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Adaptive Control of Power Electronic Drives for
Servomechanical Systems

Deron K. Jackson, Member, IEEE, Steven B. Leeb, Member, IEEE, and Steven R. Shaw

Abstract—This paper presents adaptive-control schemes that
estimate load-model parameters and adaptively “tune” a digital
controller for an inductively-coupled power delivery circuit. Esti-
mation algorithms are presented that utilize specific recursive for-
mulations, which provide adequate noise immunity in a power-
electronic environment. The techniques are demonstrated using a
servomechanical system and a 1.5-kW prototype power electronic
drive.

Index Terms—Adaptive control, inductive coupling, power elec-
tronics.

I. INTRODUCTION

I N CONTRAST to controllers for typical regulation ap-
plications, servomechanical systems generally require a

controller whose transient performance is verifiably guaranteed
over a wide range of operating conditions. Also, for adequate
tracking performance, the controller may need to respond
relatively swiftly to command changes or load disturbances.
An array of servomechanical control problems exist where
slow variations (compared to control bandwidth) in mechanical
properties, loading, or external disturbances lead to changes in
the load model parameters. Such changes can adversely affect
even relatively robust control designs.

Adaptive or “self-tuning” controls adjust automatically in re-
sponse to system changes. Adaptive control systems have been
widely studied [1], [2], and generally are two step processes of
system parameter estimation and control adaptation. Both tasks
must be accomplished on-line to permit the controller to track
time-varying system parameters. This imposes certain limits on
implementations. In addition, the adaptation algorithm must be
suitable for digital implementation and sufficiently robust to
noise. This paper addresses these concerns and presents tech-
niques specifically suited to power electronic and digital control
environments.

II. SYSTEM OVERVIEW

A number of circuit topologies for inductively coupled power
transfer in servomechanical applications are reviewed in [3].
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One power electronic drive, for example, is a unidirectional
power transfer coupling that draws power from the ac utility
through a high power factor pre-regulator. Power is transferred
to the load through a half-bridge inverter that energizes a sepa-
rable transformer or inductive coupling. Another drive explored
in [3] employs a high power factor pre-regulator capable of bidi-
rectional power transfer, to or from the electric utility, and either
a full-bridge or symmetric half-bridge inverter circuit capable of
transferring power to or from a load through the inductive cou-
pling.

An inductive coupling provides features including: safety iso-
lation; a separable or sliding, nonohmic electro-mechanical in-
terface; and, often, the possibility of transferring power across
an unbroken environmental interface, e.g., the skin of a patient
receiving an externally poweredin-vivo implant, or a wall in
a transportation system. The advantages and engineering chal-
lenges of operating this type of coupling and the associated drive
circuitry over a range of power levels and applications have been
reviewed in numerous publications, including [4]–[9], among
others.

In [10]–[12], we exploited large-signal linear models for
developing controllers for the inductively-coupled power
electronic drives used in [3]. Large-signal linear models are
essential for developing controllers with verifiable performance
in tracking applications. The general multirate digital control
techniques developed in [3], [11], and [12], and presume
that the driving-point impedance or other input-to-output
behavior of the load can be described by a linear, time-invariant
transfer-function model. The time invariance constraint implies
that the differential equations or transfer function describing
the load model contains constant coefficients. These coeffi-
cients must be known in order to apply conventional design
techniques. Not surprisingly, a number of applications do not
fit this description.

The next sections present techniques for estimating the slowly
varying coefficients of a load model for a load driven by an in-
ductively coupled power electronic drive. These techniques can
be used to update the gains of a controller to ensure specified
performance under load changes. The parameter estimation and
adaptive controller demonstrations are constructed using a pro-
totype 1.5 kW inductively coupled drive (described in detail in
[3]). However, the estimation techniques could be used in virtu-
ally any on-line, digitally controlled power electronic applica-
tion. Also, since many power electronic drives employ a fixed
(nonseparable) transformer for isolation or voltage conversion,
the demonstration of these control techniques with an induc-
tively coupled (separable transformer) drive, which is very sim-
ilar to a fixed transformer drive, does not limit their applicability.
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III. PARAMETER ESTIMATION FOR POWER ELECTRONIC

DEVICES

A conventional linear estimation problem begins with the as-
sumption that a column vectorcomposed of scalar measure-
ments can be related to the product of a “regressor” matrix

(composed of row vectors ) and a column vector of pa-
rameters which characterize the system [2]

(1)

