set to 
TT = 108 and WT = 400. The transition weighting is high 
enough so that, effectively, only sequences with 108 transi- 
tions or less were considered. The harmonic weighting W[k] 
was selected to match the roll-off of a second-order low-pass 
filter with a loaded Q of approximately 1.6. The algorithm 
produced the switching sequence in (a) with a final loss of 
5.7%, which corresponds to the THD of the output wave- 
form after the second-order filter. The design parameters 

Fig. 3. Annealing result using second-order low-pass weighting. (a) 
The 1024-bit switching sequence. (b) Unweighted harmonic am- 
plitude. (c) Weighted harmonic amplitude. (Note that the fun- 
damental is clipped in (b) and (c).) 

for this waveform were selected to allow a direct compari- 
son with similar PWM patterns presented in [4]. The PWM 
patterns in (41 were derived using W'alsh function analytic 
harmonic elimination techniques. The published patterns 
switch at a fixed frequency with 108 switch transitions per 
cycle and a similar second-order output filter was assumed. 
A comparable discrete 1024-bit PWM pattern yields a fil- 
tered THD of 7.8%. The annealing result is slightly better 
in this case, probably due to the fact that the shape and Q 
of the filter were taken into account during the annealing 
process. 

A second example in Fig. 4, demonstrates the flexibility 
of the annealing algorithm. In this case the the transition 
parameters were set at TT = 300, and CVT = 100. The 
harmonic weighting W [ k ]  was set to unity for frequency 
harmonics at k = 3-9, 20-29, and 40-49. Outside of this 
range W [ k ]  was set to zero. As a result, the peak harmonic 
amplitude in the weighted frequency range is less than 1% 
of the fundamental. This demonstrates the ability to tai- 
lor the frequency content of the switching sequence almost 
arbitrarily. 

B. AC Inverter Motor Drive 
The simulated annealing algorithm was used to produce 

a 1024-bit switching sequence for use with a 3-kW H- 
Bridge inverter circuit constructed for these experiments 
and shown in Fig. 5. The MOSFET switches Q1 through 
Q4 are modulated to produce a tri-level voltage waveform 
measured across the load. The switching sequence was gen- 
erated with N = 256 and E = 96, which yields a peak am- 
plitude for the fundamental sinewave of about 59% of the 
DC input voltage level. This corresponds to approximately 
110 VAC Rh¶S given our DC input voltage of 265 volts. 
The frequency weighting W [ k ]  was selected to minimize the 
harmonic content up to k = 40. The resulting switching 
sequence was coded into a PALbased finitestate machine. 
This yielded a simple digital circuit that interfaced easily 
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Fig. 4. Annealing result using a windowed frequency weighting. 
(a) The 1024-bit switching sequence. (b) Unweighted harmonic 
amplitude. (c) IVeighted harmonic amplitude. (Note that the 
fundamental is  clipped in (b) and (c). )  

Fig. 5. A full-bridge single-phase inverter. 

with the gate-drive signals for all four MOSFET switches 
in the inverter. Small, several hundred nano-second de- 
lays were built into the MOSFET gate-drive circuitry to 
prevent the possibility of shoot-through due to overlapping 
edges. 

The experimental output of the system is shown in Fig. 6. 
A 1-HP shop vacuum was used as a load for the experi- 
ment, and a 2-mH inductor was wired in series with the 
motor to provide minimal external filtering. The top axis 
in Fig. 6 shows the inverter output voltage measured across 
the load. The dashed line is the fundamental component 
of the voltage waveform. The lower axis shows the current 
drawn by the shop vacuum. The solid line is the current 
measured at the inverter output. The dashed line is the 
ideal current, which was generated using an HP 6834 AC 
source to provide a near perfect sinusoidal voltage. 

A diicrete-Fourier-transform (DFT) analysis of the ex- 
perimental voltage waveform harmonics is provided in 
Fig. 7. The figure demonstrates the extremely low har- 
monic content of the 1024-bit switching pattern. The 
first 40 harmonics have an amplitude smaller than 1% of 
the fundamental, and the higher harmonics are well dis- 
tributed. The THD of the unfiltered voltage waveform is 
approximately 113%. However, the small amount of filter- 
ing provided by the inverter inductor and the load induc- 

Fig. 6. Measured waveforms with the converter driving a 1 HP shop 
vacuum. 

FFT of lnvener Vduw 

(4 
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Fig. 7. Fourier transform of the inverter voltage. (a) FFT with am- 
plitude in volts. (b) FFT showing harmonics as a percent of the 
fundamental. (Please note that the y-axis has been magnified.) 

tance results in only about 10% distortion in the current 
from its ideal. A capacitor could be added to the filter 
circuit to provide second-order filtering. A second-order 
low-pass filter centered a t  2 kHz would reduce the voltage 
THD to approximately 5%. 

