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Identification of Induction Motor Parameters
from Transient Stator Current Measurements

Steven R. ShawStudent Member, IEEEand Steven B. LeelMember, IEEE

Abstract—This paper describes three methods for estimating tives; see [1]-[3] for interesting summaries. A variety of on-
the lumped model parameters of an induction motor using startup - |ine and off-line methods have been proposed for determining
transient data. A three-phase balanced induction motor is as- the speed of an induction motor rotor. In [4], an extended
sumed. Measurements of the stator currents and voltages are . . . ) '
required for the identification procedure, but no measurements Kalman filter is used to estimate speed. The authors of [5] and
from the motor shaft are needed. The first method presented [6] estimate speed as a parameter of the induction machine
applies simple models with limited temporal domains of validity model, givena priori knowledge of the machine electrical
and obtains parameter estimates by extrapolating the model parameters. In [7]-[10], the authors identify steady-state slip

error bias to zero. This method does not minimize any specific sing a variety of estimators. Dvhamic slio estimators are
error criterion and is presented as a means of finding a good using a variety : s ! P :

initial guess for a conventional iterative maximum-likelinood or Presented in [11] and [12]. A position estimator is described
least-squares estimator. The second method presented minimizesin [13]. All of these methods assume knowledge of most or all
equation errors in the induction motor model in the least-square of the electrical parameters. In [14]-[16], off-line techniques

sense using a Levenburg—Marquardt iteration. The third identi- .
fication method is a continuation of the Levenburg—Marquardt for determining motor model parameters are presented. All of

method, motivated by observed properties of some pathological these methqu rquirg data in addition to kngwleplge of the
loss functions. The third method minimizes errors in the obser- stator electrical excitation and may even require disassembly
vations in the least-squared sense and is, therefore, a maximum- of the machine. On-line parameter estimation techniques such

likelihood estimator under appropriate conditions of normality. as those presented in [13] and [17]-[20] generally estimate a
The performance of the identification schemes is demonstrated

with both simulated and measured data, and parameters obtained IMited subset of the model parameters given knowledge of
using the methods are compared with parameters obtained from the remaining parameters. Many of these methods are focused
standard tests. on tracking the rotor resistance or time constant for field-
Index Terms—Parameter estimation, induction motors. oriented control applications. In [2] and [21]-{24], recursive
estimation of both the model parameters and the mechanical
state (rotor speed) using transient measurements is considered.
These authors fit the induction motor problem to the context of
recursive estimation by assuming a separation of electrical and
HIS PAPER presents techniques for estimating the elagechanical time constants and treating the mechanicat@lip
trical and mechanical model parameters of an inductig a parameter. Although the recursive estimation paradigm
motor. The methods described here are applicable to machigems promising because of difficulties like the sensitivity of
characterization, diagnostic, and control applications. The to@& rotor resistance to temperature, these techniques require

in this paper are unusual because, used together, they g8Bda priori knowledge (better than 10% accuracy) of most
determine motor model parameters without an initial guess agfine parameters for successful performance.

with limited observation of only the stator terminal waveforms. A <ommon thread among these induction machine parame-

The prior work reviewed in the following paragraphs covers @, onq state estimation problems is the need for either a good
broad range of induction motor state and parameter estimatjfp;g| guess or accurate knowledge of machine parameters.
problems, presented from various perspectives. We anticipeﬁ?e methods presented in this paper, which are formally off-
that the methods given in this paper could be applied in mapye could supplement many of the off- and on-line schemes
of t?\ese pr?blemsf. L h bove in practical engineering applications. For example, a
m;—to(ra f;\?g EZesnoatfascth;gt:‘?gn: aeVF:;ir;r;itf;?ﬁ‘;‘?gmsfé?:pgzq%rolIer designed around one of the on-line state estimators
described above could, on installation with an unknown motor,

apply a “parameter acquisition” test using our methods to
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steady-state operating points are used to determine the model TABLE |
parameters. Potentially, our methods could perform a similar ~ SYMBOLS AND UNITS OF BASIC VARIABLES AND PARAMETERS
function using only stator electrical measurements. In [28] Symbol | Variable or Parameter Units
and [29], a transient event detector for nonintrusive load Xn | magnetizing impedance | ) at w rad/s
monitoring was introduced that can determine in real time the X leakage impedance | () at w rad/s