In a typical application, a large number (relative to the number
of parameters in) of measurements are made to assemble the

vector. The system is overconstrained. Generally, no vector
can be found that precisely satisfies (1). The least-squared error
solution

(2)

minimizes the sum of the squared errors, i.e., the 2-norm of the
vector . (The “hat” notation is used throughout this paper
to indicate estimated quantities.) The critical choice of model
parameterization determines. The presence of disturbances in

or correlation between the columns ofand disturbances in
will result in biased parameter estimates. Also, the numerical

condition of , which depends on the richness of available mea-
surements, determines the practical ease with which (2) may be
solved. Generally, direct numerical solution of (2) is not the best
approach for finding , and recursive formulations based on this
equation may also be numerically inferior to more clever solu-
tion techniques. However, given sufficiently rich measurements,
all of these estimation approaches are generally functional for
application with thriftily modeled servomechanical drives.

A. Recursive Least-Squares Estimation

Recursive least-squares (RLS) estimation is an iterative refor-
mulation of the conventional least-squares solution. Rather than
waiting to accumulate a collection of measurements before es-
timating the parameter vector, as in conventional least-squares
estimation, the estimatecan be updated as each new measure-
ment is made. The RLS estimator is very attractive for real-time
applications. Because the RLS algorithm is recursive, very few
data points need to be stored between iterations, and computa-
tions occur at specified intervals with a predictable computa-
tional complexity.

The recursive least-squares algorithm is shown in (3) below

(3)

where
scalar prediction error;
gain vector;
weighting matrix [1].

The algorithm in (3) is executed from top to bottom at each
iteration of the index .

For now, assume that the “forgetting factor,”, is unity. In this
case, after iterations, the recursive algorithm can, with infi-
nite precision arithmetic, return the exact parameter estimates
that would occur using nonrecursive least squares on the same

data points. However, a perfect match requires very specific
initial conditions for . In practice, the matrix and the
initial parameter vector may be determined by producing initial
estimates, perhaps off-line, using conventional least squares. Al-
ternatively, the algorithm could be started with an initial guess
at the parameters and a matrix set to a large constant multi-
plied by an identity matrix. Although this can cause large initial
transients in the parameter estimate, the large helps assure
relatively rapid parameter convergence.

The RLS algorithm just described refines its parameter esti-
mates at each iteration. So afteriterations the accuracy of the
estimate accumulates the contributions from all previous
iterations. This prevents the algorithm from accurately tracking
time-varying parameters unless the effect of distant data points
can somehow be mitigated. This can be accomplished by setting
the forgetting factor to a value less than unity. The forgetting
factor modifies the minimization criteria of the RLS algorithm
so that errors that occurred at time index are weighted
by . The number of samples effectively kept in “memory” is
roughly proportional to [2].

Exponential forgetting must be tuned with some care for op-
timum performance. If is chosen too large, it will lead to slow
convergence of the estimates, and if chosen too small, it will re-
sult in noisy estimates, which are based on too few data points.
Thus, the choice of represents a trade-off between parameter
tracking and disturbance rejection. Another problem, known as
“covariance matrix explosion,” may occur during moments of
low excitation [2]. In the absence of a significantly exciting
input, the quantity will approach zero, in which
case will begin to increase exponentially. In turn, the pa-
rameter estimates become increasingly sensitive to the predic-
tion error , and the slightest noise or model inaccuracy can
lead to erratic or erroneous parameter estimates. In practice, we
could attempt to mitigate this effect by skipping the RLS update
if a defined variable, such as the output, changes by less than an
amount between samples.

Recursive estimation is a rich topic that has received much
research attention. Many modifications have been proposed to
optimize the performance of the basic recursive estimator for
noise environments with specific, known probabilistic distribu-
tions. Also, note that the performance analyses of the basic least
squares approach typically assume that noise or measurement
error is confined to the vector of observations and assumes an
understood form. In fact, in servomechanical applications of in-
terest, noise often affects both the measurement vectorand the
regressor matrix. Other techniques, e.g., “total” least squares
[13], have been developed to provide solutions that are optimal
in some sense for these cases. Generally, careful characteriza-
tion of the noise environment in a power electronic servomech-
anism, where disturbances may be closely correlated and impul-
sive or non-Gaussian in nature, is difficult. Experiments with the
prototype hardware show that using the RLS estimation tech-
nique to determine the parameters of a “state-variable-filtered”
plant model can lead to relatively noise-immune parameter es-
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timation techniques suitable for the power electronic environ-
ment.

