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Estimation of Variable-Speed-Drive Power
Consumption From Harmonic Content

Kwangduk Douglas Lee, Steven B. Leeb, Senior Member, Leslie K. Norford, Peter R. Armstrong, Jack Holloway,
Student Member, and Steven R. Shaw, Senior Member

Abstract—Nonintrusive load monitoring can be used to identify
the operating schedule of individual loads strictly from measure-
ments of an aggregate power signal. Unfortunately, certain classes
of loads present a continuously varying power demand. The power
demand of these loads can be difficult to separate from an aggre-
gate measurement. Variable-speed drives (VSDs) are industrially
important variable-demand loads that are difficult to track non-
intrusively. This paper proposes a VSD power estimation method
based on observed correlations between fundamental and higher
harmonic spectral content in current. The technique can be gener-
alized to any load with signature correlations in harmonic content,
including many power electronic and electromechanical loads. The
approach presented here expands the applicability and field relia-
bility of nonintrusive load monitoring.

Index Terms—Correlation, nonintrusive load monitoring, power
estimation, variable speed drive.

I. INTRODUCTION

ANONINTRUSIVE load monitor (NILM) can be used to
estimate the operating schedule, power consumption, and

impact on power quality associated with individual loads given
only an aggregate measurement gathered from a central loca-
tion [1]–[4]. The NILM samples raw voltage and current wave-
forms and computes harmonic content or spectral envelopes [5].
For loads that present a constant steady-state power demand, the
NILM can easily compute energy consumption for individual
loads by identifying their ON/OFF events and tracking their op-
erating duration. The NILM is inexpensive to install, eases the
problems of data collection and collation, and improves relia-
bility by minimizing the number of sensors [6]. When a sensor
system already exists, a NILM can add valuable redundancy at
minimum cost [1].

Many strategies for nonintrusive monitoring have been de-
veloped over the last 20 years [2]–[7], [11]. Loads that draw
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varying power during operation tend to confound these meth-
ods. Variable-speed drives (VSDs) are one class of variable loads
increasingly widely found in industrial and commercial facili-
ties. The net energy consumption of a VSD cannot be computed
by assuming a constant power consumption over a time interval
bounded by turn-on and turn-off transients. The time-varying
nature of VSD power demand also interferes with the load state
estimator in a NILM, making it difficult even to keep track of the
ON/OFF status of other nonvariable (constant) loads [11], [12].

The current supplied to a VSD typically exhibits distinct cor-
relations between its fundamental and higher harmonic compo-
nents. Other power electronic or nonlinear electromechanical
loads with variable demands may also exhibit such harmonic
signatures. This paper presents a technique of using unique har-
monic signatures to monitor VSDs. This technique could be
extended to any variable load with distinctive harmonic corre-
lations.

The goal of this paper is to develop a VSD power estimation
method based on correlations between fundamental and higher
harmonic content. The power consumed by a VSD is estimated
from observations of its higher harmonic current. The estimated
VSD power can be subtracted from the aggregate power signal.
When the colored noise associated with a VSD is also filtered,
the remaining signal can be analyzed by a load-state estimator,
to track the operations of two state or ON/OFF loads. Section II
of this article reviews typical VSD construction and develops
a correlation model. Section III introduces a method for esti-
mating VSD power consumption. This method employs mean
estimation, correlation mapping, and white filtering. The VSD
power estimator is tested in Section IV with the power signal
collected from a commercial building electric system. Section
V summarizes the approach.

II. VSD POWER SIGNAL MODEL

Variable-speed drives are widely employed for energy ef-
ficiency or where a limited selection of speeds cannot meet
demands. Machine tools, fans, pumps, and chillers are typical
applications of VSDs. A VSD typically consists of a rectifier,
a dc bus, and an inverter [13]. Fig. 1 shows the topology of a
VSD, along with a typical circuit model. The rectifier converts
three-phase ac currents to dc. The dc bus voltage is inverted to
ac waveforms. The output frequency is adjusted by controlling
the inverter timing.

