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Identification of Induction Motor Parameters
from Transient Stator Current Measurements

Steven R. Shaw,Student Member, IEEE, and Steven B. Leeb,Member, IEEE

Abstract—This paper describes three methods for estimating
the lumped model parameters of an induction motor using startup
transient data. A three-phase balanced induction motor is as-
sumed. Measurements of the stator currents and voltages are
required for the identification procedure, but no measurements
from the motor shaft are needed. The first method presented
applies simple models with limited temporal domains of validity
and obtains parameter estimates by extrapolating the model
error bias to zero. This method does not minimize any specific
error criterion and is presented as a means of finding a good
initial guess for a conventional iterative maximum-likelihood or
least-squares estimator. The second method presented minimizes
equation errors in the induction motor model in the least-square
sense using a Levenburg–Marquardt iteration. The third identi-
fication method is a continuation of the Levenburg–Marquardt
method, motivated by observed properties of some pathological
loss functions. The third method minimizes errors in the obser-
vations in the least-squared sense and is, therefore, a maximum-
likelihood estimator under appropriate conditions of normality.
The performance of the identification schemes is demonstrated
with both simulated and measured data, and parameters obtained
using the methods are compared with parameters obtained from
standard tests.

Index Terms—Parameter estimation, induction motors.

I. INTRODUCTION

T HIS PAPER presents techniques for estimating the elec-
trical and mechanical model parameters of an induction

motor. The methods described here are applicable to machine
characterization, diagnostic, and control applications. The tools
in this paper are unusual because, used together, they can
determine motor model parameters without an initial guess and
with limited observation of only the stator terminal waveforms.
The prior work reviewed in the following paragraphs covers a
broad range of induction motor state and parameter estimation
problems, presented from various perspectives. We anticipate
that the methods given in this paper could be applied in many
of these problems.

The problems of estimating the parameters and states of a
motor have been attacked from a variety of different perspec-
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tives; see [1]–[3] for interesting summaries. A variety of on-
line and off-line methods have been proposed for determining
the speed of an induction motor rotor. In [4], an extended
Kalman filter is used to estimate speed. The authors of [5] and
[6] estimate speed as a parameter of the induction machine
model, givena priori knowledge of the machine electrical
parameters. In [7]–[10], the authors identify steady-state slip
using a variety of estimators. Dynamic slip estimators are
presented in [11] and [12]. A position estimator is described
in [13]. All of these methods assume knowledge of most or all
of the electrical parameters. In [14]–[16], off-line techniques
for determining motor model parameters are presented. All of
these methods require data in addition to knowledge of the
stator electrical excitation and may even require disassembly
of the machine. On-line parameter estimation techniques such
as those presented in [13] and [17]–[20] generally estimate a
limited subset of the model parameters given knowledge of
the remaining parameters. Many of these methods are focused
on tracking the rotor resistance or time constant for field-
oriented control applications. In [2] and [21]–[24], recursive
estimation of both the model parameters and the mechanical
state (rotor speed) using transient measurements is considered.
These authors fit the induction motor problem to the context of
recursive estimation by assuming a separation of electrical and
mechanical time constants and treating the mechanical slip
as a parameter. Although the recursive estimation paradigm
seems promising because of difficulties like the sensitivity of
the rotor resistance to temperature, these techniques require
gooda priori knowledge (better than 10% accuracy) of most
of the parameters for successful performance.

A common thread among these induction machine parame-
ter and state estimation problems is the need for either a good
initial guess or accurate knowledge of machine parameters.
The methods presented in this paper, which are formally off-
line, could supplement many of the off- and on-line schemes
above in practical engineering applications. For example, a
controller designed around one of the on-line state estimators
described above could, on installation with an unknown motor,
apply a “parameter acquisition” test using our methods to
determine parameters or initial guesses required for the state
estimator.