B. State Variable Filtering

The term “lambda method” (LM) is used here to describe a
modification to the conventional recursive least-squares (RLS)
algorithm, which will be referred to as LM-RLS. The technique
relies on an “operator transformation” that allows the differ-
entiation operator in a continuous-time (CT) transfer function
model to be replaced, in principle, without approximation.
The result is a discrete-time (DT) estimation algorithm, which
operates on transformed or filtered observations of the input
and output data. An estimation algorithm can then be designed
around the transformed model. This technique is described
briefly in [2] and in other literature under the heading “model
transformation” or “state-variable filter,” but appears to have
been largely overlooked in the power-electronics literature.
However, our experiments demonstrate that a substantial
reduction in noise sensitivity can be achieved in comparison to
conventional RLS.

The LM-RLS technique is developed around a CT transfer
function model of the system, e.g., the rational CT transfer func-
tion

(4)

where the denominator polynomial has orderand the coef-
ficients and may be time varying. This system function
might model the driving point admittance of a battery to be
charged, or the through transfer function of a speed-control ser-
vomechanism, or, generally, the system function of any plant to
be driven and controlled by a power electronic drive. The coef-
ficients of equivalently describe a linear differential equa-
tion model of the system written as

(5)

where represents the derivative operator and and
represent the input and output variables of the system with

system function (4). An operator transformation can be applied
to (5), whereby the operator is replaced by the causal, low-pass
“lambda” operator

(6)

where is a positive time constant. Using (6) to eliminate
from (5) yields a new linear model, which can be written as

(7)

where the reformulated parametersand are algebraically
related to the starting parameters, , and the time constant .
In (7) the addends , , etc., represent inputs and out-
puts operated on by. The operator is a first-order low-pass
filter with a time constant ; “powers” of are multiple appli-
cations of the operator.

The reformulated parameters from (7) can be estimated di-
rectly using the RLS algorithm. Assuming that the filtered CT
quantities are available, they can be sampled everys, in syn-
chrony with the corresponding DT algorithm iterated by the
index . At each time step, the sampled data is compiled into
a regressor vector

...

...

and a vector of transformed parameters is computed by the RLS
algorithm

The final operation at each time step is to recover estimates of
the starting parameters, and , from their known relation-
ships to , , and .

The convergence properties of the LM-RLS method are
strongly affected by the selection of the filter time constant.
Experimental evidence suggests thatshould not exceed the
nominal settling time of the target system. Doing so will unnec-
essarily slow the convergence rate of the parameter estimates.
A compromise may be necessary, however, ifis increased to
attenuate noise from an external source. Conversely, decreasing

can speed up the convergence rate, but the convergence
transient can be expected to become increasingly violent [2].
Nevertheless, the convergence properties of the LM-RLS
method demonstrate a marked improvement over the direct
RLS approach. This will be demonstrated by the experimental
tests in the following sections.

IV. EXPERIMENT: BATH TEMPERATURECONTROL

A range of servomechanical control demonstrations were
designed, constructed, and documented in [3], including an
electric vehicle battery charger, a solvent bath temperature con-
trol system, and a motor-speed control system. The temperature
control system, described in this section, involved an adaptive
controller for a liquid-bath temperature control system. The
liquid bath plant benefits from the inherent safety isolation
provided by inductive coupling. It is representative of a number
of real-world manufacturing and medical applications, which
could take advantage of inductive-coupling as a noncontact
means to transfer power across an environmental boundary.
Because the plant is essentially first order, as will be discussed,
the parameters of the plant model can estimated successfully
by directly applying the RLS algorithm, without state variable
filtering. In the following section, a more complicated example
of a motor speed controller will be examined, in which the
LM-RLS method is essential for successful real-time on-line
estimation.

The experimental setup for the bath system is illustrated in
Fig. 1. A 1-kW immersion heater was placed inside a two gallon
water bucket. Electrical power for this heater was supplied via
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Fig. 1. Setup for bath temperature control experiments.

Fig. 2. Block diagram for temperature control experiments.

an inductive coupling and the 1.5-kW prototype power elec-
tronic drive. Chilled water was supplied to the bucket at a con-
stant rate from a cold water supply, and excess water was ac-
tively pumped out through a drain hose. Adjusting the level of
the drain up or down allowed for external control of the water
volume, with a range from approximately 0.6–1.5 gallons. A
mixer kept the water in constant circulation so that the temper-
ature throughout the bucket was homogeneous.