Ty rotor resistance Q

operating schedule of the individual loads at a target site. This

. L . . . . Ty stator resistance Q
determination is made strictly from observations of transients ” base clectrical frequency rad/s
at the electric utility service entry. In [30], a scheme was W synchronous speed rad/s
presented for exciting and identifying the local impedances _w rotor speed rad/s
in a power delivery network. By combining these tools with p time der;_vativev i 1/s

s ship -

a load model parameter estimator, where machine parameters
are extracted from observed transients, it might be possible
to create a device that could, for example, nonintrusively .
monitor load health and performance. This paper focuses $ReT®/ =

induction machines because of their prevalence and industri . p P .
. . [ Vs Ts +XSS( ; J) Xm( ; J) s
importance. However, the techniques presented here could, i = X (2 :sj) m + X w(ﬁ — sj) '

v/ —1. In complex variables, (1) is

principle, be extended to diagnostic applications for other load" " (5)
classes. The electromechanical interaction enters (1) and (5) through
the slip s,
II. INDUCTION MOTOR MODEL
Wy — Wy
In this paper, we consider a three-phase, balanced, singly s=—7 (6)
excited induction motor described by the model presented in s
[31]. The model expressed iy currents and voltages is and the torque
lqs Yas 3P, . .
A IL:dS = | Vs (1) T= 2 EM('qu'Ldr — dgsigr) (7
Laqr Vgr
1dr Vg where P is the number of poles. The mechanical system
where attached to the motor determines the interaction betwgen
d 7" and is modeled using ordinary mechanics. For the
R S XL X o | ! e
_x w XD _Xw Y. P purposes of this paper, the mechanical load is modeled by
A= Xmg : an; w r +Xs/s£ sX; an inertiaJ and linear coefficient of frictionB as
—5Xm, X — 85X et Xoo T = Jpw, + Bw,. (8)

(2)

In (2), the inductances appear as impedances at the bggg model serves as an example, but methods described in this

electrical frequency, e.g., 60 Hz (377 rad/s). For example {R@per are, in principle, not limited to this selection. Alternate
magnetizing imped:;mcK;n at 60 Hz is ' ‘parameterizations and choices of state variables are sometimes

useful in identifying the induction motor parameters. A repa-
Xm =wM =120 - M (3) rameterization of the mechanical system combining (6) and

where M is the magnetizing inductance. Also, in (&, = (8) is

X.n+X;, whereX, is a leakage impedance. All rotor quantities

are as referred to the stator. The currents and voltages in (1) ps=p(1—s)— Jw, (©)
are expressed in the synchronously rotatilagframe. Details

on transformation of quantities in the laboratory frame to anthe new parametgf equalsB/.J. An alternate set of complex
from the rotating frame can be found in [31]. The assumpticgiate variables is flux linkages per second,

of single excitation implies thaty, = vg = 0. That is, ) )

the rotor is excited only by the stator. Table I lists units and Vs = Xoots & Xomir (10)
physical interpretations for some of the variables appearing in U, = Xgotp + Xnis.

(2) and throughout. Dimensions for parameters and quantities o ) o )

not listed in Table | are readily inferred from their context. Similarly, it is sometimes useful to eliminate the impedances

Equation (1) can be expressed in complex notation using» @nd X, in favor of

the definitions X
an = o
s = lgs + Jids Xz - X3 (11)
. . g X..
tr = tqr + Jtar Y., = X2 _"X2

Vs = Vgs + jvds

Up = Uge + JVdr (4) which have the dimensions of admittance.
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Measurements af,, and:y, or the laboratory frame currents
1as, tps, aNdi., are the only data available in the nonintrusive
load monitoring scenario [28] and are likely the most conve-
e : nient set of measurements to make in general. The following
parameter estimation schemes use only measurements of the
stator currents,; and<y, and the stator voltages,, andwvy,.
wp 1 Measurements of the source voltaggs and vy, may not be
necessary if the electrical supply has been characterized as in
[30].

70

50 |

ol ] A. Extrapolative Method

0 ; : - - - . The extrapolative method developed here is motivated by
' ' ' the idea of quickly “eyeballing” data to obtain reasonably ac-
curate parameter estimates. These parameter estimates are not
() likely to be least-squares solutions, but might be sufficiently
accurate for some applications. In situations where a specific
© . - - T " T : error criteria such as least squares must be minimized by an
%0 ] iterative routine, the method presented here could dramatically
increase computational efficiency by supplying a good initial
guess.
The philosophy of the method is to decompose a transient
s 1 described by a complicated model into smaller domains de-
0 ] scribed by simple, easy to identify models. For example, from
circuit intuition, it is clear that under the condition = 1,
which exists briefly at = 0 due to inertial confinement of
the rotor,

Current, iy (A)

30

Current, igs (A)

20

—— (13)

L L L
[ a1 02 03 0.4 05 06 07 o8

Time (s) The induction motor may be thought of as a transformer with
a shorted secondary in this state. Substituting (13) into the
() complex induction motor model (5) yields
Fig. 1. Motor starting transient, s andigs.