The rectifier typically consists of a three-phase bridge with six
diodes, delta connected to the utility [14] as shown in Fig. 1. The
dc link voltage is filtered by a capacitor or LC filter before being
fed to the inverter. Inductors can be placed between the supply

0885-8969/$20.00 © 2005 IEEE
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Fig. 1. Topology and typical circuit model of variable-speed drive.

Fig. 2. Voltage and current waveforms of a VSD.

lines and the diodes to suppress the propagation of harmonics
back to transmission lines. A phase current typically shows four
peaks—two in a positive swing and two in a negative swing—in
a single line cycle [3], [15].

Fig. 2 shows a representative VSD current waveform (phase A
current, ia), collected from a test building in San Francisco, CA.
The figure clearly shows four peaks per cycle. For reference, the
phase A line-to-neutral voltage is also shown. When the current
waveform is multiplied by the peak voltage magnitude, V , it
can be approximated by a (time-varying) Fourier series with
following coefficients [2]:

Pk(t) =
1
T

∫ t

t−T

ia(s)V cos
(

k
2π

T
(s)

)
ds (1)

and

Qk(t) =
1
T

∫ t

t−T

ia(s)V sin
(

k
2π

T
(s)

)
ds (2)

where the harmonic index k is a nonnegative integer and T is
the period of the utility line cycle. For k = 1, the coefficients P1

Fig. 3. Harmonic powers of a VSD (Fig. 2).

and Q1 correspond to the conventional definitions of real and
reactive phase power, respectively. For higher values of k, these
harmonic powers or envelopes do not have widely recognized
definitions and correspond simply to the harmonic content of the
current waveform. Fig. 3 shows the harmonic powers computed
from the waveforms in Fig. 2. The details of how to compute the
harmonic powers from voltage and current waveform samples
are discussed in [12]. A typical VSD draws significant quantities
of P1 (or P , real power), P7, Q1 (or Q, reactive power), Q5,
and Q7.

Constant linear loads draw only P and Q, and do not gener-
ate higher harmonics. When a site contains only constant linear
loads in addition to a VSD, selected higher harmonics can be
used to keep track of the VSD fundamental powers. The method
is applicable even when other nonlinear loads (e.g., single-phase
rectifier) are present, if they do not generate harmonics moni-
tored for the VSD tracking purpose. If other loads are present
that also generate overlapping harmonics, it might still be possi-
ble to estimate the individual contributions from each load (type)
by decomposing the observed power vector (with harmonic di-
mension), using orthogonal basis vectors associated with each
load (type) [16].

Fig. 4 shows the time graphs of VSD harmonic powers, col-
lected from the test building. The building has two VSDs that
drive a supply fan (100 hp) and a return fan (75 hp) for air cir-
culation. These fans are turned on and off at the same time and
connected via an air duct system. They can be treated as a single
unit for load tracking, because they operate in tandem and serve
the same physical system. The VSDs turn on just before hour
7.8 in the plot.

Fig. 4 suggests strong correlations between the fundamental
and higher harmonic powers. As P and Q rise, the magnitudes of
fifth and seventh harmonic also rise. The third harmonic powers
are essentially zero, though their noise variances increase with
the magnitudes of the fundamental powers.

The steady-state power signal of a constant load can
be modeled as a Gaussian random process [11], [12].
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Fig. 4. Harmonic powers consumed by a pair of VSDs.

Likewise, a VSD load vector si[n] can be modeled as
Gaussian, i.e., si[n] ∼ N (µi[n],Λi[n]). The load vector
si[n] = [P [n] Q[n] P3[n] Q3[n] P5[n] . . .]T is the harmonic
power vector at discrete time n consumed by load i. A con-
stant load has a constant mean vector and a constant covariance
matrix, whereas the mean and covariance of a VSD vary. We
can introduce a simple model to account for their time-varying
nature that is helpful for load tracking.