The personal computer (PC) illustrated in Fig. 1 was used
to record experimental data for later analysis. This system
recorded two electrical signals: the controlled boost voltage

from the output of the pre-regulator in the 1.5 kW in-
ductively-coupled prototype electronic drive, and also the bath
temperature . For use in control, the bath temperature was
also relayed to an embedded 80C196KC digital microcontroller
board used to control the power electronics as described in
[11] and [3]. It is important to emphasize that the PC in this
experimental setup simply andonly provided archival data
collection for later, off-line comparison to experimental results.
All digital control and estimation algorithms were implemented
on-board the embedded 80C196KC microcontroller board.A
control panel attached to the microcontroller board provided a
user interface for setting control options, temperature setpoints,
etc.

A. Control Design

The multi-loop adaptive temperature control system is illus-
trated in Fig. 2. The system actually consists of three nested con-
trol loops. An innermost analog loop (not shown explicitly) con-
trols the waveshaping provided by a unity power factor, inter-
leaved boost pre-regulator in the power electronics block. Next,
a digital loop (again hidden in the dashed box), based on a large
signal linear model of the boost converter, controls the output
voltage of the converter to track with command inputs .
The output voltage of the boost converter serves as the input to
a high-frequency, dc–dc, zero-voltage switched bridge converter
that transfers power across a separable inductive coupling to the
electrothermal load, represented overall by the dashed box in
the figure. The final feedback loop, the adaptive, pole placement
(PP) compensated feedback loop, regulates bath temperature by
controlling thermal power dissipated in the bath. This DT loops
runs at a slower time scale than the inner voltage regulation loop.
That is, many time steps of the voltage loop occur in one time
step of the thermal loop. The remaining blocks in Fig. 2 repre-
sent the adaptive temperature controller. Parameter estimation
for this controller was performed using the LM-RLS algorithm.

Fig. 3 shows equivalent load models for the heater and
water-bath systems. The circuit on the left models the dc/dc
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Fig. 3. Equivalent electrothermal load model.

converter with a resistive immersion heater attached. The dc/dc
stage energizing the inductive coupling can be modeled as an
ideal transformer and a series impedance(representing the
droop characteristic of the open loop dc/dc stage). The model
also includes a heater resistance. The power dissipated in
the heating element is

(8)

where is the effective turns ratio of the inductive coupling.
Equation (8) can be inverted so that the appropriate voltage ref-
erence can be found to achieve a target power dissipation.
That relationship is

(9)

Equation (9) is used in the “P-to-V mapping” block of Fig. 2.
The thermal circuit in Fig. 3 models the relationship between
, the power dissipated in the heater, and the differential

water-bath temperature , measured with respect to the
cooling water supply temperature . That is, the cooling
water temperature is taken to be the ground or datum reference
in the thermal circuit analog shown in Fig. 3. The capacitance

in the model represents the heat capacity of the water.
The lumped element model of the thermal capacitance of the
bath is reasonable because the bath is well mixed. The effective
thermal resistance between the bucket temperature and the
cooling water temperature is modeled by . Applying
Kirchhoff’s current law to this thermal equivalent circuit yields
the following first-order differential equation:

(10)

From (10), a transfer function relating the Laplace transforms
of and can be written

(11)

The inner DT voltage loop controlling the output voltage of
the boost converter is designed to work quickly on the time
scale of the outer DT temperature control loop. This means,
for example, that, in combination with the P-to-V mapping,
the inner voltage loop might be configured and modeled as a
“power-level” zero-order hold (ZOH) on the time scale of the
outer thermal loop. This configuration is enabled by the guaran-

teed dynamics of the large-signal linear voltage loop controller
with load power feedfoward discussed in [11] and [3]. Other
configurations and modeling possibilities are also discussed in
these references, and will be exploited in the next section.

To complete the DT compensator design and determine the
closed-loop system behavior, it is necessary to determine the
transfer function for the dashed box in Fig. 2 that relates
the -transform of output temperature to the-transform of the
input voltage command from the PP temperature compensator.
With the ZOH configuration, can be found by applying
a step-invariant CT-to-DT transformation [14] to the transfer
function

(12)

where

(13)

The DT transfer function (12) relates-transforms of the
commanded power and the sampled temperature .
The DT load model in (12) can now be used to design a DT
compensator which yields the desired closed-loop performance.
The control command for a first-order PP temperature
controller is

(14)

where is the temperature reference andand are
feedback gains.