Vs = (rs + 7 )is + 2Xl(§ - J)L (14)

A typical simulation of the free acceleration of an inductioEquation (15) is a relatively simple, “high-slip” model with the
motor follows directly from the model. For example, usingotential to remove two degrees of freedom from the parameter
the parameters estimation problem using only, and v,.

Similarly, under conditions of zero slip, = 0. In this state,

X, =26.13 . . . . .
. the induction motor is very much like a transformer with an
X =0.754 open secondary. Substituting into (5),
r. = 0.816 . p N
re =0.435 Ve = Tels + (X1 4 Xm) (Z - ‘7)"8' (19)
J =0.089 Equation (15) is a “low-slip” model, which might be valid
B=0 (12) during the steady-state operation of an induction machine

) L . ) o loaded with an inertia only.
with an excitation of 220 V line to line, the results in Fig. 1 are Tpe operating conditions required to make models (14) and
obtained by simulating (1) and (8). These parameters descr{§e) yalid represent a small fraction of the data recorded during

a 3-hp rated motor and can be found in [31]. a typical transient, as shown in Fig. 1. If these models are
applied to nearby data at timesfor which the model isot
I1l. PARAMETER ESTIMATION valid, the parameter vector estimatavill exhibit a bias, i.e.,
If the slip s and the complex staté, were available é(,y) = 6(0) + A(v). (16)

directly for measurement, the induction motor parameter esti-

mation problem given (1) would follow directly from standardf the model is valid at timey = 0, then the model error
techniques. Since (1) is a differential equation, one possiliias 3(v) — 0 as~y — 0. Any bias which might be
solution technique would be to eliminate the time derivativéue to noise is neglected. Assuming that the model error
p with an operator substitution and solve the resulting lineg@(y) is a well-behaved function, the estimaté§y) can
least-squares problem [32]. be modeled with an appropriate interpolating function and
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the unbiased estimaté(0) determined by interpolation or s. To eliminate:,., one must introduce either errors due to the
extrapolation as the circumstances dictate. The extrapolatjgole in the inverses, or errors due to the nonzero commutator.
process is essentially Richardson’s deferred approach to th&or the equation error method, we estimatand attempt to
limit, described in [33]. confine the errors due to the resulting pole. Eheestimator

For this paper, the extrapolative technique was applied i® derived from (10) and the top row of (5), which can be
models (14) and (15) using rational functions for extrapolatiaewritten as
[33]. Note that no particular loss function is minimized by R w
this estimation technique. It is quite likely that the estimates Vs = p—wj
are not least-square estimates. On the other hand, no initial
guess is required and there is no iteration. This method mBgcall thatw is the base frequency, usuall0=. Using the
significantly reduce the effort and complexity of an iterative€finition of ¥,
estimation method by providing good initial guesses for some
subset of the parameters. The method is described in more

detail in [34]. an estimate ofi, is

(vs — 7rsis). (22)

U, = X, (6, +14,) + Xyis (23)

B. Equation Error Method 1, = (Vs — Xnis — Xpis). (24)

Although some of the states in the induction motor model "

are not measured in the assumed scenario, the parametersTeathe extent that (22) can be computed accurately, then,

be found by iterative minimization of a cleverly designed losg expressed in terms of the parameters and the observations
function. Since the excitation; and the stator currents are . and v,. Having used half the induction motor model (5)
known or measured, an estimate of the parameter véci®r to estimate the rotor currents, the second half provides a
given by a minimization of the form useful check of the consistency between current estimates and
the data. Under the assumed conditions of single excitation,

0 =arg e V(6,7:, vs). (17) v = 0. An estimate for the rotor voltage is
One approach to formulating a loss functidn based on . (p ) ( . . (p ))
: f R r = Am\ — — 5] Jis r X+ X — — 5] (238
the motor model is to algebraically eliminate the unmeasured” 57 s+ (4 + X0 w )

(25)
'the parameters are incorrect or 4f is not equal to the
) there will be some errot

guantities. A loss function based on the transformed model
expressed only in terms of measured or known quantitiéts i
could then be used to find the desired parameters. For examHmeasurable,,,
in a model given by c=8. —uv,. (26)
a b T 1 . L
<C d) <x2> = <T2> (18) The errore W|I_I be a combination of the errors due to
the pole atw in (22) and the error due to the current
where z» is not measured, ib (in general, an operator) is parameter estimafeHowever, the errors due to the observer
invertible, then pole will occur locally in the frequency domain around the pole
1 frequencyw. Although the errors due to the observer pole are
cxy+db™(r — aw1) =72 (19 modulated by the time variation in the slip, the slip is relatively
Equation (19) has the desired property of containing anly slow (given reasonable mechanical_lqads) in compar_ison to the
and standard techniques [32] could be applied to finding tpaserver pole frequency. Note that it is more Convenl_ent to use
parameters in the operatarsd. If b is not convenient to invert, the top row of (5) for the observer because the pole is located
it might still be possible to eliminate,. Applying b andd to at the fixed frequency. The errors due to parameter mismatch