In estimating the mean vector, we assume that there exist
certain relations among its components, i.e.,

µi,j [n] = f
(
µi,1[n], . . . ,µi,j−1[n],µi,j+1[n], . . .

)
(3)

where µi,1[n] is the first component (real power) and µi,j [n] is
the jth component of the mean vector at time n. For a VSD,
this function may be derived analytically, given the precise VSD
circuit schematic, control scheme, and mechanical loading con-
ditions. In practice, it is observed that a higher harmonic mean
can be faithfully described by either the real or reactive mean

µi,j [n] ≈ f(µi,1[n]) ≈ g(µi,2[n]) j ≥ 5. (4)

If the above functional relationships are one-to-one, the real and
reactive means can be estimated from the measurement of a
selected µi,j [n], using inverse functions.

The covariance matrix is assumed to be proportional to the
square of mean real power

Λi[n] ≈
(

µi,1[n]
µi,1[nr]

)2

Λi[nr] (5)

where µi,1[nr] and Λi[nr] are reference mean real power and
covariance matrix taken at time nr, respectively. In this way, the
VSD load vector si[n] is statistically characterized, at least for
the components with k = 1, when its fundamental means are
estimated from the correlations of higher harmonic means.

Slight time shifts in samples of the voltage waveform can
lead to a bias in the relative distribution of Pk and Qk and the
amount of bias increases with k [12]. To solve this problem,
we can either construct a highly accurate harmonic envelope
preprocessor or select an unbiased measure. One such measure

Fig. 5. Correlation graphs between real power and selected apparent powers.

is the kth apparent power or envelope Ak

Ak =
√

P 2
k + Q2

k. (6)

The kth apparent power is simply the magnitude of the kth com-
plex power, whose real part is the kth real power and imaginary
part is the kth reactive power. The first apparent power A1 has
units of (VA). Because Ak is the magnitude of the discrete
Fourier transform of the current waveform (with scale factor
V ), it is free from the bias created by time-shifted voltage sam-
ples [12].

Fig. 5 shows the correlation graphs between the real power
and the fifth and seventh apparent powers. The data were col-
lected at the test building. The graphs clearly show positive
relationships between the real power and the fifth and seventh
apparent powers. The relationships are not linear and the slopes
decrease with increasing P . The correlation graph between Q
and A5 or A7 showed a similar relationship. Also, the correlation
graphs of VSDs collected from other sites showed comparable
trends.

The correlation parameters exhibit small temporal variations,
for a variety of reasons such as utility voltage waveform distor-
tion and different electrical and mechanical loading conditions
for VSDs. Empirically, the variations were typically 5% to 10%.
This time-dependence can be observed in Fig. 5. The first two-
thirds of the graphs were obtained by ramping up the VSDs
for a short period of time. The rest, i.e., where P ≥ 60 kW,
were obtained by running the VSDs at their nominal operating
points for a day. Slight loading condition changes on that day
introduced scattering and minute shifts in the graphs. Ideally, it
is desired to have a set of correlations and to choose the most
likely correlation based on observations. However, in this paper,
we use a single representative correlation to prove the concept.

Any reasonable curve fit of the correlation data can be used
to map an apparent harmonic power to P (or Q) and vice versa.
A piecewise power function model was convenient given our
field data. For simplicity, we denote the kth apparent, real and
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Fig. 6. Parameter estimation for one of the regions shown in Fig. 5.

reactive mean power as Ak, Pk, and Qk, respectively. Consider
a correlation between P and Ak for a given region. Then, Ak

can be represented as a power function of P

Ak = f(P ) = aP b. (7)

Taking the logarithm produces a linear function

lnAk = ln a + b ln P. (8)

The parameters ln a and b can be estimated with the con-
ventional method of least-squares (LS) for a given finite length
observation. Fig. 6 shows the parameter estimation result for a
region in Fig. 5. Resulting parameterized correlations are shown
in solid lines along with the estimated parameters. The lower
graph is in a logarithmic scale and the data points are almost per-
fectly linear. The procedure can be repeated for different regions
to obtain a piecewise continuous correlation curve between Ak

and P over the whole range. The correlation is one-to-one and
thus invertible. The correlation between Ak and Q is also ob-
tained in this manner.