Now, the closed-loop transfer function for the temperature
controller is

(15)

provided the gains and are selected according to

(16)

The locations of the closed-loop poles may be located essen-
tially arbitrarily in the -plane by carefully selecting the control
gains and to yield the desired denominator in (15).

B. Adaptive Updating

The derivation of this controller assumes that the coefficients
of the load model are known. It is possible to estimate these
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Fig. 4. Results (see text).

coefficients in real-time and use them to adaptively update the
controller gains in the event of parameter changes. The adaptive
control structure is illustrated in Fig. 2. A discrete-time RLS
estimator with exponential forgetting was used to estimate the
parameters of DT transfer function (12) on-line. The regressor
and parameter estimate vectors for this case are

and (17)

The RLS algorithm updates the parameter estimates at each
step of the index . The control gains and are updated
after each iteration in order to achieve a closed-loop transfer
function with two real poles at identical locations on the-axis,
e.g., . Thus, and are computed as

and (18)

C. Results

The adaptive temperature control system was implemented in
software on the 80C196KC microcontroller board. The C-code
source listings can be found in [3]. So that direct performance
comparisons could be made, both fixed and adaptive controllers
were implemented. The fixed controller was optimized for op-
eration at the low end of the water volume range, approximately
0.6 gallons. The load model parameters for in (11) were
approximated experimentally at this level.

The closed-loop performance of both the fixed and adaptive
loops was targeted to have two real poles at . A sample
period of s was used, so the inner- and outer-loop in-
dices are related by , where . The RLS param-
eter estimation for the adaptive controller was configured with a
forgetting factor of 0.99. Thus, approximately 60 min of data
is retained in “memory.” No initial guess was supplied for the
parameters. Rather, the matrixwas initialized as 10 000 times
an identity matrix, and the estimates were allowed to converge

on their own. In order to assure stable control during start-up, the
fixed controller was engaged for the first 10 min. This allowed
time for the estimates to converge before adaptive control was
engaged.

Experimental results appear in Fig. 4. In the top graph, la-
beled (a) in Fig. 4, the response of the fixed and adaptive con-
trollers are shown in comparison to the command reference. The
traces in (b) show the power commanded by each controller
into the heating element. A square wave in temperature was
commanded in order to demonstrate the control performance.
In each case, the system began with the fluid level set at 0.6
gal. At this level the closed-loop performance of both the adap-
tive and fixed temperature controllers is nearly ideal. The step
transients are consistent with the closed-loop pole locations,
and the tracking performance is good. After approximately 90
min of operation, the fluid level was increased to 1.5 gal. This
volume change takes approximately 5 min to occur. The change
drives the fixed controller away from its optimal operating point
and significant overshoot results. The adaptive controller, on the
other hand, quickly adapts to the altered load model, and the de-
sired closed-loop performance is maintained.

Several attempts were made to improve the convergence rate
by decreasing the forgetting factor. While it was found that
some improvement was possible, the increased noise sensitivity
quickly becomes intolerable. As noise susceptibility increases,
the accuracy of the parameter estimates degrades, which leads to
poor closed-loop performance or even instability. Since param-
eter tolerance tends to decrease as control complexity increases,
higher-order systems offer even less flexibility. For the adaptive
speed controller described in the next section, the reformulated
LM-RLS estimator proved essential.

V. EXPERIMENT: MOTOR SPEEDCONTROL

The speed servomechanism described in this section could,
for example, model the drive system for an underwater ve-
hicle, where electrical power passes contactlessly through
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Fig. 5. Setup for motor speed control experiments.

Fig. 6. Block diagram for motor speed control experiments.

the vehicle’s hull to an external drive motor. Other examples
might include process control or automation systems, where
noncontact inductive coupling is used to transfer power across
an environmental boundary. Fig. 5 illustrates the motor-speed
control apparatus used for the experiments. The power elec-
tronic and data acquisition hardware is essentially identical
to that described for the water bath experiment. In this case,
however, the load consists of a dc motor, a variable-inertia load
and a tachometer circuit. The motor was affixed securely to a
support beam and used to spin a variable number of circular
weights. By dropping additional weights onto the rotating shaft,
the mass and hence the inertia could be changed abruptly. The
shaft speed of the rotating system was sensed using a small dc
motor as a tachometer. A low-pass filter circuit was used to
remove brush and harmonic noise from the tachometer voltage.