Another exciting application area for the methods pre-
sented in this paper is machine diagnostics. In [25]–[27],
the authors discuss the feasibility of using electrical stator
measurements to detect broken rotor bars. Measurements of
both electrical and mechanical variables taken from several
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steady-state operating points are used to determine the model
parameters. Potentially, our methods could perform a similar
function using only stator electrical measurements. In [28]
and [29], a transient event detector for nonintrusive load
monitoring was introduced that can determine in real time the
operating schedule of the individual loads at a target site. This
determination is made strictly from observations of transients
at the electric utility service entry. In [30], a scheme was
presented for exciting and identifying the local impedances
in a power delivery network. By combining these tools with
a load model parameter estimator, where machine parameters
are extracted from observed transients, it might be possible
to create a device that could, for example, nonintrusively
monitor load health and performance. This paper focuses on
induction machines because of their prevalence and industrial
importance. However, the techniques presented here could, in
principle, be extended to diagnostic applications for other load
classes.

II. I NDUCTION MOTOR MODEL

In this paper, we consider a three-phase, balanced, singly
excited induction motor described by the model presented in
[31]. The model expressed in currents and voltages is

(1)

where

(2)

In (2), the inductances appear as impedances at the base
electrical frequency, e.g., 60 Hz (377 rad/s). For example, the
magnetizing impedance at 60 Hz is

(3)

where is the magnetizing inductance. Also, in (2),
, where is a leakage impedance. All rotor quantities

are as referred to the stator. The currents and voltages in (1)
are expressed in the synchronously rotatingframe. Details
on transformation of quantities in the laboratory frame to and
from the rotating frame can be found in [31]. The assumption
of single excitation implies that . That is,
the rotor is excited only by the stator. Table I lists units and
physical interpretations for some of the variables appearing in
(2) and throughout. Dimensions for parameters and quantities
not listed in Table I are readily inferred from their context.

Equation (1) can be expressed in complex notation using
the definitions

(4)

TABLE I
SYMBOLS AND UNITS OF BASIC VARIABLES AND PARAMETERS

where . In complex variables, (1) is

(5)
The electromechanical interaction enters (1) and (5) through
the slip

(6)

and the torque

(7)

where is the number of poles. The mechanical system
attached to the motor determines the interaction between
and and is modeled using ordinary mechanics. For the
purposes of this paper, the mechanical load is modeled by
an inertia and linear coefficient of friction as

(8)

This model serves as an example, but methods described in this
paper are, in principle, not limited to this selection. Alternate
parameterizations and choices of state variables are sometimes
useful in identifying the induction motor parameters. A repa-
rameterization of the mechanical system combining (6) and
(8) is

(9)

The new parameter equals . An alternate set of complex
state variables is flux linkages per second,

(10)

Similarly, it is sometimes useful to eliminate the impedances
and in favor of

(11)

which have the dimensions of admittance.
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(a)

(b)

Fig. 1. Motor starting transient;iqs and ids.

A typical simulation of the free acceleration of an induction
motor follows directly from the model. For example, using
the parameters

(12)

with an excitation of 220 V line to line, the results in Fig. 1 are
obtained by simulating (1) and (8). These parameters describe
a 3-hp rated motor and can be found in [31].

III. PARAMETER ESTIMATION

If the slip and the complex state were available
directly for measurement, the induction motor parameter esti-
mation problem given (1) would follow directly from standard
techniques. Since (1) is a differential equation, one possible
solution technique would be to eliminate the time derivative

with an operator substitution and solve the resulting linear
least-squares problem [32].

Measurements of and or the laboratory frame currents
, , and are the only data available in the nonintrusive

load monitoring scenario [28] and are likely the most conve-
nient set of measurements to make in general. The following
parameter estimation schemes use only measurements of the
stator currents and and the stator voltages and .
Measurements of the source voltages and may not be
necessary if the electrical supply has been characterized as in
[30].

A. Extrapolative Method

The extrapolative method developed here is motivated by
the idea of quickly “eyeballing” data to obtain reasonably ac-
curate parameter estimates. These parameter estimates are not
likely to be least-squares solutions, but might be sufficiently
accurate for some applications. In situations where a specific
error criteria such as least squares must be minimized by an
iterative routine, the method presented here could dramatically
increase computational efficiency by supplying a good initial
guess.