(18) vields will occur at lower frequencies. For example,rif is off by
6, the errore will be a “copy” of the mostly low-pass rotor
daxy + dbxy = dry o0) Current, ie.e = Stye.
bexy + bdzs = bro. (20) The solution is to minimize”¢ in the frequency domain

) ) at those frequencies where the artifacts introduced by the
If the commutator (Lie bracket),d] = bd — db is equal 10 opserver pole have no effect. The advantage of using the
zero, then the termdz-» can be isolated in one equation anqlrequenCy domain is that the minimization can be applied
substituted in the other, eliminating. If [b,d] = 0, then selectively to the errors that are due to parameter mismatch,
daz, + bry — bexy = drs. (21) ignoring the o_b_server pole artifacts. In practice, spectral leak-
age due to finite data set length [32] causes errors due to
The complex induction motor model (5) has the same form s observer pole to influence the errors due to parameter
(18). Eliminatingi,. by inverting one of the operators acting ormismatch. Thus, as a practical measure, the residualse
i, does not seem promising. Both operators acting,omave weighted with a Blackman window [35].
a zero; their corresponding inverses have a pole which COUIqNote that, according to the definition of the error in (26), the estimated

introduce internal Stab'“ty issues. The operatqrs actlr}g‘,:on parameters wilhot be “least-square parameters” in terms of the observations
also have a nonzero commutator due to the time variation :of
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Note that if the slip is hot measured, the estimsatequired 1400
for (25) can be obtained from (24) and the mechanical model.

Unfortunately, the slight errors introduced by the observer ey ]
pole tend to accumulate when integrating the mechanical .
model to obtain a slip estimate. To work around this, the

mechanical model is reparameterized, replacing the inertia and =
drag parameters witly, and tg, where sy is the value of N
the slip at some time,, i.e., sp = s(to). This is a conve- e
nient reparameterization, because the steady-state speed and
approximate duration of the startup transient are likely known
to fair accuracya priori. Obtaining the desired slip estimate w0
3(t) under the new parameterization is then a boundary value
problem, which can be solved by a shooting method [33], [34]. % o5 1 s 2
This approach would require reformulation for load models o
other than (8). Fig. 2. Loss functionV (§) defined in (13).

Parameter estimates were obtained by minimizing low-
frequency (with respect ta) components of the residual nd
using a Levenburg—Marquardt iteration derived substantiaﬁ‘y
from [33]. Glz,u)=(1 0)z (32)

then find an estimaté of 3 given measurements efn(3t).

) _ For V observations sampled with peridd the loss function
Another possible candidate for the loss functiot?, i, v:) v () is

can be developed by setting to the results of a simulation
using the parameter§ and the excitationvs. Then, the
loss function is the squared error between the observed and
simulated currents, i.e.,

C. General Identification Method

N
V(8) = (sin(BiT) — sin(6iT))>. (33)
=1
. o T In Fig. 2, V(#) is plotted for 8 e [0,2] with T = .1,

V(s 05) = (5 = 105, 6)) (45 = 45(v5,6)). (27) N — 1024 and 8 = 1. The numerous local minima in
Disadvantages to this approach are that, for a Jacobian-bakél) imply that, for conventional methods to converge on
minimization method, the Jacobian must be assembled usthg correct estimaté = w, the initial guess must be extremely
finite differences, evaluations of the loss function are likely t@00d. Fig. 2 demonstrates that the difficulty of an identification
be computationally costly, and the unmodified loss function Boblem is related less to the input-output complexity of
likely to have many local minima, particularly as the numbdhe system than to the way the parameters are embedded
of unmeasured states increases. However, (27) is extremi8lythe measured signals. Nonlinear systems can result in
attractive because of its simplicity and generality; potentialljinear identification problems; (31) is an example of a linear
one need only specify a model for a system to identify i€ystem were the parameters are embedded nonlinearly in
parameters. By considering the properties of the loss functiite response. Nonlinear functions often exhibit simplified
associated with a simple system, we motivate an algoritHpghavior in restricted domains; this is the basis of small-
that ameliorates the disadvantages inherent in this geneiginal techniques common in circuit design and simulation.