III. VSD POWER ESTIMATION METHOD

This section develops a systematic methodology to estimate
VSD power and to condition the fundamental aggregate powers
for further load-status analysis. The overall signal processing
schematic is shown in Fig. 7. The mean of a selected higher
harmonic apparent power is first estimated. Given this mean,
the correlation look-up table produces estimates of the VSD
mean fundamental powers. These estimates are subtracted from
the observations of P and Q. The remaining signals go through
whitening filters, to remove colored noise generated by VSDs.
However, any white noise added by a VSD is retained. Once the
VSD power consumption and colored noise are removed, the
load status analyzer can identify the operating status of other
constant loads by detecting and classifying load (ON/OFF) events.
Removing colored noise is essential for the load status analyzer
that relies on the white Gaussian load model [12].

Fig. 7. Schematic of VSD power estimation and signal conditioning.

Fig. 8. Time graphs of P and A5.

More than one apparent power could be used to estimate
the fundamental powers consumed by a VSD. For example,
we could use both A5 and A7 to estimate fundamental powers
separately and take averages to obtain final estimation results.
Here, we use only A5 to demonstrate the approach.

The scheme is performed for a window of data to estimate the
mean of Ak. The window size and the mean estimation method
for Ak are determined by the nature of the signal. Fig. 8 shows
the time graphs of P and A5, collected at 120 Hz from the test
building on 12/04/02. The graphs show the undulating nature of
P , which is reflected in A5. This slow oscillation is related to the
nature of the air-handling system and how it is controlled [12].

Estimating the mean of A5 as a sinusoidal function is diffi-
cult due to its time-varying nature. An alternative is to select a
small size window and assume that the mean is described by a
polynomial function of time indices. In this paper, we select the
polynomial of order one (line). A first-order polynomial mean
estimator is described in the Appendix.

Fig. 9 shows a detailed view of P and A5 with window size
N = 256, taken at t = 58.3 from Fig. 8. The bottom picture
also shows the result of the first-order mean estimation as the
dashed line. The appropriate A5 mean estimation method and
window size have been determined based on the observations.



570 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 20, NO. 3, SEPTEMBER 2005

Fig. 9. Detailed view of P and A5.

Fig. 10. Periodograms of signals in Fig. 9.

The peaks of P and A5 are in phase and exhibit the same period
(∼3 Hz).

Fig. 10 shows the periodograms of the Fig. 9 signals. The
frequency is normalized so that the unit normalized frequency
is equal to the sampling frequency (120 Hz). Both periodograms
show large spectral peaks at low frequencies, at the same loca-
tions. The peak heights of P and A5 differ by a constant amount
in a logarithmic scale. We may conclude that P and A5 have
almost identical noise spectral distributions, but differ in magni-
tudes by a constant scaling factor. This observation permits the
construction of the whitening filter of P based on the spectral
information of A5 and vice versa.

Spectral components that are not integer multiples of the
voltage frequency, e.g., 60 Hz, are sometimes called interhar-
monics [17]. Interharmonics are typically caused by either a
periodically varying load or a frequency difference between

two ac systems connected by a dc link [18]. A variety of me-
chanical conditions can present an unsteady load to a motor.
Impeller imbalance, an off-center sheave, a bent shaft, and belt
imperfections all can result in measurable periodic load compo-
nents, for example. We will refer to these and similar conditions
as a “load imbalance.” In a VSD, interharmonics can be caused
either by a load imbalance or by a dc ripple due to the frequency
mismatch between rectifier and inverter. The interharmonics of
the test building appear to be caused by a load imbalance, be-
cause their fundamental frequency is directly proportional to the
VSD shaft rotation frequency [12]. We also note that the inter-
harmonics, or colored noise, have a harmonic nature, i.e., their
spectral locations are integer multiples of a frequency (∼3 Hz).