A. Control Design

The multi-loop adaptive speed control system is illustrated in
Fig. 6. As for the bath temperature control system, the speed
controller again consists of three nested loops, where the outer-
most adaptive, pole placement (PP) compensated feedback loop
regulates mechanical speed by controlling input voltage to the
motor. This DT loops runs at a slower time scale than the inner

voltage regulation loop. The remaining blocks in Fig. 6 repre-
sent the adaptive speed controller. Parameter estimation for this
controller was performed using the LM-RLS algorithm.

A transfer function that relates the output filtered tachometer
voltage to the input drive voltage from the boost pre-regulator
can be derived with the aid of Fig. 7. The output voltage of the
dc/dc stage drives a 1000 W permanent magnet dc motor. The
model for this dc motor includes an armature winding resistance

, an armature inductance and a motor back-EMF constant
. The motor’s torque acts to rotate an inertiaagainst a

frictional damping . The final speed of this assembly is sensed
by a small tachometer mounted to the opposite end of the motor
shaft. The output voltage of the tachometer is low-pass filtered
to smooth out brush noise. The transfer function of this filter is

(19)

where the time constant is set at approximately 10 s and
and are the transforms of and , re-

spectively.
The motor torque can be written as

(20)
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Fig. 7. Equivalent electromechanical load model.

where the effect of the winding inductance has been dropped
because the armature electrical time constant is considerably
shorter than the sampling interval of the DT speed controller.
The load torque, which balances the motor torque, is determined
by the inertia, the frictional damping, and the shaft speed

(21)

Combining (19) and the Laplace transforms of (20) and (21)
yields a single CT transfer function relating the transforms of

and the tachometer speed voltage

(22)

where

and

(23)

To complete the DT compensator design and determine the
closed-loop system behavior, it is again necessary to determine
the transfer function for the dashed box in Fig. 6 that re-
lates the -transform of output speed to the-transform of the
input voltage command from the PP speed compensator. For
the speed servo, we have exploited the time scale separation
between the DT voltage and speed loops and the natural time
constants of the plant to configure the voltage loop so that
can be found by applying an impulse-invariant CT-to-DT trans-
formation [14] to the transfer function

(24)

where

(25)

The variable represents the time step of the inner voltage
loop in seconds.

The impulse-invariant configuration and model for the inner
voltage loop were chosen to yield an for which a satisfac-
tory PP compensator could be designed. This compensator pro-
vides the beneficial property of zero steady state error without
requiring an explicit DT accumulator variable. Since the load
is second-order, a second-order PP compensator was developed
for computing the control command

(26)

where is the motor-speed reference command and,
, , , and are constant gains. Saturation may be added

in practice to limit the maximum and minimum voltage com-
mands.

Combining (26) and the load model in (24) results in a
closed-loop transfer function, which relates the transforms of
the output tachometer voltage to the input command voltage,
of the form

(27)

when the control gains in (26) are related to the coefficients in
the closed-loop transfer function as follows:

(28)

Since (28) allows the coefficients of (27) to be assigned
arbitrarily, the closed-loop poles may be located freely in the
-plane. One reasonable choice for a stable, well-damped

response is to place the four closed loop poles at identical
locations on the real axis, i.e., .

B. Adaptive Updating

Adaptive updating of the speed controller gains is accom-
plished using an LM-RLS parameter estimation scheme, shown
in Fig. 8. The LM-RLS estimator contains at its core an RLS es-
timator, which is used to estimate the parameters of a low-pass
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Fig. 8. Estimator.

Fig. 9. Results (see text).

transformed system, and not the actual system. For this example,
the regressor and the estimate vectors are, respectively

and (29)

The operator symbol in (29) indicates that a particular ob-
servation is filtered. Ordinarily, a filtering operation would re-
quire that the signals are passed through an analog low-pass
filter prior to being sampled. This approach is undesirable be-
cause it increases the circuit complexity. Although the filters
themselves are straightforward, the number of A/D channels in-
creases because each filtered quantity must be sampled sepa-
rately. In this case four A/D channels would be required versus
just two for conventional RLS.

The multirate nature of the digital control implementation
provides an elegant alternative. The filtering operation can be

implemented digitally at the rate of the “fast” inner voltage loop.
Since the voltage-loop time index,, steps at a rate times that
of the outer loop, the DT filters will appear essentially contin-
uous on the “slow” outer-loop time scale. The transfer function
of each digital “ -filter” in Fig. 8 is developed by again ap-
plying a CT-to-DT transformation to the CT transfer function
of a first order low-pass filter. As shown Fig. 8, the outputs are
all down-sampled to the DT time indexbefore entering the
RLS estimator block.

