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Pre-Estimation for Better Initial Guesses
Steven R. Shaw, Member, IEEE, Marc Keppler, and Steven B. Leeb, Senior Member, IEEE

Abstract—Fast, assured convergence of iterative identification
methods is important in many on-line applications, including
systems that exploit indirect measurements, diagnostics, and
model-based control. The transient response of a system can often
be mapped directly to an estimate of the system model parameters.
This initial estimate, or pre-estimate, can be evaluated in fixed
time and may greatly accelerate subsequent iterative system
identification procedures. A pre-estimation structure is developed
and demonstrated with examples including single-tone frequency
estimation and induction motor parameter identification.

Index Terms—Estimation, indirect measurement, modeling,
system identification.

I. INTRODUCTION

NEW MEASUREMENT and diagnostic techniques depend
increasingly on fast, reliable parameter identification

routines. Unfortunately, without an initial guess, most iterative
identification routines converge slowly, converge to local
minima, or fail. Convergence problems are tolerable when
a skilled operator can supply preliminary estimates for the
initial guess and restart a failed identification procedure. In
contrast, identification methods embedded in an instrument,
“soft-sensor” [1], or diagnostic device require good initial
guesses without operator intervention. We propose a method
of mapping transient response data for a target system to a
high-quality initial guess, or pre-estimate. The term pre-esti-
mate emphasizes that the result is a preliminary or initial guess
for a subsequent iterative minimization procedure.

Better initial guesses are not the only way to improve un-
supervised estimator performance. Custom estimators incorpo-
rating insights from the model are often effective. Examples
of specialized estimators for induction machine diagnostics are
given in [2]. More recently, [3] gives techniques specialized to
the multiple sinewave fitting problem. In [4], a special estimator
is consider for the sinewave fitting problem. The drawback of
custom schemes is that they require significant design effort.
Additional work is required for testing, as in [5]. Genetic algo-
rithms may also be used to search for good parameter values
[6]. Genetic algorithms appear to offer a tradeoff where less
knowledge of the system can be accommodated, but significant
computational effort may be needed to find a satisfactory so-
lution [6]. In contrast to the custom estimator approach, our
pre-estimation scheme works with any identification method
that needs a high-quality initial guess. On-line pre-estimation
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Fig. 1. Scaled FFT for sinewave frequency initial guess.

computations are minimal and occur in fixed time, unlike ge-
netic methods. Pre-estimator performance is often good enough
that subsequent methods approach quadratic convergence.

Experienced users usually pick an initial guess for interactive
system identification based on rough estimates from the data.
For example, consider identifying the frequency of sinewave
from time-domain data as shown in Fig. 1. The pure sinewave
is a simple example, but characteristic of more difficult prob-
lems that can be found in [3], [7]. A user would likely examine
the data to find a good initial guess before starting an iterative
system identification procedure. Zero crossings can provide a
quick estimate of the frequency. Alternatively, the fast Fourier
transform (FFT) shown in Fig. 1 might be used. Fig. 1 is scaled
so that the amplitudes and frequencies correspond to the con-
tinuous-time Fourier transform of the signal; however, the spec-
trum is spread over a range of frequencies due to end effects
(see [8] for better methods of estimating continuous-time spec-
tral content using the FFT). Still, the FFT has a peak close to the
system frequency, and could provide an excellent initial guess
for a subsequent minimization procedure. Both the zero crossing
and the FFT approach transform operator knowledge about the
structure of the response (a sinusoid) directly to initial guess
information.

Other strategies of computing system parameters directly
from system responses have been proposed. Like the FFT
applied to the sinewave problem, these could be used to
form pre-estimates from observed data. One such approach
is suggested in [9] for a nonlinear induction machine system
identification problem. In [9], easy-to-identify, reduced-order
low-time and high-time models are extracted from the full
nonlinear induction machine model and used to obtain
pre-estimates of the system parameters. This is analogous to
the approach that might be used by a human operator familiar
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with induction machine dynamics. Finding initial parameters
without iteration is suggested by Caudill in [10] in terms of
“directly inverting” a physical system. Caudill proposes finding
the parameter vector estimate from the inputs and outputs

using a function

(1)

The existence of this function over some range of useful
input and output signals is equivalent to the identifiability of
the system given those inputs and outputs. Pre-estimates are
intended to accelerate and assure convergence for well-formu-
lated problems, so we assume the existence of and seek an
approximation to use for initial guesses. In [10], was found
explicitly for a particular system.