If the colored noise is generated by a load imbalance, its
magnitude can be used as a diagnostic indication of imbalance
severity. Also, we can monitor the rotational speed of the fan by
estimating the fundamental frequency of the harmonic noise. In
other words, we can have a virtual tachometer. This observa-
tion has served as the basis for a number of motor speed and
parameter estimation schemes in the literature [19]–[21].

To eliminate the colored noise generated by a VSD, we can
either estimate the noise and subtract it from the observation or
construct a filter. The former approach is useful when we are
interested in estimating the harmonic noise for diagnosis and
speed monitoring. The construction of an optimal whitening fil-
ter is closely related to the estimation of the power spectral den-
sity (PSD) of the signal. This paper uses the second approach,
described in [12].

IV. TESTS

The overall VSD mean power estimation scheme was tested
for a span of data, collected at 120 Hz, from the test building on
12/04/02. The span consists of 30 nonoverlapping rectangular
windows, each with N = 256 samples.

Fig. 11 shows the time waveform of A5 and the first-order
mean estimation of A5 as the solid line. Because the mean
estimation is linear piecewise continuous, it is not as smooth as
the natural undulation of A5, but follows reasonably well.

The upper graph in Fig. 12 shows the time waveform of P .
The solid line is the VSD P mean estimation from the A5

mean estimation via the correlation look-up table. The lower
graph shows P after its VSD mean is subtracted and white-
filtered. The remaining activity in the difference signal is due in
part to the activity of small ON/OFF (background) loads in the
building, and to the minute time-varying nature of mean power
correlations. The VSD mean estimation and white-filtering of
Q showed similar results.

Fig. 13 shows the standard deviations of the white filtered
signals. Fig. 14 shows the periodograms of P and Q before
and after white filtering for a window of data. Large spectral
peaks have disappeared after filtering, and the periodograms
are relatively flat for the overall frequency range, implying the
effectiveness of the white filtering.

A real-time, Web-based VSD power estimator (VSD tracker)
was developed and installed at the test building [12]. Fig. 15
shows its history page (past 9 h). The display samples are taken
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Fig. 11. A5 with its first-order mean estimation and innovations.

Fig. 12. P with its VSD mean estimation and innovations.

every 1 min and are averages of 1024 original (120-Hz) sam-
ples. The fifth apparent power is almost constant. The graphs
show that there was a constant load activity, evidenced by
the step changes in the real and reactive power waveforms.
However, because the fifth apparent power was unaffected,
the VSD fundamental power estimations were still successful.
The step changes are conserved in the differences or non-VSD
power signals. This example clearly shows that the VSD tracker
can disaggregate total powers into the powers consumed by
VSDs and non-VSD loads. A conventional NILM algorithm
can then identify and track the activity of constant loads in the
difference stream.

V. SUMMARY

The power estimation technique presented in this paper ex-
tends the applicability of the nonintrusive load monitoring ap-

Fig. 13. Standard deviations of innovations at each window.

Fig. 14. Periodograms of P and Q before and after white filtering.

proach to environments that include loads with continuously
varying power consumption. Any continuously variable load
that generates a unique higher harmonic signature can be dis-
aggregated, in principle, using the methods developed in this
paper. The method could conceivably be extended to situations
in which several different varying loads are present, provided
that each presents a unique harmonic pattern.

This paper introduced a Gaussian random process model for
a VSD, with time-varying mean and covariance. The model
was simplified by assuming that there exist strong correlations
between mean harmonic powers. The one-to-one relationship
between a higher harmonic mean and a fundamental mean was
modeled by the piecewise power function and used to estimate
VSD fundamental powers from the estimation of a higher har-
monic mean. The colored noise generated by a VSD was re-
moved by a whitening filter and the difference signal could be
examined by the load status analyzer.
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Fig. 15. VSD tracker history page (21:27 4/3 2003 EST).