The output of the RLS block is a vector of parameter
estimates for the transformed load model. Estimates for the co-
efficients of the original CT load model in (22) can be computed
according to

(30)
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The parameter estimates that are necessary to update the speed
controller can be obtained from the relationships in (25) and
(28). Their application yields formulas for the quantities in
and

and (31)

The gains in are used to update the coefficients of the con-
trol command, (26).

C. Results

The adaptive speed-control system was implemented in soft-
ware on the 80C196KC microcontroller board. Detailed source
listings can be found in [3]. Both fixed and adaptive controllers
were implemented to allow for direct comparison. The fixed
controller was optimized for operation with a load disk with a
mass of 4.5 kg. The load model parameters for in (22)
were approximated experimentally at this mass setting. The re-
sults were

s s and rads/(volt sec.)

(32)

The closed-loop performance of both speed-control loops
was targeted to have four real poles collocated at .
A sample period for the speed loop of s was used,
and the inner- and outer-loop DT step indices are related by

, where . The LM-RLS parameter estimation
for the adaptive controller was configured with a forgetting
factor of 0.97. Thus, a parameter estimate is based on
approximately the last 33 s of data. Discrete timefilters
were designed to approximate CT first order filters with a time
constant of 10.0 s. In our experiments, no special initial guess
was supplied for . Instead, the matrix was initialized to
10 000 times an identity matrix, and the estimates were allowed
to converge on their own. In order to assure stable control
during start-up, the fixed controller was engaged for the first
1.5 min. This allowed time for the estimates to converge before
adaptive control was engaged.

Experimental results are shown in Fig. 9. The top two
traces in Fig. 9 show the system under the control of the fixed
compensator. The top trace shows the commanded and actual
tachometer voltages. The second trace shows the commanded
drive voltage. The bottom two traces in the figure show the
performance of the system under adaptive PP control. The
third trace again shows tachometer voltage, and the fourth
shows commanded drive voltage. A square wave in speed was
commanded for each of the two controllers, fixed and adaptive,
in order to demonstrate the control performance. The initial
load mass in the experiment was set at a single disk. At this
level, the closed-loop performance of both the speed controllers
is nearly ideal. The step transients are consistent with the
closed-loop pole locations and the tracking performance is
good. The inertial mass of the system was abruptly increased at

10 min and again at 16 min into each experiment. Each increase
added an additional disk to the rotating mechanical load.

The experimental results in Fig. 9 demonstrate that the
adaptive controller quickly adapts to the changing inertia of the
system, and that the tracking performance remains essentially
constant throughout. The fixed controller fairs poorly in the
face of load changes, as might be expected. The closed-loop
response begins to exhibit a damped oscillatory behavior.

Each step change in the load inertia causes a definite distur-
bance in all three parameter estimates. In the adaptive controller,
the estimates quickly converge on their new values after approx-
imately two cycles of the step input of the system. In practice,
the actual convergence time will vary depending on the excita-
tion level of the system, the amplitude of the parameter changes,
and the LM-RLS settings for and . Note that the time con-
stant of the “ -filter” has an effect on the parameter con-
vergence rate. From this perspective, an optimal setting for
is equal to or slightly smaller than the time constant associated
with the fastest pole in the load model. Additional consideration
must be given to provide an adequate filter for the anticipated
noise environment.

VI. DISCUSSION

The performance of the LM-RLS parameter estimation
proved to be superior in a high noise environment. The
motor-speed control system, for example, was subject to
significant electrical noise. Noise sources included brush
commutation and switching spikes. Prior to the LM-RLS
experiments, an adaptive motor-speed controller was imple-
mented using direct RLS estimation. Under nearly identical
conditions, the RLS estimation proved to be erratic and unre-
liable. The problem was traced back in part to the covariance
matrix explosion described previously. It was hoped that a
judicious selection of the dead-band widthand the forgetting
factor would yield satisfactory results. This was not the case.
The LM-RLS method improves the situation dramatically
because the regressor vector is composed of filtered measure-
ments. Their noise content is reduced, and a much narrower
dead-band can be tolerated.

ACKNOWLEDGMENT

The authors would like to thank J. Sweeney, Dr. H. Peiffer,
J. Wise, Dr. J. White, Dr. G. Verghese, and Dr. B. Lesieutre for
their valuable advice and support.