The philosophy of the method is to decompose a transient
described by a complicated model into smaller domains de-
scribed by simple, easy to identify models. For example, from
circuit intuition, it is clear that under the condition ,
which exists briefly at due to inertial confinement of
the rotor,

(13)

The induction motor may be thought of as a transformer with
a shorted secondary in this state. Substituting (13) into the
complex induction motor model (5) yields

(14)

Equation (15) is a relatively simple, “high-slip” model with the
potential to remove two degrees of freedom from the parameter
estimation problem using only and .

Similarly, under conditions of zero slip, . In this state,
the induction motor is very much like a transformer with an
open secondary. Substituting into (5),

(15)

Equation (15) is a “low-slip” model, which might be valid
during the steady-state operation of an induction machine
loaded with an inertia only.

The operating conditions required to make models (14) and
(15) valid represent a small fraction of the data recorded during
a typical transient, as shown in Fig. 1. If these models are
applied to nearby data at timesfor which the model isnot
valid, the parameter vector estimatewill exhibit a bias, i.e.,

(16)

If the model is valid at time , then the model error
bias as . Any bias which might be
due to noise is neglected. Assuming that the model error

is a well-behaved function, the estimates can
be modeled with an appropriate interpolating function and
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the unbiased estimate determined by interpolation or
extrapolation as the circumstances dictate. The extrapolation
process is essentially Richardson’s deferred approach to the
limit, described in [33].

For this paper, the extrapolative technique was applied to
models (14) and (15) using rational functions for extrapolation
[33]. Note that no particular loss function is minimized by
this estimation technique. It is quite likely that the estimates
are not least-square estimates. On the other hand, no initial
guess is required and there is no iteration. This method may
significantly reduce the effort and complexity of an iterative
estimation method by providing good initial guesses for some
subset of the parameters. The method is described in more
detail in [34].

B. Equation Error Method

Although some of the states in the induction motor model
are not measured in the assumed scenario, the parameters can
be found by iterative minimization of a cleverly designed loss
function. Since the excitation and the stator currents are
known or measured, an estimate of the parameter vectoris
given by a minimization of the form

(17)

One approach to formulating a loss function based on
the motor model is to algebraically eliminate the unmeasured
quantities. A loss function based on the transformed model,
expressed only in terms of measured or known quantities,
could then be used to find the desired parameters. For example,
in a model given by

(18)

where is not measured, if (in general, an operator) is
invertible, then

(19)

Equation (19) has the desired property of containing only,
and standard techniques [32] could be applied to finding the
parameters in the operators– . If is not convenient to invert,
it might still be possible to eliminate . Applying and to
(18) yields

(20)

If the commutator (Lie bracket) is equal to
zero, then the term can be isolated in one equation and
substituted in the other, eliminating . If , then

(21)

The complex induction motor model (5) has the same form as
(18). Eliminating by inverting one of the operators acting on

does not seem promising. Both operators acting onhave
a zero; their corresponding inverses have a pole which could
introduce internal stability issues. The operators acting on
also have a nonzero commutator due to the time variation of

. To eliminate , one must introduce either errors due to the
pole in the inverses, or errors due to the nonzero commutator.

For the equation error method, we estimateand attempt to
confine the errors due to the resulting pole. Theestimator
is derived from (10) and the top row of (5), which can be
rewritten as

(22)

Recall that is the base frequency, usually . Using the
definition of

(23)

an estimate of is

(24)

To the extent that (22) can be computed accurately, then,
is expressed in terms of the parameters and the observations

and . Having used half the induction motor model (5)
to estimate the rotor currents, the second half provides a
useful check of the consistency between current estimates and
the data. Under the assumed conditions of single excitation,

. An estimate for the rotor voltage is

(25)
If the parameters are incorrect or if is not equal to the
unmeasurable , there will be some error

(26)