The quality required of a pre-estimate depends on the mini-
mization procedure selected for the identification problem. For
nonlinear least squares, methods that use second-order informa-
tion about the Hessian may perform better than general-purpose
Gauss–Newton (GN) or Levenburg–Marquardt (LM) methods
in the large-residual, poor initial guess scenario [11]. However,
like GN or LM, any optimization method that uses gradient or
other localized information about the loss function can get stuck
in local minima. Local minima are usually associated with un-
desired or unanticipated parameter estimates that can be espe-
cially troubling in unsupervised applications, for example, in
embedded instrumentation. Pre-estimate quality should be as-
sessed relative to a particular method, for example, by com-
parison of the number of iterations required with and without
a pre-estimate.

Notation can be confusing because of the temptation to use
the same variable to refer to the parameter, its appearance in a
model, a final estimate of the parameter, or a pre-estimate. We
typically use to refer to a vector of parameters, with compo-
nents . Without any modifying marks, is used
as the argument to models, loss functions and, in the appropriate
context, refers to the true values of the system parameters. The
notation is a pre-estimate of the true parameters . Similarly,
the notation refers to a final estimate of resulting from the
minimization of an appropriate error criterion.

II. APPROACH

For many models, an analytical approach to finding a “model
inverse” is impractical. However, as emphasized by Fig. 2,
a simulation model of the system establishes a relationship be-
tween the input , output , and parameters . Given a
range of inputs and a range of parameter vectors , the simula-
tion model can be used to explore the relationship between ,

, and for purposes of building an approximation to . A
good approximation of can be used to obtain a pre-estimate

of the parameter vector given and .
A difficulty with this approach is that the approximation of

must map a large space, samples of and , to a rel-
atively small space containing . To be useful in applications,

must also achieve this mapping under conditions of additive
noise. The first requirement suggests that the model for will
have many degrees of freedom. The second requirement sug-
gests that the validation of a model for will be difficult, i.e.,

Fig. 2. Input–output relationships of the inverse model in comparison to the
simulation model.

Fig. 3. Decomposition of inverse model into two steps. The first step G is
a structured model that produces intermediate parameters 
 with good noise
properties. A good choice for G can reduce the degrees of freedom required in
the black-box model H mapping 
 to the desired parameters.

it is necessary to check that the expected behavior is preserved
with noise. One possibility is to make two parts, as suggested
in Fig. 3. In Fig. 3, turns input/output information into inter-
mediate values , which are subsequently mapped by to the
desired pre-estimate . The principle advantage of the two-step
approach in Fig. 3 is that the requirements of noise immunity
and data reduction can be separated from the arbitrary func-
tion approximation needed to obtain a pre-estimate from .

The steps and proposed in Fig. 3 can be related to the
FFT pre-estimation approach proposed for Fig. 1. The pre-pro-
cessing and data reduction steps of are the FFT calculation
and truncation of the spectrum to the anticipated range of fre-
quencies. The frequency response in Fig. 1 is therefore a plot of

in Fig. 3. Finding a pre-estimate from in the tone-estimation
case involves picking the frequency with the largest coefficient.
This is in Fig. 3.