REFERENCES

[1] G. Goodwin and K. Sin,Adaptive Filtering Prediction and Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[2] R. Johansson,System Modeling and Identification. Engelwood Cliffs,
NJ: Prentice-Hall, 1993.

[3] D. Jackson, “Inductively coupled power transfer for electromechanical
systems,” Ph.D. dissertation, Mass. Inst. Technol., Cambridge, May
1998.

[4] K. W. Klontz, A. Esser, P. J. Wolfs, and D. M. Divan, “Converter
selection for electric vehicle charger systems with a high-frequency
high-power link,” inProc. Power Electron. Spec. Conf., June 1993, pp.
855–861.

[5] Society of Automotive Engineering, SAE J-1773 Electric Vehicle Induc-
tive Coupling Recommended Practice, Warrendale, PA, Feb. 1995.



JACKSONet al.: ADAPTIVE CONTROL OF POWER ELECTRONIC DRIVES 1055

[6] A. Esser, “Contactless charging and communication system for electric
vehicles,” inIEEE Ind. Applicat. Soc. Annu. Meeting, Oct. 1993.

[7] N. Kutkut and K. Klontz, “Design considerations for power converters
supplying the SAE J-1773 electric vehicle inductive coupler,” inIEEE
Appl. Power Electron. Conf., Feb. 1997, pp. 841–847.

[8] A. W. Kelley and W. R. Owens, “Connectorless power supply for an
aircraft-passenger entertainment system,”IEEE Trans. Power Electron.,
vol. 4, pp. 348–354, July 1989.

[9] A. Ghahary and B. H. Cho, “Design of a transcutaneous energy trans-
mission system using a series resonant converter,”IEEE Trans. Power
Electron., vol. 7, pp. 261–269, Apr. 1992.

[10] A. H. Mitwalli, S. B. Leeb, G. C. Verghese, and V. J. Thottuvelil, “An
adaptive digital controller for a unity power factor converter,”IEEE
Trans. Power Electron., vol. 11, pp. 374–382, Mar. 1996.

[11] D. Jackson, A. Schultz, S. B. Leeb, A. Mitwalli, G. Verghese, and S.
R. Shaw, “A multirate digital controller for a 1.5-kW electric vehicle
battery charger,”IEEE Trans. Power Electron., vol. 12, pp. 1000–1006,
Nov. 1997.

[12] D. Jackson, S. Leeb, A. Schultz, and A. Mitwalli, “A comparison of
multirate digital compensators for a battery charger,” inProc. IEEE 5th
Workshop Comput. Power Electron., Aug. 1996, pp. 58–65.

[13] G. H. Golub and C. F. Van Loan,Matrix Computations, 2nd
ed. Baltimore, MD: Johns Hopkins Univ. Press, 1989, pp. 576–581.

[14] K. Astrom and B. Wittenmark, Computer Controlled Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall, 1984.

Deron K. Jackson(M’96) received the B.S. degree
in electrical engineering from the University of Cali-
fornia, Davis, in 1991 and the M.S. and Ph.D. degrees
in electrical engineering from the Massachusetts In-
stitute of Technology, Cambridge, MA, in 1994 and
1998, respectively.

He is a Senior Hardware Engineer with Adept
Technology, San Jose, CA. His research interests are
in the area of power electronics and control.

Steven B. Leeb (S’89–M’93) received the B.S.,
M.S., E.E., and Ph.D. degrees from the Massachu-
setts Institute of Technology (MIT), Cambridge, in
1987, 1989, 1990, and 1993, respectively.

He has been a Member of the MIT faculty in the
Department of Electrical Engineering and Computer
Science since 1993. He is an Associate Professor in
the Laboratory for Electromagnetic and Electronic
Systems. He is concerned with the design, analysis,
development, and maintenance processes for all
kinds of machinery with electrical actuators, sensors,

or power electronic drives.
Dr. Leeb is a Member of the IEEE Power Electronics, Control Systems, Power

Engineering, and Signal Processing Societies. He is a Fellow of MIT’s Leader’s
for Manufacturing Program and a member of Tau Beta Pi and Eta Kappa Nu.

Steven R. Shawreceived the B.S. degree in electrical
engineering, and the M.Eng. and Ph.D. degrees from
the Massachusetts Institute of Technology (MIT),
Cambridge, in 1995, 1997, and 2000, respectively.

He was a Post-Doctoral Research Assistant in the
Laboratory for Electromagnetic and Electronic Sys-
tems, MIT. He is an Assistant Professor at Montana
State University, Bozeman.