The error will be a combination of the errors due to
the pole at in (22) and the error due to the current
parameter estimate.1 However, the errors due to the observer
pole will occur locally in the frequency domain around the pole
frequency . Although the errors due to the observer pole are
modulated by the time variation in the slip, the slip is relatively
slow (given reasonable mechanical loads) in comparison to the
observer pole frequency. Note that it is more convenient to use
the top row of (5) for the observer because the pole is located
at the fixed frequency. The errors due to parameter mismatch
will occur at lower frequencies. For example, if is off by
, the error will be a “copy” of the mostly low-pass rotor

current, i.e., .
The solution is to minimize in the frequency domain

at those frequencies where the artifacts introduced by the
observer pole have no effect. The advantage of using the
frequency domain is that the minimization can be applied
selectively to the errors that are due to parameter mismatch,
ignoring the observer pole artifacts. In practice, spectral leak-
age due to finite data set length [32] causes errors due to
the observer pole to influence the errors due to parameter
mismatch. Thus, as a practical measure, the residualsare
weighted with a Blackman window [35].

1Note that, according to the definition of the error in (26), the estimated
parameters willnot be “least-square parameters” in terms of the observations
is.
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Note that if the slip is not measured, the estimaterequired
for (25) can be obtained from (24) and the mechanical model.
Unfortunately, the slight errors introduced by the observer
pole tend to accumulate when integrating the mechanical
model to obtain a slip estimate. To work around this, the
mechanical model is reparameterized, replacing the inertia and
drag parameters with and , where is the value of
the slip at some time , i.e., . This is a conve-
nient reparameterization, because the steady-state speed and
approximate duration of the startup transient are likely known
to fair accuracya priori. Obtaining the desired slip estimate

under the new parameterization is then a boundary value
problem, which can be solved by a shooting method [33], [34].
This approach would require reformulation for load models
other than (8).

Parameter estimates were obtained by minimizing low-
frequency (with respect to ) components of the residual
using a Levenburg–Marquardt iteration derived substantially
from [33].

C. General Identification Method

Another possible candidate for the loss function
can be developed by setting to the results of a simulation
using the parameters and the excitation . Then, the
loss function is the squared error between the observed and
simulated currents, i.e.,

(27)

Disadvantages to this approach are that, for a Jacobian-based
minimization method, the Jacobian must be assembled using
finite differences, evaluations of the loss function are likely to
be computationally costly, and the unmodified loss function is
likely to have many local minima, particularly as the number
of unmeasured states increases. However, (27) is extremely
attractive because of its simplicity and generality; potentially,
one need only specify a model for a system to identify its
parameters. By considering the properties of the loss function
associated with a simple system, we motivate an algorithm
that ameliorates the disadvantages inherent in this general
approach.

Consider a possibly nonlinear state-space model with state
, input , and outputs or measurementsgiven by

(28)

(29)

where parameters are embedded in and . Assume that
the structures of and are knowna priori, and we would
like to find the parameters that minimize the least-squared
error between the measurementsand the predictions, i.e.,
the loss function is

(30)

The induction motor, and many other problems, fit this context.
The problem is quite difficult even for the simplestand .
For example, let

(31)

Fig. 2. Loss functionV (�) defined in (13).

and

(32)

then find an estimate of given measurements of .
For observations sampled with period, the loss function

is

(33)

In Fig. 2, is plotted for with
and . The numerous local minima in

imply that, for conventional methods to converge on
the correct estimate , the initial guess must be extremely
good. Fig. 2 demonstrates that the difficulty of an identification
problem is related less to the input–output complexity of
the system than to the way the parameters are embedded
in the measured signals. Nonlinear systems can result in
linear identification problems; (31) is an example of a linear
system were the parameters are embedded nonlinearly in
the response. Nonlinear functions often exhibit simplified
behavior in restricted domains; this is the basis of small-
signal techniques common in circuit design and simulation.
By analogy, one way to simplify the loss function is to restrict
the length of the interval over which (33) is evaluated. In
effect, the algorithm temporarily discards data to obtain a loss
surface with simpler topology. The effect is shown graphically
in Fig. 3, where the normalized loss function is
plotted over the plane. Note that, for small , the valley
leading to the global minimum at is wider, implying
that convergence will succeed for a wider range of initial
guesses . One interpretation is that the interval must
be sufficiently small so that the difference
is functionally related to the error in the parameters .
To put this observation to work, coarse estimates should be
refined using small ; as the estimate improves, should be
expanded to include the entire data set.