approach. By analogy, one way to simplify the loss function is to restrict
Consider a possibly nonlinear state-space model with st&f€ length/V of the interval over which (33) is evaluated. In
x, input %, and outputs or measurementsgjiven by effect, the algorithm temporarily discards data to obtain a loss

surface with simpler topology. The effect is shown graphically
pa = Flz,u) (28) in Fig. 3, where the normalized loss functiéf(d, N)/N is
y=G(z,u) (29) plotted over the, N plane. Note that, for smalV, the valley
leading to the global minimum a = 1 is wider, implying

that convergence will succeed for a wider range of initial
dguessesﬁ’. One interpretation is that the interv& must

be sufficiently small so that the differens&(6¢) — sin(g¢)

is functionally related to the error in the parametérs /5.

To put this observation to work, coarse estimates should be
V(0)=(y—0)"(y—B) (30) refined using smallV; as the estimate improved] should be
gxpanded to include the entire data set.

The observation that the loss function topology can be
simplified by restricting the domain applies to systems more
complicated than (31). Any system where perturbations in
F(z,u) = < 0 /3>x (31) the parameters, on the order of the error in the parameters,

-5 0 result in monotonic behavior of the loss function over a

where parameter8 are embedded iF' and G. Assume that
the structures of” and G are knowna priori, and we would
like to find the parameteré that minimize the least-square
error between the measuremeptand the predictiong, i.e.,
the loss function is

The induction motor, and many other problems, fit this conte
The problem is quite difficult even for the simplestand G.
For example, let
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TABLE I
EXTRAPOLATIVE METHOD ESTIMATES, SMULATED DATA
True Estimated
Motor Parameters | Parameters
X 26.13 26.144
3hp | X 754 739
20V [ 7, 816 808
T, 435 434
Xm 13.08 13.38
50 hp | X 302 2017
460V | 7, 228 2702
T 087 0647
Xom 54.02 54.10
. A 500 hp | X; 1.206 1.205
Fig. 3. Loss functionl’(¢, N)/N. 2300 V [T, 187 T
Ts 262 214
restricted number of pointsV’ is amenable to the method. 2250 I ))((m 13-20(;1 133013
This condition includes many, but not all, nonlinear problems. 9300 \f Tl 033 NET
Note that some responses, such as a step parameterized by a T: 079 029

delay, are nonlinear in the parameters and also do not meet
the criteria above, but have simple loss functions that do not

depend on topological simplification for solution. Taking thesge routiné MDIF in MINPACK,2 which is a finite-difference
two observations into account, we proposed the followingeyenburg—Marquardt code. The reparameterizations of (9)
algorithm. and (11) were used with the flux linkage per second state
1) Choose initial intervalV’, set N, = N'. variable form of (1).
2) Minimize loss function overV'.
3) If minimization is successful,

p ’ IV. RESULTS
N’ = min(aN',N : . . I
N :u;if(/a ) The induction motor identification methods presented here
2y if minimization is unsuccessful were tested using both simulated and measured data. Tests
N’ = max(SN', Nyyin) ' using simulated data compare the estimated parameters to the
5) Repeat fr(;m 2) u7ntil}1\lfl’n=' N parameters used to create the simulated data. To evaluate the

For thi h B q hrinki performance of the methods on real data, estimated parameters
or this p?per, a growt actqlg N 2.an a Shrnking \yere used to create simulated transients which are compared to

facto_r_/i_z 75 were used. The minimizations displayed littlgy, e 1 easured data. No noise was added to the simulated data,

sensitivity to other reasonable choices of these parametefgy filtering or smoothing was performed on the real data.

altt)houghd the contra_intsx >. 1 fan%ﬁ < .(0.’ 1) .;hould be Note that validation with simulated data tests the identification
observed. Many options exist for determining the Successaigf}())cedure in isolation, while validation with measured data

the individual minimizations [32]. There is no unequivoc ests both the motor model and the identification procedure.
solution. One must adopt a criterion that decides, preferably