The intermediate parameters obtained from in Fig. 3
should ideally reduce the observational data and be asymptot-
ically unbiased with respect to the disturbances in the mea-
surements. To satisfy these requirements, could consist of
system identification models with familiar properties, e.g., auto-
regressive or Box–Jenkins models of appropriate order [8], or,
perhaps, a simple projection of the observations on a suitable
collection of vectors. The performance of can be assessed in-
dependent of the final mapping to parameters. For example, the
degree to which is independent of the disturbance and captures
key features of the observed data can be determined by applying

and reconstructing the observations from . Perhaps most im-
portant, the engineer can add physically relevant structure to

without directly applying a physical model. This is some-
times called “semi-physical modeling” [12]. The second stage
in Fig. 3, , maps intermediate parameters to a pre-estimate

. Unless the problem is trivial, such as the frequency pre-esti-
mate for Fig. 1, will generally involve a black-box function
approximation structure. The number of degrees of freedom in

can be limited if achieves an appropriate reduction of the
input data. As an example, the input to might be two thou-
sand samples of the response of a system with four parameters.
If reduces these samples to ten coefficients in , then need
only map from a ten-dimensional space to the four dimensional
space of . For any given model structure for , the ten-to-four
mapping would involve fewer degrees of freedom than the two
thousand to four mapping needed without data reduction in .
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Fig. 4. State space trajectory x (t), x (t) of a Duffing oscillator compared to the lags of just one state variable. The state space and lag space are related by a
smooth deformation, as illustrated by the grid lines.

Fewer degrees of freedom means that can be found and tested
with a realistic number of , pairs obtained by simulation.

While the two-step approach creates favorable conditions
for approximating , it does not suggest any particular model
structure. If the observed data can be reconstructed from and

, and the system can be identified from the observed data, then
in principle an exists. This argument does not lead to a form
for . One approach is to try a generic function approximation
model and validate its performance. Common choices that gen-
eralize cleanly to the multidimensional function approximation
required of include, for example, the two-layer perceptron
network [13]–[16] and radial basis functions [12], [17]. Other
structures, e.g., splines, might also be used. Global polyno-
mials, historically a popular approximation tool, are probably
a poor choice because their local approximation ability is
obtained at the expense of rapidly diverging higher-order terms.
These higher-order terms often lead to excessive interpolation
errors with arbitrary data. See [17] or the preface to [18] for
more details.

The following paragraphs offer possibilities for and that
work well for problems we have explored. Design choices and
perhaps even new structures will be needed for new problems
because and are problem-specific.

A. Autoregressive Models for

The idea of state-space reconstruction suggests a possibility
for in Fig. 3. State-space reconstruction (the “embedding the-
orem”) holds that the state of a system (at least, the state that
matters to the output) can be reconstructed from the lags of the
inputs and outputs, up to a smooth local distortion [17]. The em-
bedding theorem is especially interesting in its connection to the
identifiability of a system. If a system is identifiable given data
and a parameterization, by definition the parameters (and initial
state if so parameterized) can be found from the input/output
data. Given the initial state and parameters, the states can be
reconstructed by simulation. In effect, the difference between
plotting the lags of the response and identifying the parameters
is finding the distortion that maps the lags to the states.

To illustrate the embedding theorem graphically, consider the
Duffing oscillator [19]

(2)

Fig. 4(a) shows a state-space trajectory , for this
system, with ranging from 0 to 100 and . Fig. 4(b)
shows the lagged pair , . Fig. 4(b) is related
by a mild distortion, or embedding, to the original states shown
in Fig. 4(a). The rectangular grid in Fig. 4(a) makes the distor-
tion of Fig. 4(b) clear.

State-space information from lagged data could greatly sim-
plify parameter estimation problems. This is especially true in
situations with a small number of sensors, where the observa-
tions are unlikely to include the entire state of the target system.
Unfortunately, lagged data are not directly useful for finding
state-space model parameters due to the unknown distortion be-
tween the lagged data and the state-space. However, lagged data
can be combined with insight from the state-space model to de-
sign . The relationship between the intermediate parameters
produced by and the desired system parameters can be em-
bedded in . Therefore, structures for that include lagged
data seem particularly promising.