The observation that the loss function topology can be
simplified by restricting the domain applies to systems more
complicated than (31). Any system where perturbations in
the parameters, on the order of the error in the parameters,
result in monotonic behavior of the loss function over a
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Fig. 3. Loss functionV (�;N)=N .

restricted number of points is amenable to the method.
This condition includes many, but not all, nonlinear problems.
Note that some responses, such as a step parameterized by a
delay, are nonlinear in the parameters and also do not meet
the criteria above, but have simple loss functions that do not
depend on topological simplification for solution. Taking these
two observations into account, we proposed the following
algorithm.

1) Choose initial interval , set .
2) Minimize loss function over .
3) If minimization is successful,

.
4) If minimization is unsuccessful,

.
5) Repeat from 2) until .

For this paper, a growth factor and a shrinking
factor were used. The minimizations displayed little
sensitivity to other reasonable choices of these parameters,
although the contraints and should be
observed. Many options exist for determining the success of
the individual minimizations [32]. There is no unequivocal
solution. One must adopt a criterion that decides, preferably
with some statistical insight, whether or not the residual can be
further reduced by restricting the domain of the loss function
and attempting another minimization. Note, however, that the
criterion chosen is critical only when there is high noise or
when the response is complicated. For this paper, we found
that consideration of the magnitude of the normalized
residual proved useful. Given some knowledge of the statistical
properties of the disturbances, test statistics like the zero-
crossing test or the Kolmogorov–Smirnov test might also be
used [32], [33].

Despite that each evaluation of the loss function requires a
simulation, the method outlined above is more computationally
efficient that one might expect. The initial estimate is refined
using relatively few points and, hence, a shorter simulation.
When the number of points is increased, the simulations
become more expensive, but the number of iterations decreases
because the parameter estimate is hopefully close to optimal.

When applying the method to the induction motor model,
the loss function was calculated by comparison of adaptive
step-size Runge–Kutta simulations of the model to the mea-
sured data, as in (27). The minimizations were performed by

TABLE II
EXTRAPOLATIVE METHOD ESTIMATES, SIMULATED DATA

the routineLMDIF in MINPACK,2 which is a finite-difference
Levenburg–Marquardt code. The reparameterizations of (9)
and (11) were used with the flux linkage per second state
variable form of (1).

IV. RESULTS

The induction motor identification methods presented here
were tested using both simulated and measured data. Tests
using simulated data compare the estimated parameters to the
parameters used to create the simulated data. To evaluate the
performance of the methods on real data, estimated parameters
were used to create simulated transients which are compared to
the measured data. No noise was added to the simulated data,
and no filtering or smoothing was performed on the real data.
Note that validation with simulated data tests the identification
procedure in isolation, while validation with measured data
tests both the motor model and the identification procedure.

A. Simulated Data

Simulated data were obtained by numerical simulation of
(1) for a variety of motor parameter sets. The simulated
motors include the 3-, 50-, 500-, and 2250-hp motors used
as examples in [31]. Note that the implied test procedure,
in particular application of full rated voltage and frequency,
is probably not realistic for larger machines. We include the
higher power examples to test the methods and demonstrate
that, in principle, the minimization methods work for large
machines. In practice, somewhat different excitation may need
to be used. The methods presented in this paper should be
applicable, provided that the voltage excitation is sufficiently
rich and known or measured.

1) Extrapolative Method:Results for the extrapolative
method are shown in Table II. The column labeled “True
Parameters” contains the values used by the simulator to
generate a transient. The column labeled “Estimated Param-
eters” contains the parameters output by the extrapolative

2MINPACK is a noncommercial minimization library from Argonne Na-
tional Laboratory.
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TABLE III
EQUATION ERROR METHOD, SIMULATED DATA

identification program. Recall that no initial guess is required
for the extrapolative method, and that the method is not
iterative.