with some statistical insight, whether or not the residual can Re
further reduced by restricting the domain of the loss function’
and attempting another minimization. Note, however, that theSimulated data were obtained by numerical simulation of
criterion chosen is critical only when there is high noise di) for a variety of motor parameter sets. The simulated
when the response is complicated. For this paper, we foum@tors include the 3-, 50-, 500-, and 2250-hp motors used
that consideration of the magnitude of ti¢ normalized as examples in [31]. Note that the implied test procedure,
residual proved useful. Given some knowledge of the statistid@l particular application of full rated voltage and frequency,
properties of the disturbances, test statistics like the zef®-probably not realistic for larger machines. We include the
crossing test or the Kolmogorov—Smirnov test might also Beégher power examples to test the methods and demonstrate
used [32], [33]. that, in principle, the minimization methods work for large
Despite that each evaluation of the loss function requireg1chines. In practice, somewhat different excitation may need
simulation, the method outlined above is more computationaf§ be used. The methods presented in this paper should be
efficient that one might expect. The initial estimate is refine@Pplicable, provided that the voltage excitation is sufficiently
using relatively few points and, hence, a shorter simulatiofich and known or measured.
When the number of pointd’ is increased, the simulations 1) Extrapolative Method:Results for the extrapolative
become more expensive, but the number of iterations decred¥&hod are shown in Table Il. The column labeled *“True
because the parameter estimate is hopefully close to optim@prameters” contains the values used by the simulator to
When applying the method to the induction motor modefienerate a transient. The column labeled “Estimated Param-
the loss function was calculated by comparison of adaptigéers” contains the parameters output by the extrapolative
step-size Runge—Kutta simulations of the model to the Meaz\yNpPACK is a noncommercial minimization library from Argonne Na-
sured data, as in (27). The minimizations were performed byhal Laboratory.

Simulated Data
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TABLE 11l TABLE IV
EQuATION ERROR METHOD, SIMULATED DATA GENERALIZED |DENTIFICATION METHOD, SMULATED DATA

True Initial | Estimated True Initial | Estimated

Motor Parameters | Guess | Parameters Motor Parameters | Guess | parameters
X 26.13 24.0 26.49 Y, .6537 5 .6537
3 hp X 754 1.0 7521 3hp | Y 6726 6 6726
220 V Ty .816 1.0 705 220V Ty .8160 5 .8160
T .435 0.3 4169 Ty .4350 5 .4350
X 13.08 10.0 12.99 J .0890 01 .0890
50hp | X .302 0.5 .2984 Y 1.637 14 1.637
460 V Ty 228 0.5 1950 50 hp | Y, 1.675 1.5 1.675
TS .087 1 .0845 460 V Ty 2280 0.5 .2280
Xom 54.02 50.0 52.22 Ts .0870 .05 .0870
500 hp | X 1.206 1.0 1.207 J .8300 1.0 .8300
2300V | 7, 187 .3 1829 Y., 4100 14 .4100
T .262 4 2643 500 hp | Yss 4192 1.5 4192
2300V | 1. 1870 .5 1870
Ts 2620 .05 .2620
. e L. R . . J 22.80 1.0 22.80
identification program. Recall that no initial guess is required Y, 2193 14 2193
for the extrapolative method, and that the method is not 2250 hp | Vi 2931 15 9.931
iterative. 2300V | 7, 0220 .05 .0220
2) Equation Error Method: Table Ill shows results from s | 0290 05 0290
J 63.87 10.0 63.87

the equation error method. Although no particular care was
taken in picking initial guesses, informal experimentation

revealed that the convergence of the method was rather robust. TABLE V
Rigorous analysis of the convergence properties of the method BOILERPLATE DATA FROM TEST INDUCTION MOTOR
is left to future work. In Table Ill, “True Parameters” are the -

. Leyland-Faraday Electric Company
parameters used by thg simulator to generate test data. The Type: ABEA | Model: LFI-3050 | Phase: 3
“Initial Guess” column lists the parameter guess passed to Hp: 5 Volts: 208-230/460
the iterative method. Note that the initial guesses in Table llI Rating: Cont Cycles: 60
are uniformly worse than than the results from the extrapola- A;flet‘mIi:S :OTC SRPMi 5420'34f()15
tive method listed in Table Il. The results in Table Il were Jame: ervice Zactor: 1

Amps: 12/6 Nema Design: B

obtained using the shooting method slip estimation scheme
discussed in Section Ill.A.

3) Generalized Identification MethodThe results of the
generalized identification method on simulated data are sho
in Table IV. Note that the generalized method estimates t
mechanical parameters directly instead of estimating the slip,
In all cases, for inertially loaded, simulated motors from F’o
to 2250 hp, the generalized identification method comput
answers that were exact to the number of significant digits Iiﬁlo
the parameters supplied to the simulation.

for input to the identification procedures. No mechanical load,
g)&ept for the rotor inertia and windage, was attached to the

In addition to applying the three identification methods
the measured data, standard blocked rotor, dc, and no-
d measurement techniques were performed on the test
tor. The boilerplate data from the test induction motor is
reproduced in Table V.

1) Extrapolative Method:Results for the extrapolative
B. Measured Data method applied to the measured data set appear in Table VI(a).