The autoregressive (AR) model is a familiar structure incor-
porating lagged data linearly. The AR model has the form

(3)

for some sampled signal and coefficients . Given a
record of , this constraint can be immediately written as a
linear system with rows

...
(4)

which could be solved to find the coefficients . However, if is
a measurement, it will generally have some noise that will tend
to bias estimates of the . Various methods exist for reducing
the effect of this bias when estimating the AR parameters [8].
Although the AR model is linear, it may fit the responses of
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certain nonlinear systems. An autoregressive is used in the
first example.

B. Radial Basis Functions for and

Radial basis functions are approximations using a superposi-
tion of functions depending on the distance between the ar-
gument and a set of control points called centers. Radial basis
functions may be appropriate for either or in Fig. 3. For a
function , , a scalar RBF approximation is

(5)

for a set of -dimensional centers [17]. Assuming that
the same centers are appropriate for all components of a vector

, or that the collection of centers is augmented until suffi-
cient, a multidimensional RBF approximation is

...
(6)

where is a matrix of coefficients and is a column vector.
Given the centers and a function , a coefficient matrix
can be determined by solving

...
. . .

...
...

(7)

where

(8)

for argument/output pairs , . This method breaks
down for that introduce coefficients nonlinearly, e.g.,

with parameter . However, for typical
like , , and [15], [17], determining the coefficients is a
linear problem as suggested by (7). There are several strategies
for picking the centers of a radial basis function [15], [17].
These include picking the centers by hand and relying on user
intuition, parameterizing the centers to minimize some loss
function over the training set (a nonlinear problem), picking
arbitrary centers from the training data, picking uniform or
random centers on or off the support of the data, or picking
centers that are “representative” by clustering the training data.

Fig. 5 demonstrates several aspects of radial basis function
approximation. In Fig. 5, the radial basis function approximates
the scalar-valued time series corresponding to an induc-
tion motor startup transient. The argument of the approximation
is , and the centers are indicated by the points. In this case,
with , (7) becomes

...
. . .

...
...

(9)

Fig. 5. Radial basis function approximation of induction motor transient
response with linear and cubic �(r). Centers for the radial basis function are
indicated.

where is a row vector. In Fig. 5, the approximation with
is a piecewise linear fit with the “joints” determined

by the positions of the centers. With and the same
centers, the approximation is smoother. A final aspect of Fig. 5
is that the centers are selected for the qualitative goals of
“good fit” in the detailed low-time portion of the transient,
a “smoothed-over fit” in the middle section, and a close fit
for the final part of the transient. In the case of the induction
machine, these goals reflect that simplified high-time and
low-time models of the transient can be used to deduce the full
model parameters [9]. Important parts of the transient in Fig. 5
are accurately represented with a few coefficients. This makes
the radial basis function attractive for in Fig. 3. In general,
the ease with which a user can control the radial basis function
approximation by adjusting the centers is a useful property for

. Also, the simple procedure for finding the coefficients and
straightforward generalization to higher dimensions make the
radial basis function an attractive candidate for in Fig. 3.

III. SIMULATION RESULTS

A. Single-Tone Frequency Estimation

As an example, consider estimation of given the model

(10)

This signal is easily recognized as the response of a linear
second-order differential operator, i.e.

(11)

Therefore, a convenient and appropriate choice for is a
second-order discrete-time AR model

(12)

where is the sampled response and is the
sampling interval. Generally, the relationship between and
would be discovered by fitting . However, in this case, the
relationship between and can be found explicitly. If
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Fig. 6. Intermediate parameters 
 , 
 from AR model as a function of � .

satisfies (11), then the samples also satisfy the
discrete-time system

(13)

where is the delay operator. By comparison of (13) with
(12), the AR model coefficients are

(14)

If (14) were used to find from , the appropriate branch of
the function would have to be selected in order to obtain

in the expected range. An approximation to the inverse
of (14) constructed using the desired values of specifies the
branch implicitly.

Applying the second-order AR model to a collection of 600
signals with , , each signal consisting
of 500 samples, SNR of 10:1, and , produces
the graph shown in Fig. 6. The theoretical value
for is plotted in addition to the values obtained using the
Matlab routine ar for and . Note that, for smaller values
of , the estimates for are biased due to the presence of the
normally distributed white noise. However, even with the bias,
Fig. 6 suggests strongly that a curve-fitting technique might be
used to extract pre-estimates of from .