2) Equation Error Method:Table III shows results from
the equation error method. Although no particular care was
taken in picking initial guesses, informal experimentation
revealed that the convergence of the method was rather robust.
Rigorous analysis of the convergence properties of the method
is left to future work. In Table III, “True Parameters” are the
parameters used by the simulator to generate test data. The
“Initial Guess” column lists the parameter guess passed to
the iterative method. Note that the initial guesses in Table III
are uniformly worse than than the results from the extrapola-
tive method listed in Table II. The results in Table III were
obtained using the shooting method slip estimation scheme
discussed in Section III.A.

3) Generalized Identification Method:The results of the
generalized identification method on simulated data are shown
in Table IV. Note that the generalized method estimates the
mechanical parameters directly instead of estimating the slip.
In all cases, for inertially loaded, simulated motors from 3
to 2250 hp, the generalized identification method computed
answers that were exact to the number of significant digits in
the parameters supplied to the simulation.

B. Measured Data

Real data was obtained from transient tests on a typical
three-phase industrial induction motor. The test induction
motor was connected to a three-phase 208-V line-to-line 30-
A rated service using a solid-state three-phase switch with
a programmable firing angle [36]. Voltage and current data
during the startup transient were collected on a four-channel
Tektronix TDS420A digital storage oscilloscope using isolated
Tektronix A6909 voltage and A6303 current probes. Since
the firing angle was under computer control, the experiment
was assumed to be repeatable. Hence, the current and voltage
measurements were actually made in two successive tests.
For synchronization of the two tests, one channel of voltage
information was stored while collecting the three currents. The
oscilloscope was set to trigger from this voltage channel for
both current and voltage measurements. Data collected by the
oscilloscope was stored on disk and translated to files suitable

TABLE IV
GENERALIZED IDENTIFICATION METHOD, SIMULATED DATA

TABLE V
BOILERPLATE DATA FROM TEST INDUCTION MOTOR

for input to the identification procedures. No mechanical load,
except for the rotor inertia and windage, was attached to the
motor.

In addition to applying the three identification methods
to the measured data, standard blocked rotor, dc, and no-
load measurement techniques were performed on the test
motor. The boilerplate data from the test induction motor is
reproduced in Table V.

1) Extrapolative Method:Results for the extrapolative
method applied to the measured data set appear in Table VI(a).
The estimates are reasonable except for the value of. The
estimate of depends on the identification of the “low-slip”
model. Since the low-slip model assumes only an inertia as
a mechanical load, the failure is not too surprising; the real
motor has unmodeled load torque from its internal cooling fan
and and bearings. Again, the extrapolative method is a direct
method, with no initial guess.

2) Equation Error Method:The measured induction motor
data were also analyzed with the equation error method.
Parameter estimates are given in Table VI(b). The slip estimate
is shown in Fig. 4. Note that the mechanical parameters,
although not shown in the table, could be obtained given the
estimated slip curve and electrical parameters. The equation
error method converged in six iterations. To validate the
parameter and slip estimates in Table VI(b), the measured
voltage waveforms, parameter, and slip estimates were input to
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TABLE VI
ESTIMATED INDUCTION MOTOR PARAMETERS, MEASURED

DATA (a) EXTRAPOLATIVE METHOD (b) EQUATION ERROR

METHOD (c) GENERAL METHOD (d) GENERAL METHOD

(a)

(b)

(c)

(d)

Fig. 4. Estimated slip, equation error method.

a simulator in an attempt to reproduce the measured currents. A
comparison of the measured current and the current produced
by simulation with the estimated parameters is shown in Fig. 5.
This test not only verifies the accuracy of the parameter
estimates, it also validates the applicability of the assumed
model. It should be noted that, while a balanced three-phase

Fig. 5. Comparison of measured (thin line) and simulated (thick line)dq

currents, equation error method.

service was assumed for both identification and validation, the
measured voltage distortion was imbalanced. This imbalance
may be responsible for some of the “ripple” seen in Fig. 5.
The mismatch between measurement and prediction on the
initial spike in Figs. 5–7 is likely due to unmodeled magnetic
saturation.