Real data was obtained from transient tests on a typicHhe estimates are reasonable except for the valug.ofhe
three-phase industrial induction motor. The test inductiestimate ofr, depends on the identification of the “low-slip”
motor was connected to a three-phase 208-V line-to-line 3Model. Since the low-slip model assumes only an inertia as
A rated service using a solid-state three-phase switch wihmechanical load, the failure is not too surprising; the real
a programmable firing angle [36]. Voltage and current dataotor has unmodeled load torque from its internal cooling fan
during the startup transient were collected on a four-chanregld and bearings. Again, the extrapolative method is a direct
Tektronix TDS420A digital storage oscilloscope using isolatedethod, with no initial guess.
Tektronix A6909 voltage and A6303 current probes. Since 2) Equation Error Method: The measured induction motor
the firing angle was under computer control, the experimethata were also analyzed with the equation error method.
was assumed to be repeatable. Hence, the current and voltageameter estimates are given in Table VI(b). The slip estimate
measurements were actually made in two successive teisshown in Fig. 4. Note that the mechanical parameters,
For synchronization of the two tests, one channel of voltagéhough not shown in the table, could be obtained given the
information was stored while collecting the three currents. Thestimated slip curve and electrical parameters. The equation
oscilloscope was set to trigger from this voltage channel ferror method converged in six iterations. To validate the
both current and voltage measurements. Data collected by fagameter and slip estimates in Table VI(b), the measured
oscilloscope was stored on disk and translated to files suitabtdtage waveforms, parameter, and slip estimates were input to
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TAB

ESTIMATED INDUCTION MOTOR PARAMETERS, MEASURED
DATA (a) ExTRAPOLATIVE METHOD (b) EQUATION ERROR
MEeTHOD (¢) GENERAL METHOD (d) GENERAL METHOD

LE VI

Parameter | Estimate
X 5.47e-01
Xss 3.95e+01
Tr+Ts 7.10e-01
Ts 7.60e+00
(@)
Initial

Parameter Guess Estimate

X 1.0

0e-+00 | 6.05e-01

X 4.50e+01 | 3.85e+01
Ty 5.00e-01 | 3.36e-01
Ts 5.00e-01 | 4.76e-01

(b)

Initial | Estimate,

Parameter | Guess Model 1

Yo 5.00e-01 | 8.28e-01

Yis 6.00e-01 | 8.47e-01

" 5.00e-01 | 3.59e-01

Ts 5.00e-01 | 4.58e-01

J 1.00e-02 | 4.12¢-02
(©

Initial | Estimate,

Parameter | Guess Model 2

Y 9.10e-01 | 8.27e-01

Y., §.206.01 | 8.440-01

Ty 3.55e-01 | 3.56e-01

T, 3.55e-01 | 4.57e-01

J 2.00e-02 | 4.02e-02

8 0.00e00 | 2.64e-01
(d)
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Fig. 4. Estimated slip, equation error method.
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Fig. 5. Comparison of measured (thin line) and simulated (thick liie)
currents, equation error method.

service was assumed for both identification and validation, the
measured voltage distortion was imbalanced. This imbalance
may be responsible for some of the “ripple” seen in Fig. 5.
The mismatch between measurement and prediction on the
initial spike in Figs. 57 is likely due to unmodeled magnetic
saturation.

3) Generalized ldentification MethodThe generalized
identification method was also applied to the measured data.
The data were fit with two different mechanical load models.
Model 1 was an inertia only, i.e.8 in (9) set to zero.
Model 2 included an inertia and linear damping term, as in
(9). The flexibility of the general identification method made
changing models quite trivial. However, some difficulties were
encountered when trying to identify all six parameters of
Model 2. In particular, when the generalized method was
working on early portions of the transient, the unmodeled
magnetic saturation in the initial spike of the transient tended
to cause the parameters of the mechanical subsystem to go to
unreasonable values. The general method would “stall” on the
portion of the transient where the magnetic saturation causes

a simulator in an attempt to reproduce the measured C“”e”tsa'%latively high error, attempting to adjust the mechanical
comparison of the measured current and the current prOdU%%‘Bsystem parameters to account for the error in the model.
by simulation with the estimated parameters is shown in Fig. Phis was not a problem with Model 1, presumably because
This test not only verifies the accuracy of the parametgie effects of magnetic saturation could not be accomodated
estimates, it also validates the applicability of the assumeg adjusting the inertia only. To obtain the Model 2 results
model. It should be noted that, while a balanced three-phase Table VI(d), we took a practical approach; instead of
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COMPARISON OF ELECTRICAL PARAMETERS FOR TRANSIENT |IDENTIFICATION