Four centers spaced evenly over the range of the s were used
in a RBF with to map the intermediate parameters
in Fig. 6 to the pre-estimate for . The RBF coefficients were
obtained from the 600 signals used in Fig. 6. The performance
of the AR/RBF pre-estimator is shown in Fig. 7. Fig. 7 shows
the pre-estimate as a function of the actual value for a set
of 600 signals selected in a similar fashion but distinct from the
signals used to obtain the RBF parameters. Fig. 7 also shows
two lines indicating the range of values for which the output
error least-squares loss function

(15)

is very nearly quadratic. The notation is the simulated
output of the system given the parameter , indicates the

Fig. 7. Performance of AR/RBF pre-estimator for single-tone frequency
estimation. Points show pre-estimate as a function of the true parameter. The
lines above and below the points show the range of initial guesses for which a
gradient method would quickly obtain the global minimum of the output-error,
least-squares loss function.

Fig. 8. Number of evaluations of the single-tone objective function for the
Matlab routine leastsq. The line shows function evaluations needed with a
pre-estimate, the points show evaluations required for a fixed initial guess.

observed values. As an approximation, the bounds in Fig. 7 as-
sume correct values for and because these parameters can
be determined linearly given . Fig. 7 suggests that typical non-
linear least squares routines would converge very quickly to the
correct minimum for any one of the pre-estimates.

The most meaningful measure of pre-estimator performance
is the degree to which the pre-estimates accelerate or ensure
the convergence of an identification problem. Fig. 8 shows the
number of evaluations of the objective function for parameter
identification with and without a pre-estimate using the Matlab
routine leastsq. The performance using pre-estimates is
indicated by the solid line in Fig. 8 at about 50 function
evaluations. An initial guess for leastsq consisting of the
pre-estimate was used for the solid line, with , deter-
mined by solution of the linear least-squares problem given

. The performance of leastsq without a pre-estimate is
indicated in Fig. 8 by discrete data points. For these points,
leastsq was started with the initial guess
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corresponding to the average value of all the test parameter
vectors. The parameters refer to the model in (10). With a
pre-estimate (solid line in Fig. 8), about 50 function evaluations
are required, the uncertainty in computation time is small,
and the desired solution is obtained in all cases. Without a
pre-estimate (points in Fig. 8), less than one hundred of the six
hundred test problems converged within three hundred function
evaluations. Three hundred is the default function evaluation
limit imposed by leastsq for a three-parameter problem. In
addition, Fig. 8 shows considerable variability in the number of
function evaluations needed for the problems that did converge
without a pre-estimate.

The results obtained without a pre-estimate in Fig. 8 can be
understood in terms of the model and its loss function. Fig. 9
shows the least-squares loss function defined by (15) and
the model in (10), assuming correct values for and and a
target solution of . Only the narrow range of initial
guesses for which the slope of the loss function leads to the
minimum can be expected to converge to the desired answer
using a typical identification method. In Fig. 9, an initial guess
within about 5% of the correct value is required. Similarly, in
Fig. 9, the fixed initial guess with only converges to
nearby problems.

B. Induction Machine Parameter Estimation

The dynamics of a three-phase induction machine can be
modeled according to the synchronously rotating coordinate
frame or -space equations

(16)

where is the frequency of excitation at the stator, is the
rotor speed, and the s are the flux linkages with rotor quantities
and parameters as reflected to the stator [9], [20]. The voltages

and are the excitation at the stator, and and are
resistances associated with the rotor and stator, respectively. The
flux linkages and currents are related according to

where is a leakage inductance and is a magnetizing in-
ductance. The mechanical part of the system determines how the
speed and torque are related. For illustration assume a friction
and mass mechanical model, i.e.