IV. DISCUSSION 
A wide range of techniques have been proposed over the 

last thirty years for designing a tariety of switched wai'e- 
form sinewave approximations [2]-[7]. Many of the meth- 
ods presented in these papers rely on analytic formulations. 
For example, Walsh basis functions have been applied to 
optimize specific criteria, such as low-frequency harmonic 
content, in switched sinewave approximations. This paper 
has reviewed two different methods for designing switch- 
ing sequences that approximate sinewaves. Either method 
could be used to develop approximations with nearly ar- 
bitrary selection of the loss function. The direct method 
provides a global minimum or optimal solution for a given 
loss function, but is computationally intractable for large 
sequences. Large sequences with substantial freedom in 
pulse placement offer the most flexibility for ineeting com- 
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plex optimization criteria, which might include constraints 
in both the frequency and time domains. To design these 
large sequences, we have found that the simulated anneal- 
ing approach provides excellent optimization in very rea- 
sonable computation times. The simulated annealing algo- 
rithm has been shown capable of producing sequences with 
competitive or superior low-frequency distortion to other 
published switched sinewave approximations. 

Switched sequences produced by the methods described 
in this paper have been applied to a variety of practical 
problems. The experiments shown here demonstrate an 
AC inverter with good low-frequency harmonic elimination. 
This was achieved using a 1024-bit switching sequence, and 
the distortion is comparable to, or better than, traditional 
PWM techniques. The experimental sequence chosen has 
only 300 switch transitions per 60-Hz cycle, which makes 
it efficient. A practical system might further refine the 
techniques by improving the optimization of the switching 
sequences and/or using a significantly longer sequence. It 
might, for example, be desirable in an inverter to push the 
significant frequency harmonics above the audible range, 
thereby relaxing the constraints on the output low-pass 
filter. 

We have found that the methods described here are use- 
ful in lower power and signal processing systems. For ex- 
ample, textbook synchronous detection schemes generally 
modulate the signal of interest as a sinusoid and demod- 
d a t e  the received signal by linear multiplication with a 
second sinusoid. Practically, however, the multiplication 
is often implemented with a binary switching circuit [IO), 
i.e., squarewave detection. Binary switching is inexpen- 
sive to implement and avoids the need for a high-quality 
analog multiplier. However, if the sinusoidal signal being 
detected is at the fundamental of the square wave, then 
the frequency content of the square wave at higher har- 
monics could result in high-frequency noise being reflected 
back into the measurement. We have selected switching 
sequences for demodulation that have very low harmonic 
frequency content in the neighborhood of the fundamen- 
tal frequency. Demodulated high-frequency artifacts are 
significantly diminished in comparison to squarewave de- 
modulation. This serves to reduce the sensitivity of the d e  
modulation to noise and other high-frequency disturbances 
and/or allow the tracking bandwidth of the demodulation 
low-pass filter to be expanded, improving the sensor band- 
width. 
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V. APPENDIX 
X X X X X X X X X X X X X X K X X X X X X r X K X X X X X X X X X X X L X X X X X ~ X X X ~ X ~ X X ~ ~ ~ X ~ X  
X AWNf2AL.H X 
x X 
x Thi8 script implements the simulated annealing X 
X algorithm on HATLAB. By adjusting the algorithm X 
X parameters. the user C U I  optimize both the harmonic X 
X content and the nuaber of switch trrnsitions. The X 
X sequencer are assumed to have quarter-uave symmetry. % 
X The variablo 'full-xl contains the final switching X 
X sequence. X 
X X X X X X X X X X X X X X L X X X X X X X X X X X X Z X X X X X X X X X X X X X ~ ~  

X Quarter-Wave Sequence Parasttars 
%--------------------------------- 
N=256; X Sequenct quarter-period length 
Amp=l.O; 

X Transition Loss Function Parameters 
%------------------------------------ 
lf.108; 
KT=400; 

X Humonic Loss Function Parameterr 
%-----------*---------------------- 
X A second-ordor filter is used here. The user may select 
% tho vector Y as desired for different results. 
R=lOO; 
C-2.-6; 
L18.80-3; 
v=120*pi*CO:~2+*-1~J; % W(k) is lHCjl20pik)l 
W=froqs([R],[R*L*C L R1.v); 

X Simulated Annealing Parmeters x------------------------------- 
Tinit ial=l ; 
TcooL=O.D9; X Cooling factor 
neat-1.2; X Heating factor 
Heltod=O; 
Holt,point=5; 
)lu,T=4OO; 

