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Abstract

We consider a class of nonlinear filters, particularly
with regard to its usefulness in the power electronics field.
This class of filters is characterized by the inclusion of a
sorting element in the signal path. The sorting opera-
tion allows these filters to suppress impulsive noise while
preserving edges and monotonic sections of signals. This
introductory paper concentrates primarily on the median
filter, it being the most accessible filter of the class. A
working knowledge of issues arising in design and imple-
mentation is developed.

1. Introduction

Since the early 1970’s there has been growing use of
a class of discrete, nonlinear, and shift-invariant filters
which incorporate a sorting element in their signal pro-
cessing path. The inclusion of a ranking operation gives
them abilities unavailable to linear filters, such as the ca-
pability to suppress impulse or transient noise from sig-
nals while preserving any underlying edges. These non-
linear smoothing properties coupled with ease of imple-
mentation have made such filters popular for many signal
enhancement tasks in the fields of geophysical, biomed-
ical, image, and radar signal processing. Present uses
include smoothing and suppression of spike and other
noise (known as speckle noise in images) {1, 2}, edge de-
tection [3-6], feature extraction, and signal coding [6, 7).
This growing group of applications has generated inter-
est in a number of issues, ranging from the theoretical
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properties of such filters [8, 9] to fast VLSI implemen-
tations [10, 11], and has prompted us to consider their
use in the field of power electronics. This introductory
paper concentrates mainly on the median filter as being
illustrative of these filters, though other elements of the
class are presented briefly in Section 4.

In situations where signal and noise spectra occur in
the same range (such as high frequency noise and “edgy”
signals) and linear filters perform poorly, median type fil-
ters can provide a good alternative to linear smoothing.
The superior performance of median (and more general
rank-based) filters arises from the fact that linear filters
are frequency oriented filters, shaping the spectra of sig-
nals, while median filters can be considered as geomet-
rically oriented filters, shaping the local form of signals.
For example, while the spectral content of impulses and
steps are similar, they are geometrically different; steps
are locally monotonic while impulses are not. In this
terminology, median filters “pass” signals that are lo-
cally monotonic (or constant) and filter or smooth those
that are not. We will make these notions precise in what
follows.

2. The Median Filter

A median filter functions by sliding a symmetrically
placed window across the data point by point and pro-
ducing the median of the data in the window at the cur-
rent time as output. This process is illustrated in Fig-
ure 1 for a window of size 2N +1. Here 2(n+ N) is the
input signal and y(n) is the output signal. The other
filters of this class all share this moving window form.
For the median we have:

y(n) = median of {z(n—N),...,z(n),...,z(n+N)} (1)
For finite length signals, the beginning and end of the

data are usually padded with the first and last value, re-
spectively, as necessary to fill the window, though other
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Figure 1: The median filter.

methods (e.g. padding with zeros) are possible. For con-
venience, we shall often refer to a median filter with win-
dow size 2N +1 as a filter of size N.

To illustrate the effect of the median filter on signals
in comparison with linear filters, Figure 2a shows an
ideal square wave sequence, with amplitude values zero
and five, corrupted by impulse (Cauchy) noise [12]. Fig-
ure 2b shows this signal after both median and fourth-
order Butterworth lowpass filtering. The filter size for
the median was set at N =20 points and the bandwidth
of the digital Butterworth low pass set at w = 0.157.
Note how the median removes the spikes and effectively
reconstructs the edgy signal. In contrast, the linear filter
responds to the spikes as if they are impulses and fails
to recover the underlying waveform.

Uses in Power Electronics

The class of nonlinear filters represented by the me-
dian filter promises to be valuable in the power electron-
ics setting for removing spike or other impulse-like noise
while preserving critical edges in waveforms. We discuss
two applications of these filters: first, as an off-line tool
for “cleaning up” experimental data, and second, as a
real-time element for online monitoring and control ap-
plications.

It is often of interest to see how well simulated wave-
forms match such features as the rise times and slopes
of measured data. In a simulation model, however, the
parasitic components, such as MOSFET body capaci-
tances, are not included for reasons of numerical effi-
ciency. Therefore, simulated waveforms will not display
such characteristic parasitic features as the ringing shown
on the voltage step in Figure 3. The median filter is use-
ful for removing such parasitic ringing from measured
waveforms, along with spikes and hash, while preserv-
ing significant underlying features so that the pertinent
characteristics of these waveforms may be compared with
theoretical values.