(17)

where is proportional to the torque of
electrical origin and is a parameter inversely proportional to
the inertia connected to the motor shaft. The system parameter
vector

(18)

Fig. 9. Output error, least-squares loss function for convergence to � = 20.
The bounds in Fig. 7 correspond to the range between the peaks. Local minima
show the need for a good initial guess even with this relatively simple problem.

includes the damping , inertia parameter , and four electrical
parameters , , , and . This model can be used to deter-
mine electrical parameters or for indirect identification of me-
chanical parameters using electrical measurements, as in [21].

A pre-estimation system was constructed using operations
and as suggested in Fig. 3, both based on RBF approxima-
tions. A time-series RBF approximation with was
used for , using the same centers as in Fig. 5 but applied to both

and . The coefficients of this RBF approximation were
output from . For , another RBF was used, with two centers
for each coefficient output from . These centers were selected
to cover the range of generated when was applied to 1500
induction motor simulations with randomly selected parameter
vectors. The coefficients for were obtained from 4000 ran-
domly selected training parameter vectors and validated using
another set of 1500 parameter vectors. The results are shown in
Fig. 10, where pre-estimates for each parameter are plotted as a
function of the true values.

For a single-parameter problem, it is convenient to show
pre-estimate performance using upper and lower bounds
corresponding to quadratic convergence as in Fig. 7. For a
multidimensional problem, as in Fig. 10, the range of fast-con-
verging values for a single parameter depends on the values of
the other parameters. As a substitute, we find upper and lower
scale factors and where any initial guess between

and converges quadratically to for 90% of
the parameter vectors in the validation set. These bounds give
a rough indication of the sensitivity of the multidimensional
estimation problem to the initial guess. The plots in Fig. 10
show bounds given by and as well as pre-estimate
results as a function of the true parameter values.

The pre-estimates in Fig. 10 were also tested using the LM
method [11], [22], [23]. LM converged in 61% of the 1500
validation test cases given a constant initial guess centered
in the range of each parameter. With a constant initial guess,
the Jacobian was evaluated 6884 times, requiring in excess of
41 000 induction motor transient simulations. Using pre-es-
timates as initial guesses, more than 99.9% of the 1500 test
problems converged and the Jacobian was evaluated 4209
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Fig. 10. Performance of RBF/RBF pre-estimator for induction machine models. Data points show performance with cross-validation data. The dashed lines
indicate parameter ranges corresponding to fast convergence for subsequent minimization procedures.

times, requiring just over 25 000 transient simulations. This
difference represents a significant performance improvement
in many applications.

IV. DISCUSSION

This paper explores a framework for computing high-quality
initial guesses, or pre-estimates, from system responses. The

pre-estimates demonstrated in this paper can be computed in
fixed time and greatly accelerate subsequent iterative minimiza-
tion. Pre-estimation is valuable in unattended or embedded ap-
plications because it expands the range of parameter values for
which a conventional method will converge. In some cases, pre-
estimation predictably reduces the number of iterations, as seen
in Fig. 8.
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Pre-estimation requires a certain degree of system knowl-
edge. Like any conventional method, a system model is needed
to build a relationship between the parameter space and the re-
sponse. Rough ranges for the parameters must be provided. Ex-
cessively small parameter ranges will result in extrapolation er-
rors, and excessively large parameter ranges will result in need-
lessly complex approximations. Finally, pre-estimation requires
a user design process. The design challenge is to find appro-
priate fitting functions for that reduce the data and have good
noise performance. Pre-estimation fits in a spectrum of methods
including genetic approaches and custom estimation routines
that require varying degrees of system knowledge and design
effort. Pre-estimation seems to offer a good tradeoff between
performance and the need for prior information.

The two-step pre-estimation procedure suggested in this
paper has fewer degrees of freedom than a one-step black-box
map from system response to parameters. Still, there may be
choices for and where interpolation errors cause spurious
outputs. Similarly, extrapolation errors may result from system
responses that fall outside of the design range. Errors of this
kind are always a concern with black-box methods. However,
errors in the pre-estimate are no worse than a bad initial
guess. Pre-estimation may help ensure fast and predictable
convergence in embedded applications where a good initial
guess is not otherwise available.
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