Test results show the effectiveness of the VSD power estima-
tion method. The method could also be enhanced with more so-
phisticated correlating functions relating higher harmonic con-
tent to fundamental powers. As presented, the disaggregation
scheme developed here has enabled real-time, Web-based mon-
itoring of the activity of both VSDs and constant loads in a test
building.

APPENDIX

This appendix develops a first-order polynomial mean esti-
mator to represent the time-varying mean of a random process
as a succession of first-order polynomials. The random process
is first modeled as white Gaussian and the maximum-likelihood
(ML) estimator is derived. It is shown that the least-squares error
criterion leads to the same formula and that the ML estimator
can be used for non-Gaussian additive noise in a least-squared
error sense.

Suppose that x is a length-N observation of a random process,
e.g., an apparent power Ak,

x = [x[0] x[1] . . . x[N − 1]]T . (9)

We assume that x[n] is the sum of a first-order polynomial mean
and a white noise

x[n] = mx[n] + w[n] 0 ≤ n ≤ N − 1 (10)

where mx[n] = αn + β and var(w[n]) = σ2. With this signal
model, the observation vector x follows a Gaussian distribution
with the probability density function (PDF)

p(x |α, β) =
exp

(
− 1

2 (x − mx)T Λ−1
x (x − mx)

)
(2π)

N
2 det

1
2 (Λx)

=
exp

(
− 1

2σ2

∑N−1
n=0 (x[n] − αn − β)2

)
(2π)

N
2 σN

(11)

where α and β are the parameters of the distribution.
The maximum likelihood estimations of these parameters are

found by maximizing the logarithm of the PDF with respect to α
and β. The maximums logarithm of the PDF is a quadratic func-
tion of α and β, the maximums occur where the first derivatives
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are zero

∂ ln p(x |α, β)
∂α

=
1
σ2

N−1∑
n=0

n(x[n] − αn − β) = 0

∂ ln p(x |α, β)
∂β

=
1
σ2

N−1∑
n=0

(x[n] − αn − β) = 0. (12)

By combining these two equations, we obtain the following
single matrix equation:

Aa = b (13)

where

A =
[∑N−1

n=0 n2
∑N−1

n=0 n∑N−1
n=0 n

∑N−1
n=0 1

]
=

[ N(N−1)(2N−1)
6

N(N−1)
2

N(N−1)
2 N

]

a = [α β]T and b =

[
N−1∑
n=0

nx[n]
N−1∑
n=0

x[n]

]T

. (14)

The matrix A is a function of N only and invertible whenever
N ≥ 2.

The same formula can be derived by using the least-squares
(LS) error criterion, i.e.,

x ≈ αn + β1 = Ha (15)

where H = [n 1] and n = [0 1 · · · N − 1]T . The LS estima-
tion of a is given by

â = (HT H)−1HT x. (16)

Readers can easily verify that HT H = A and HT x = b.
Thus, when the additive noise is white Gaussian, we have an

ML first-order polynomial mean estimator, which is approxi-
mately a minimum variance unbiased estimator [23]. When the
noise is not white, the same mean estimator is still valid in the LS
error sense. The latter viewpoint is especially helpful because
power signals typically carry colored noise.

When the first-order mean estimation is performed on a series
of windows, we may impose an additional constraint that the
mean estimation is continuous across windows. Suppose that
mx,j is the length-N mean vector of the jth window and that
mx,j−1 is the length-N mean vector of the preceding (j − 1)th
window. The constraint can be stated as mx,j−1[N ] = mx,j [0],
or

αj−1N + βj−1 = βj . (17)

Thus, with the continuity constraint, the parameter β of a
current window is determined solely by the parameters of its
preceding window. The remaining parameter αj is obtained by
solving the first derivative condition:

αj =
∑N−1

n=0 nx[n] − βj

∑N−1
n=0 n∑N−1

n=0 n2

=
∑N−1

n=0 nx[n] − βj
N(N−1)

2
N(N−1)(2N−1)

6

. (18)
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