X Cinerate UJ initial guess for the quarter-wave of x 
E=round(&p*l*W/pi); 
x,no~=[onos (1 ,E) zoror( 1 ,W-E)I ; 
% Initialize annealing variables 
index=l:Y; 
V,b.st=leb ; 
V-last-106; 
T,rchedule=[l.O 1.0 0.5 0.331; 

X Main annealing LOOP 
for h*l:loagth~T,schedule) 

% Amplitude of the fundamental 

% Target number of 8witch transitions 
X Lineu transition weighting factor 

% for the 2nd-order filter 

X Initial temperature 

X Startup flag 
X Delta-V/V porcentago for "melted" 
X XAX number of temperature cycles 

X Amplitudo in t of 1's 

% kheat loop 
T=T Init ial*T,schedule (h) ; 
for j-1:Mu-T 
num-accepts=O; 
for l=l:!l 

X Ttmp ittoration loop 

% Bit swapping loop 
% Reconfigure the bits in x-nev 
x-nev=x,nov; 
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z=f loor(rurd(1) *(N-E))*l; 
o=floor(rand(l)+E)+l; 
i,ones=iadex(x,new ; 
i,zeros=index(l-x_new); 
x,neu(i_oces ( 0 )  )=O; 
r,neu(i,zeros(r))=l; 

X Assemble a full period of the sequence 
full,x=[x,new fliplr(x,neu) -x,neu -fliplr(x,new)l; 

% Find loss factor due to t of transitions 
Tr=sum(abs(difi(full_r))) ; 
Terror= (Tx-TT) /TT; 
i f  Terror < 0 

elso 

end 
X Find loss due to filtered harmonics 
X=f ft(full-x)/(2*N) ; 
VD=sum((abs(X(t: (221))) .*abs(W(3: (2.N) 1)) .-2) ; 
VD=lOO*sqrt (VD/(abs(X(Z) 1-2)) ; 
Y = VT + VD; 

X Compare V to V-last and look for improvement 
Delta-If = V - V-last; 
i f  (Delta-V < 0 )  

V_last=V; 
X~nOw=X,new; 
num_accepts=num_accepts*l; 

rr=O ; 

VT=YT+Terror; 

X DFS magnitude coefir 

x Add for the total loss function 

X Accept -dV always 

end 
if (rand(1) < exp(-Delta,V/T)) X Accept +dV w/prob. 

V,last=V; 
x,now=x-new; 
num,acceptsium,accepts*l; 
i f  ('Halted t ((Delta,V/V) > Helt,point/lOO)) 

Helted=l; X Check if melted 
TiaitialrT; 

end 
end 
if V < V-best X Keep a copy of the bast 

x,best=x,new; 
V,bes t=V ; 
VD,b.st=VD; 
VT,best=VT; 
Tr-bestrTx: 

end 
end % Fad the bit swapping loop 

if (Heltad-=l) Helted=2;break;end % Break if melted 
i f  (nun-accepts > 0 )  X Cool or heat 

% Heat if not melted yet 

X Cool if already melted 

if (h-1) 

elso 

end; 

break; 

T=T*Theat; 

T=T*Tcool; 

else 

end 

X Display progresa 
if (h==l) 

el.. 

end 

X Break out if $accepts = 0 

strrspriatt ('Kelting=Xl.Oi Tcyc=D.Of' .h, j); 

str-sprintf ('Coolcyc=%l.Oi Tcyc=X3.0i',h, j); 

% Graph the result 

f ull,x= [x-bes t f 1 iplr (x-best ) -x-best -f liplr (x-bes t 11 ; 
X=abs(f f t(full-x))/(2*N) ; 

subplot (211) 
rtairs(CO:(4*N-l)l .full,x); 
axis(C0 4*N -1.1 1.11); 
xlabel('1ndex (i)'); 
ylabel('&plitude'); 
title('Fina1 Switching Sequence'); 
subplot (212) 
bar( CO: (4*N-l)] ,abs(X)*100) ; 
hold on 
plot( CO: (2*N-1)1 .abr(W)/max(abs(Y))*lOO. 'r') ; 
hold off  
axis(C0 100 0 1001); 
xlabel('Harmonic Number'); 
ylabel('% of Fundamental'); 
title('Fina1 Harmonic Magnitudes'); 

1; ditp(I-----------D 

strrsprintf ('%a Acpts=%4.1f%X' .str ,num,acceptr/N*lOO); 
strrsprintf ( 'XI T=XS. 2fX' ,str,T) ; 
strsprintf ('%a *** BEST-> V=XS.ii%X',str.V,bert); 
strsprintf ( ' X I  (VD=XS. If%%' ,str,VD,best) ; 
str=sprintf('%s VT=%4.lf)'.str,VT,best); 
str=sprintf('Xs T~=%3.0fa,str.Tx,bart~; 
disp(str1; 

end X End Temperature loop 
and % End tho Reheat loop 
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