3) Generalized Identification Method:The generalized
identification method was also applied to the measured data.
The data were fit with two different mechanical load models.
Model 1 was an inertia only, i.e., in (9) set to zero.
Model 2 included an inertia and linear damping term, as in
(9). The flexibility of the general identification method made
changing models quite trivial. However, some difficulties were
encountered when trying to identify all six parameters of
Model 2. In particular, when the generalized method was
working on early portions of the transient, the unmodeled
magnetic saturation in the initial spike of the transient tended
to cause the parameters of the mechanical subsystem to go to
unreasonable values. The general method would “stall” on the
portion of the transient where the magnetic saturation causes
a relatively high error, attempting to adjust the mechanical
subsystem parameters to account for the error in the model.
This was not a problem with Model 1, presumably because
the effects of magnetic saturation could not be accomodated
by adjusting the inertia only. To obtain the Model 2 results
in Table VI(d), we took a practical approach; instead of
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TABLE VII
COMPARISON OF ELECTRICAL PARAMETERS FOR TRANSIENT IDENTIFICATION

METHODS AND STANDARD TEST PROCEDURE

Fig. 6. Comparison of measured (thin line) and simulated (thick line)dq

currents, general method.

the aggressive initial guess used for Model 1, we used an
initial guess based on the results of the extrapolative method,
Table VI(a). The initial guesses for and follow directly
from the extrapolative method results for and and
(11). The initial guess for and was one-half of the
extrapolative method estimate for , and the initial
estimates for the remaining parameters were made arbitrarily.
In addition, for identification of Model 2, the general method
was started with a large initial interval to lessen the relative
contribution of the model error to the residual. Parameters for
Models 1 and 2 appear in Tables VI(c) and (d). Measured and
simulated currents, using Model 1, are compared in Fig. 6. In
Fig. 7, we demonstrate that the general method is applicable
to analysis of partial data sets. In Fig. 7, the middle portion

Fig. 7. Comparison of measured (thin line) and simulated (thick line)dq

currents for an incomplete data set, general method.

of the measured transient has been eliminated, but the method
still converges, without any code changes.

4) Standard Test Method:Standard blocked rotor, no-load,
and dc measurements were made on the test machine, as in
[14]. The results appear in Table VII, where they are compared
to equivalent parameters determined by the other methods. In
Table VII, recall that the different methods minimize different
error criteria. The choice of error criterion is reflected in the
parameter estimates.

V. CONCLUSION

In this paper, we have presented three techniques for finding
the parameters of an induction motor given transient stator-
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current waveforms. These algorithms were demonstrated on
both simulated and measured data.

The extrapolative method performed extremely well in its
intended role, to provide an initial guess. On simulated data,
the results are good. However, the utility of the method is
especially clear in Table VII. With the exception of, the
estimates from the extrapolative method are reasonably close
to the parameters found by the other methods. Although the ex-
trapolative method might be regarded asad hoc, there is little
reason to prefer the potentially highly inefficient minimization
of a formal loss function when parameters are far from the
minimum. An initial guess provided by the extrapolative
method was used successfully to help the generalized method
overcome the effects of unmodeled magnetic saturation when
fitting Model 2 to the data.

The equation error method performed well on both sim-
ulated and measured data. Unfortunately, considerable effort
was required to formulate estimators and error criterion that
would have low sensitivity to artifacts such as the observer
pole. Furthermore, the error criterion does not allow a conve-
nient statistical interpretation of the final estimate. The method
could be applied to other models, but only with considerable
effort.

The generalized method proved to be outstanding. The loss
function is a natural one, the model is easily modified, and
performance is comparable to the other methods. We have
applied the generalized method to other problems and models
and found that its performance is uniformly good. The ability
of the general method to converge on incomplete data sets
is especially promising, since it implies that a particular load
could be identified from features extracted from a mosaic of
transients from other unrelated loads. Although there were
some difficulties identifying Model 2 with the generalized
method, these difficulties were the result of shortcomings in the
motor model and were corrected by using a better initial guess
and a longer initial interval . Overall, the general method
seems to minimize operator effort in identification problems.

It seems clear that these methods are directly applicable to
a variety of induction motor parameter estimation problems,
ranging from characterization for controller design to nonin-
vasive diagnostics like broken rotor bar detection. We suspect
that the generalized method will find further applications.
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