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Advanced Electrical Load Monitoring:
A Wealth of Information at Low Cost

L. K. Norford, S. B. Leeb, D. Luo and S. R. Shaw
Massachusetts Institute of Technology

Introduction

This paper describes a low-cost approach to obtain and analyze electrical power data that
are very useful for performance monitoring and fault detection.

Goals:

• Reduce the energy consumption and associated environmental degradation of
commercial buildings in California, the U.S. and throughout the world;

• Reduce energy costs.

How to meet these goals?

• Deployment of appropriate methods for monitoring building performance and
automatically detecting and diagnosing faults in energy-consuming equipment or in
building components that directly affect energy usage.

Measurements are valuable but often expensive:

• Can't control what cannot be measured;
• Component-specific data brings into sharp focus variations in whole-building energy

consumption patterns that may hint at operating problems and energy waste;
• Building owner and operators are naturally reluctant to invest in more sensors.

One way to move forward is to make as much use as possible from electricity-
consumption data:

• Electricity-consumption data can be directly related to operating costs through
electricity rates or bilateral purchase contracts;

• Detailed measurements can help detect and diagnose excessive whole-building energy
usage and component-level faults.

How to keep costs down?

Researchers at MIT over the last 15 years have taken significant strides toward
developing a very powerful electricity monitoring approach that can pull component-level
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information out of whole-building electrical service, the electricity supplied to a major
building subsystem (HVAC), or other electrical systems (transportation, industry).  The
product based on this approach is known as a Non-Intrusive Load Monitor or, more
simply, NILM.  More information about the NILM is found in [1-4].

We consider several field applications to illustrate the utility of the NILM.

1. HVAC Monitoring

Measurement of electrical power at the distribution panel for a large HVAC plant serving
three connected buildings:

• One-megawatt plant consists of multiple chillers, ventilation fans and pumps;
• Data averaged over one-second intervals;
• A 20 kW chilled-water pump was cycled on and off four times during the test period.

Looking at electricity data:

• The pump on-off transitions appear as very small variations in the total power (Figure
1). The pump transitions are partially masked by large noise spikes, which are caused
by power electronics used in variable-speed drives (Figure 2);

• A median filter rejects the spikes but retain the step transitions [5];
• A signal-processing technique known as the generalized-likelihood ratio (GLR) was

used to detect the on-off events [6-10].  This method searches over a sliding window
for the maximum value of the ratio of probability distributions of data points about
pre- and post-event mean values.  If there is no step change, the ratio is small; if a
motor or lamp bank or other equipment switches on, the ratio is large as the window
slides through the event.

• Four pairs of GLR spikes mark the four on-off events (Figure 3).  Note in this case
that we were able to tune to detection method to eliminate all false alarms.  We are
currently working to automate the tuning process in response to measured
characteristics of the electrical signal.

The GLR output provides confirmation that equipment has turned on or off when
scheduled by the Building Energy Management System (BEMS).  The absence of such
confirmation indicates a fault.  While such confirmation can be provided by current
transducers attached to each piece of equipment, the GLR method is able to discern the
switching events from a single point, reducing sensor costs.  Further, the GLR works with
power rather than current.  Differences in power before or after an on-off transition
provides information about equipment performance, normal or faulty.  We will say more
in the next example about an ongoing demonstration that uses centralized power
measurements for fault detection.
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Figure 1 1-Hz power data w ith 4 on/off events of a pump in MIT building E17
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Figure 2 1-Hz power data w ith 4 on/off events of a pump in MIT building E17
 -- w ith & w ithout the median f ilter
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Figure 3.  Output of the GLR detector w ith a median filter for E17
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2. Fault Detection

Detection and diagnosis of HVAC faults:

• The test site is a research building run by the Iowa Energy Center and known as the
Energy Resource Station.  It consists of two sets of test rooms, each with a separate
variable-air-volume (VAV) ventilation system, and a set of rooms occupied by
research staff, served by a third VAV system.

• MIT and Loughborough University, UK, are currently demonstrating FDD methods,
under ASHRAE sponsorship.  A detailed description of this work will be publicly
available when MIT and Loughborough have completed their work and ASHRAE has
approved a final report.

• We are comparing results from analysis of two different data streams, one from
traditional (and more expensive) submetered power measurements and the other from
MIT’s latest NILM hardware platform.  The hardware platform consists of a Pentium-
based personal computer with an installed digital signal processor (DSP) board.

• The DSP board analyzes real and reactive power, at the fundamental and higher
harmonics.

• The PC can deliver information remotely, over the web (http://nilm.mit.edu).
• The host and the DSP board together cost about $500.