To illustrate the potential of the median filter in a
power electronics setting, consider the flyback converter
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Figure 3: Switch voltage.

pass stage shown in Figure 4. This converter was oper-
ated in discontinuous conduction mode with a switching
frequency of 5 kHz and is capable of delivering 25 watts
through the 5 volt output winding. All displayed wave-
forms were sampled at 10 MHz with a digital storage
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Figure 4: Flyback converter.

oscilloscope and processed off-line. For the experiments
presented here, the pass stage was run open-loop. No
effort was made to increase the robustness or general
utility of the circuit. Its purpose was to provide, for the
sake of illustration, examples of typical problems found
in power electronic circuits.

Figure 3 shows the switch voltage when the control-
lable switch turns off. The spike on the rising edge of the
switch voltage is caused by the MOSFET body capaci-
tance ringing with the parasitic inductance in the trans-
former. Figure 5a shows the data after applying a median
filter of size N =8. Figure 5b shows the corresponding re-
sults of filtering the data in Figure 3 with three different
fourth-order Butterworth filters whose cutoff frequencies
span a range of values with respect to the sampling fre-
quency. None of the analog filters is as capable of remov-
ing the parasitic ringing while preserving the step edge
as the median filter. Figure 6 shows the voltage across
the switch current sense resistor R1 when the controllable
switch is closed. Again, note the ringing at the start and
end of the ramp caused by the MOSFET body capaci-
tance. The spike at the start of the ramp is particularly
problematic in a control setting because it could cause
pretriggering of the PWM latch in a current-mode con-
troller. A median filtered version of the ramp (N =5) is
shown in Figure 7a. Shown in Figure 7b are the results of
using three different fourth-order Butterworth filters on
the data. The median filter is able to remove the spike
while preserving the slope of the ramp.

Real-time /Implementation Issues

Since the median filter requires only sorting, it is in-
herently immune to many of the pitfalls which must be
avoided in digital implementations of linear filters, such
as round-off error during floating-point mathematical op-
erations. In applications where a median filter would be
desirable, it would therefore also appear to have signif-
icant implementation advantages over linear filters. To
investigate these expectations, we implemented a real-
time median filter using a Texas Instruments TMS32020
digital signal processor.
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The implementation revealed several drawbacks to the
use of the current generation of commercial signal pro-
cessors for real-time median filtering. The TMS32020,
like most signal processors of its type, has an inherently
serial architecture. As a result, the sorting process re-
quired to find the median window value is relatively time-
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consuming especially for large window sizes. Even after
carefully optimizing our computation strategy and algo-
rithm, we found that the time required for this sorting
operation limited operation of the filter to sample rates
of 40 kHz at moderate window sizes (N =5).

Our experience with the TMS$32020 system has led us
to explore more efficient ways of implementing median
filters using both analog and digital hardware. Many
custom architectures for implementing the median filter
have appeared in the signal processing literature in re-
cent years {10,11,13-22]. Most architectures are digital
implementations which provide specialized hardware to
perform fast ranking of the data in the filter window.
These custom architectures, often operating in the video
frequency range, are ideal for implementing median type
filters, just as the fast floating-point multiply-accumulate
units found in current digital signal processors are ideal
for the implementation of linear filters. Discrete-time
analog architectures optimized for the median filter have
also been developed {23]. These developments suggest
that general high performance sorting hardware might
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also have a place in future signal processor chips, just
as fast floating-point multipication units have become
essential to the present generation of digital signal pro-
cessors. We will report the results of our experiments
with such specialized sorting hardware at a later date.

3. Median Filter Properties

There are a number of ways to understand the func-
tioning of the median filter and the broader class of non-
linear filters that are under consideration. These include
interpretations based on stochastic [8], deterministic, and
geometric concerns [9]. Historically, the median filter
arose out of robust statistical considerations [25, 24], a
route followed by other filters of the class (e.g. the M-
filters [26], L-filters [27], and R-filters [28]). Here, we will
focus on a geometric formalism to understand the prop-
erties of the median filter, as it is the most accessible
for design and implementation purposes. This formalism
will allow us to develop insights and intuitions similar to
those for linear filters, including extensions of the con-
cepts of bandwidth and invariant signals. Some of the
other filters of the class containing a sorting element will
be presented in Section 4.