TABLE VII

METHODS AND STANDARD TEST PROCEDURE

147

Extrapolative | Equation Error | General Method | General Method | Standard Test
Parameter Method Method Model 1 Model 2 Method
X 3.89e+-01 3.85e+01 2.59e+01 2.71e401 3.5e+01
X, 5.47e-01 6.06e-01 5.97e-01 5.98e-01 6.8¢e-01
T+ 75 7.1e-01 8.12e-01 8.17e-01 8.13e-01 7.9e-01
Ts 7.6e--00 4.76e-01 4.58e-01 4.57e-01 4.7e-01
120 - v v g ) )
100
80
%\ 60
S
20
o
e X . L 20 . * v ;
-200 008 o ote o oz 03 ] 005 0.1 . 015 02 0.25 03
Time (s) Time (s)
120 T
120
100
N 60
=
5 4o
oS
20 H 4
Oq
» . . . . .
-20 L i i ] L 0 0.05 0.1 0.15 02 025 03
o 0.05 01 . 0.15 02 0.25 03 Time s
Time (s) (s)

. ) L . o Fig. 7. Comparison of measured (thin line) and simulated (thick lihge)
Fig. 6. Comparison of measured (thin line) and simulated (thick lie) ¢ rrents for an incomplete data set, general method.
currents, general method.

L of the measured transient has been eliminated, but the method
the aggressive initial guess used for Model 1, we used an :
sgll converges, without any code changes.

initial guess base'd. on the results of the extrapolaﬂye metho 4) Standard Test MethodStandard blocked rotor, no-load,
Table VI(a). The initial guesses faf,, andY,, follow directly . .
. and dc measurements were made on the test machine, as in
from the extrapolative method results féf,, and X,, and .
o [14]. The results appear in Table VII, where they are compared
(11). The initial guess for,. and r, was one-half of the . .
. . ...~ to equivalent parameters determined by the other methods. In
extrapolative method estimate fot. + r;, and the initial . . .
. o .. Table VII, recall that the different methods minimize different
estimates for the remaining parameters were made arbltrar;\— , L . o .
. . e for criteria. The choice of error criterion is reflected in the
In addition, for identification of Model 2, the general metho .
. RPN , . arameter estimates.
was started with a large initial interval’ to lessen the relative
contribution of the model error to the residual. Parameters for
Models 1 and 2 appear in Tables VI(c) and (d). Measured and
simulated currents, using Model 1, are compared in Fig. 6. In V. CONCLUSION
Fig. 7, we demonstrate that the general method is applicablén this paper, we have presented three techniques for finding
to analysis of partial data sets. In Fig. 7, the middle portidhe parameters of an induction motor given transient stator-
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current waveforms. These algorithms were demonstrated gz
both simulated and measured data.

The extrapolative method performed extremely well in itsz
intended role, to provide an initial guess. On simulated data,
the results are good. However, the utility of the method is[4]
especially clear in Table VII. With the exception ef, the
estimates from the extrapolative method are reasonably close
to the parameters found by the other methods. Although the eﬁ_—]
trapolative method might be regardedaashog there is little
reason to prefer the potentially highly inefficient minimization
of a formal loss function when parameters are far from théf]
minimum. An initial guess provided by the extrapolative
method was used successfully to help the generalized methéd
overcome the effects of unmodeled magnetic saturation when
fitting Model 2 to the data. 8]

The equation error method performed well on both sim-
ulated and measured data. Unfortunately, considerable eff
was required to formulate estimators and error criterion that
would have low sensitivity to artifacts such as the observer
pole. Furthermore, the error criterion does not allow a convE?
nient statistical interpretation of the final estimate. The method
could be applied to other models, but only with considerable

[11]
effort.

The generalized method proved to be outstanding. The loss
function is a natural one, the model is easily modified, and
performance is comparable to the other methods. We hal\ll2
applied the generalized method to other problems and models
and found that its performance is uniformly good. The abilit

) 3
of the general method to converge on incomplete data sété
is especially promising, since it implies that a particular load
could be identified from features extracted from a mosaic
transients from other unrelated loads. Although there we
some difficulties identifying Model 2 with the generalized15]
method, these difficulties were the result of shortcomings in the
motor model and were corrected by using a better initial guegs;
and a longer initial intervalV’. Overall, the general method
seems to minimize operator effort in identification problems

It seems clear that these methods are directly applicable to
a variety of induction motor parameter estimation problems,
ranging from characterization for controller design to nonirhs]
vasive diagnostics like broken rotor bar detection. We suspect
that the generalized method will find further applications.

f
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