Analysis of data measured at the electrical service entry for the entire building:

• Fifteen-minute average data, similar to the output of a conventional data logger, show
little component-specific detail (Figure 4);

• Higher-speed data (10-second sampling period) shows more information and more
noise (Figure 5);

• Data filtered with a median filter show regular, block-like oscillations that are due to
the cycling of the reciprocating chiller that serves one of the air-handling units (Figure
6).

Detection or air-handler faults:

• Change in the cycling period, under known conditions, indicates a leaky recirculation
damper or a leaky cooling-coil valve;

• Fan and pump power measurements are made with a second NILM attached to the
motor-control center that powers all the fans and pumps in the building;

• Changes in supply fan power at shutdown reveal faults due to pressure sensor offsets
and stuck recirculation dampers.

• Changes in pump power, if detectable with sufficient accuracy, can be used to detect
blockages in cooling coils.

• Power oscillations indicate poorly tuned local-loop controllers.
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Figure 4. 15-minute averaged total power data from the NILM of the Iow a building -- w ithout the 
median filter
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Figure 5. 0.1-Hz total power data from the NILM of the Iowa building -- w ithout the median filter
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3. Parameter Identification

Our third and last example focuses on wringing the most information out of the high-
frequency data collected and analyzed within the DSP board:

• Focus on the start-up period of electrically powered equipment.  This start-up period
can vary in duration from about 0.1 second for instant-start fluorescent lamps to
several minutes for variable-speed motor drives. In all cases, the transient behavior of
a typical electrical load is strongly influenced by the physical task that the load
performs.

• Measurement of real power demanded by a variable-speed fan drive in an HVAC
system (Figure 7).  The drive begins with an "open loop" spin-up to operating speed
during the first 40 seconds of operation.  From 100 seconds on, the drive is operating
under closed loop control as it attempts to regulate the pressure in a distant duct by
varying fan speed.

• Distinctive transient profiles like those shown in Figure 7 tend to appear even in loads
which employ steady-state active waveshaping or power-factor correction, which
tends to make reactive loads appear as purely resistive loads in steady state.

Figure 6. 0.1-Hz total power data from the NILM of the Iow a building -- w ith the median filter
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Value of start-up transient analysis:

• Identify types of equipment when a BEMS control signal is not available.  If we
know, from the BEMS, that a pump has been turned on, we can look in steady state
with the GLR and check for changes in power.  If, on the other hand, a building lacks
a BEMS or we want to analyze equipment that is manually controlled, we would like
to be able to identify equipment characteristics from the start-up data.

• Even with a fully automated building for which there is little or no need to identify
equipment type from the start-up transient, we would like to be able to deal with
devices turning on at nearly the same moment, where steady-state analysis would
combine them, and to assess changes in the start-up pattern as indicators of equipment
faults.

Figure 7 illustrates not only a characteristic start-up pattern for a VSD but a fault as well.
The steady-state oscillations in nominal operation (after 100 seconds) result from a
poorly-tuned control loop.  These oscillations are relatively slow and easily missed by a
casual inspection of the VSD control panel, but are easily detected by the NILM with
transient event detection.  In a NILM installed in an automobile and also in the Iowa test
site, we have been able to use the start-up transient for a fixed-speed motor as a reliable
indicator of a change in flow resistance in a duct or pipe, which could be caused by a
number of types of blockages.

Development of a high-performance transient event detection algorithm for the NILM [3,
4]:

• Detection algorithm extends the applicability of the NILM to demanding residential,
commercial, and industrial sites, where substantial efforts are made to homogenize or
mask the steady-state behavior of different loads, and where loads may turn on and off
very frequently at a range of different power levels.

• A NILM operating with a transient event detector can serve as a platform for power
quality monitoring as well.

• Output from a prototype, real-time, load monitor (Figure 8).  Four loads, including
two induction motors and two different types of fluorescent lamp banks, are activated
at nearly the same time.  The prototype event detector is able to identify the turn-on
transients of all four loads strictly by examining the aggregate traces of real power,
reactive power, and harmonic content at the service entry.

• Web-based remote interaction with a NILM platform installed on the MIT campus in
a dormitory laundry room (Figure 9).  The four graphs show traces of real and reactive
power, as well as harmonic content, during the turn on of an induction motor spinning
a drum in a clothes dryer.
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Figure 7. Start-up electrical power transient for a fan motor equipped with a variable-speed drive.
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Figure 8. Output of the transient-event detector, incorporated into a prototype NILM.
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Figure 9.  Internet-accessible NILM data from a meter installed in an MIT laundry room.

Conclusion

To conclude, the MIT NILM is, today, a low-cost platform capable of wringing valuable
information from electrical measurements about equipment performance and building
energy use.  Continued research and development, combined with deployment of the
NILM in field-test sites, will enhance application-specific capabilities (packaged HVAC
units for example), strengthen its ability to detect faults from start-up transients, and
improve its interaction with other FDD and performance-monitoring methods.
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