Geometric Approach

From Figure 2 we can see qualitatively that the median
filter smooths signals. This smoothing effect increases
with the filter size N. However, median filters, being
nonlinear, do not obey the superposition principle of lin-
ear filters, making discussion of frequency properties of
limited value. Instead, we will think of the median fil-
ter in a shape oriented way [29]. Rather than viewing
signals as composed of sinusoids (signals whose shape is
unchanged by linear filtering), we shall present geomet-
ric structures whose shape is unchanged by the filters of
interest as our signal building blocks. Such signals and
structures that are invariant to a given filter (i.e. a fixed
filter size V) are defined to be roots in the literature
[9]. The example of steps and impulses being spectrally
similar but geometrically different is one such case. We
will show that steps are root structures of median filters
while impulses are not. Concentrating on roots and their
properties will thus focus our attention on fundamentally
geometric aspects of signal structure.

In order to make these notions precise we will need
some notation. We make the following definitions fol-
lowing [9]:

Constant Neighborhood: A section of at least N 41
consecutive points, all of which are identically val-
ued.

Edge: A monotonically rising or falling region between
two constant neighborhoods.



Impulse: A section of one to N points surrounded
by identically valued constant neighborhoods whose
boundary points are different from the constant

neighborhoods.

Oscillation: Any section that is not part of a constant
neighborhood, an edge, or an impulse.

Note that any signal may be decomposed into a series
of the structures defined above, which may thus be con-
sidered as a set of geometric building blocks for signals.
Also, our “ruler” for distinguishing different structures
is of length N, and hence a function of the size of the
filter under consideration. There is thus a direct relation
between the size of a given filter and what is considered
an edge, impulse, etc. We may now start our taxonomy
of median filter and root properties following [9, 30].

Property 1 (Impulse Elimination) Impulses are elim-
inated after a single pass of the median filter.

This property formally states the impulse filtering abil-
ity of the median filter noted earlier. We may simply
characterize all root signals and structures of the filter
as follows:

Property 2 (Root Characterization) A4 signal is
root of a median filter of size N if and only if the extended
(padded) signal consists only of constant neighborhoods
and edges.

The above root characterization allows us to develop a
notion of “geometric bandwidth” for the median filter,
akin to the familiar frequency bandwidth used for linear
filters.

Property 3 (Geometric Bandwidth) In a root sig-
nal containing both increasing and decreasing regions, the
sections of increase and decrease must be separated by a
constant neighborhood (a section of at least N+1 identi-
cally valued points).

Any root structure is therefore limited as to how quickly
its slope sign may change, since a region of positive slope
and negative slope must be separated by a constant re-
gion of at least N +1 points. There are no restrictions,
however, on how quickly the signal itself may change (i.e
the magnitude of the slope). This result explains why
the median filter is effective at eliminating spike noise
while preserving steps and monotone structures.

We can also relate the set of root structures at a given
window size to those at another window size. Specifically,
these root sets are nested as follows:

Property 4 (Root Nesting) If a signal is a root of a
median filter of size N, then it is also a root of a median
filter of size N —1.
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This property may be viewed as a generalization of the
linear concept of bandlimited signals. Here, the bandlim-
iting is in a geometrical sense, where the structures of a
signal in the “passband” of a median filter of size N will
pass unchanged through any filter of size X < N.

From a design standpoint Properties 3 and 4 serve asa
guide for choosing a filter size N. For greater smoothing
we wa: t to choose a larger filter size, since more non-
monotonic signal structures will appear as impulses and
oscillations to the filter and be removed and reduced, re-
spectively. On the other hand, to preserve signal struc-
ture of interest we cannot make N too large. Since the
smallest signal structure passed by the filter will be only
N+1 points long, we should choose N+1 no larger than the
smallest signal structure we wish to preserve. For exam-
ple, to eliminate the ringing in Figure 6 at the indicated
sampling rate, a filter of size N >5 is needed. Conversely,
to preserve the peak structure of the ramp we want N as
small as possible. These constraints represent the con-
flicting requirements of smoothing and resolution, as in
linear filter design.

An important property of the median filter pertaining
to root signals is that any finite-length signal, if repeat-
edly filtered (i.e. the output of one filtering used as the
input to the next), will become a root in a finite number
of passes.

Property 5 (Obtaining Roots) Any nonroot signal
(containing oscillations and impulses) of length L will
become a root structure after at most (L—2)/2 successive
filterings.

In general, substantially fewer passes are needed to pro-
duce a root and certain variants of the standard median
filter, such as the recursive median filter to be discussed
below, produce roots in a single pass. The importance
of this property is that structures, such as oscillations,
which are not root structures and yet are not eliminated
by a single median filter pass, can by removed by re-
peated filtering to a root (or by a filtering strategy that
yields a root in one pass, as does the recursive median
filter).

In summary, the ahove properties yield a shaped-
based, geometric approach to the understanding and de-
sign of median filters. These insights and intuitions are
parallels of the concepts used in linear filtering, such as
bandwidth and invariant signals. Using these methods
new filters can be designed with desired properties and
the effects of existing filters can be analyzed.

4. Other Filters

As indicated throughout this work, the median is only
one of a group of filters with similar noise suppression
properties related by their use of an ordering element.



One problem with the median filter, and a motivation
for examining other filters, is that the median filter often
provides insufficient smoothing of non-impulsive noise.
This problem is particularly acute in situations where the
noise is basically well hehaved (Gaussian) but contami-
nated by a “small” amount of impulsive noise. Some al-
ternative filters within the same class are described next.

L-fllters The L-filters are obtained by applying L-
estimates on a moving basis. An L-estimate of a param-
eter is obtained as any linear combination of the ordered
data, where the weight of each data point depends only
on its position in the ordered set. This ordered data set is
know as the order statistics of the data [27]. An example
L-estimate is the a-trimmed mean. A fraction a of the
largest and smallest data values are deleted (weighted
by zero) and the remaining values averaged (weighted
by the inverse of their number). To create an L-filter,
a moving window of data is obtained and sorted, as for
the median filter, but now a linear combination of the
sorted elements is produced as the output at each point.
This operation is shown schematically in Figure 8a. The
example a-trimmed mean L-estimate would yield the a-
trimmed mean filter. Note that when a=1/2 the median
filter is produced and when a =0 a simple moving aver-
age results. As another example, by choosing the second
or third largest (the near maximum) value in the window,
a peak detecting filter would be produced, but with less
sensitivity to impulses than a true peak detector [27].

FIR-Median Hybrids This filter structure is shown
in Figure 8b, and it can be seen to be something of the
dual of the L-filter structure. For an L-filter, the win-
dowed data are first sorted then FIR filtered, while for
these filters the data are first FIR filtered in groups, then
a median operation is performed. Advantages of these
filters include greater potential noise reduction on linear
portions of data and a larger class of root signals (includ-
ing triangle waves) than for the median [31].

Recursive Median A straightforward generalization
of the median filter that involves feedback is the recur-
sive median filter [9]. It is obtained by using the most
recent output as part of the filter input, as shown in Fig-
ure 8¢. This simple modification produces a filter that
yields a root signal after a single pass. The root ob-
tained this way, however, will not in general be the same
as one obtained after repeated ordinary median filtering.
In fact, for a given size N, the effect of the recursive
median will be greater than the corresponding ordinary
median. This means it may be possible to use a smaller
(thus faster) filter to achieve similar effects. Since the
median operation involves choosing one of the input val-
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ues for output, the output of this filter must be one of the
original data points. Thus even though there is feedback
from output to input, there is no stability issue, as with
linear filters.

Adaptive Median Another variant of the median fil-
ter involves the use of adaptation on its size N. With
the standard median filter we have the somewhat con-
flicting demands to make N large to increase smoothing
but small to preserve resolution. One approach to this
tradeoff has been to estimate the signal structure “on
the fly” and then vary N based on this estimate as the
filter window progresses. Where the signal appears rela-
tively static, IV is allowed to grow and where the signal
appears to be changing, N is reduced. This approach
attempts to optimize both smoothing and resolution in
a time-varying solution. A recursive form was also ex-
amined and found to improve on the standard recursive
median. Algorithms and hardware suggestions may be
found in [32, 33].

Morphological Filters The family of morphological
filters is so named because of their emphasis on affect-
ing the shape of signals. The primitive operations that
comprise the building blocks of these filters (erosion, di-
lation, opening, and closing) are obtained as a simple



running maximum or minimum of the signal added to a
translated kernel function. This translated “max/min of
sums” operation is reminiscent of the translated “sum of
products” operation of convolution, with the filter kernel
serving the role of the impulse response. More compli-
cated filters are obtained as compositions of these four
primitive operations. A theory encompassing both these
filters and linear filters and even the median has been
developed but is beyond the scope of this work. We refer
the interested reader to (29, 34, 35].

B. Conclusion

In this paper we have considered a class of nonlinear
filters with potential application in power electronics. A
main attribute of these filters, of which the most basic
is the median filter, is their ability to remove impulsive
noise while preserving edges. They are generally simple
to implement off-line and should be included as an addi-
tional set of analysis tools for the power systems designer.
Considerable work is currently underway to facilitate the
use of these filters in real-time applications. The ideas
presented in this paper should help the reader explore
the properties and uses of this family of filters.
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