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Abstract—This paper describes a transient event classification
scheme, system identification techniques, and implementation for
use in nonintrusive load monitoring. Together, these techniques
form a system that can determine the operating schedule and find
parameters of physical models of loads that are connected to an ac
or dc power distribution system. The monitoring system requires
only off-the-shelf hardware and recognizes individual transients
by disaggregating the signal from a minimal number of sensors
that are installed at a central location in the distribution system.
Implementation details and field tests for ac and dc systems are
presented.

Index Terms—Diagnostics, pattern recognition, system
identification.

I. INTRODUCTION

COMPUTATIONAL power and data transmission capa-
bilities for commercial monitoring and control systems

have outpaced the problem of putting sensors in all the right
places. Obtaining useful information, however, generally re-
quires proper installation, maintenance, and interpretation of a
vast collection of sensors—a daunting proposition even if the
sensors are mass produced and individually inexpensive.

This paper describes a new platform for transient-based
nonintrusive load monitoring that is practical for widespread
application. The system uses off-the-shelf hardware, connects
to a network, and can be replicated at a cost that is feasible for
widespread field evaluation. This paper also describes the de-
velopment of diagnostic estimation algorithms that are specifi-
cally suited to nonintrusive monitoring, where little or no initial
parameter information may be available. Last, nonintrusive load
monitoring is demonstrated in ac and dc systems.

Nonintrusive load monitors (NILMs) address the “sensor
problem” for electrical load monitoring by extracting infor-
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mation about individual loads from a few measurements at an
easy-to-access centralized location. At minimum, an NILM can
determine the operating schedule of the operating electrical
loads in a target system strictly from measurements that are
made at a central point in an electric power distribution system
[1]–[4]. For example, the NILM can disaggregate and report the
operation of individual electrical loads like lights and motors
from measurements that are made only at the electrical service
entry to a building. It can identify the operation of electro-
mechanical devices in an automobile or other transportation
system from similarly convenient measurements. The NILM
is capable of performing this disaggregation, even when many
loads are operating at the same time. Because the NILM as-
sociates observed electrical waveforms with individual kinds
of loads, it is possible to exploit modern state and parameter
estimation algorithms to remotely verify and determine the con-
dition or “health” of critical loads. (See, for example, [5]–[14]
for a historical cross section of reduced-sensor estimation tech-
niques for motors. Reference [15] describes techniques that are
suitable for motor parameter estimation from a nonintrusive
monitor.) The NILM can also monitor the operation of the
electrical distribution system itself, identifying situations where
two or more otherwise healthy loads interfere with each other’s
operation through voltage waveform distortion or power quality
problems [16].

Nonintrusive electrical monitoring has been described in
[2]–[4] and [17]–[19], among other publications. The systems
that are described in these papers can be split into two broad
categories—transient and steady-state approaches. Monitors
using a steady-state approach [19] discriminate loads by their
steady-state power consumption. These monitors have rela-
tively modest computational requirements and have been prac-
tical for some time. The transient approach [2], [4] finds loads
by examining the full detail of their transient behavior. Im-
plementations of transient NILMs have typically used custom
hardware, such as the parallel computer described in [3] or the
digital signal processor–personal computer combination in [2].
In this paper, we describe a new platform for transient-based
nonintrusive load monitoring that is practical for widespread
application. The system is practical because it uses off-the-shelf
hardware, connects to almost any kind of information network,
and can be replicated at a cost that is feasible for widespread
field evaluation. This paper also describes the application of
diagnostic estimation algorithms that are specifically suited
to nonintrusive monitoring, where little or no initial parame-
ter information may be available about the loads of interest.

0018-9456/$25.00 © 2008 IEEE
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Fig. 1. Overall scheme of the nonintrusive load monitoring and diagnostic instrument (NILM). The NILM measures currents and voltages at a central location,
matches transients with respect to a stored library of transient signatures, and performs a more detailed analysis of key transients by identification of parametric
load models.

Last, the new NILM platform is demonstrated in the traditional
ac electric utility environment as well as in the dc environment
of an automobile.

II. IMPLEMENTATION

Fig. 1 shows an overall schematic of the nonintrusive di-
agnostic and load monitoring system. Physically, the instru-
ment consists of current and voltage sensors that are installed
at the target site, a commercial data acquisition card, and a
conventional host computer running a version of Linux that
is modified to support continuous streaming of information
from the analog data acquisition card. The NILM is also
connected to an information exchange network, often with a
gateway to the Internet. This approach essentially eliminates
two key problems—retrieving data and updating software. Our
implementation uses the hypertext transfer protocol to supply
information to client machines on the network. A secure shell
connection is used for upgrading software, reconfiguration, and
most system administration tasks. The secure shell connection
can also be used for specialized or infrequent experiments, such
as collecting training data or high-sample-rate transient studies.
One disadvantage of the approach in Fig. 1 is the possibility that
the instrument might be compromised by unauthorized users.
This possibility is minimized by disabling all Internet services
on the host computer, except those that are needed to function
as a remote instrument.

The software underlying the system in Fig. 1 is organized as
a series of functional modules, beginning with preprocessing.
Preprocessing converts raw voltage and current data from the
A/D interface to a standard format. Preprocessing may also
involve mathematical transforms to simplify the discrimination
of different transients. Preprocessing requirements depend on
whether the NILM is installed in an ac or dc environment and
on the encoding scheme that is used by the data acquisition in-
terface. Event classification follows preprocessing and typically

involves fitting stored load transient “fingerprints” to incoming
transient data. Following event classification, the NILM routes
or dispatches raw data, preprocessed data, and data from event
classification to a reconfigurable array of client processes.
Client processes may include Internet interfaces that make the
results of event classification available on the Web, logging
programs, and diagnostic programs that obtain estimates of
the parameters of models describing observed transients. The
section concludes with the system identification procedures that
are used in the diagnostic part of the NILM.

A. Preprocessing

The purpose of preprocessing is to transform the measure-
ments so that it is easy to match transients. In an ac system,
some preprocessing to extract useful task-related features is
usually necessary. Estimates of spectral envelope coefficients
[2], [20], [21] are particularly useful. Spectral envelopes are
short-time averages of the harmonic content of a signal, e.g.,
a signal x(t) of current observed by the NILM. The in-phase
spectral envelopes ak of x are

ak(t) =
2
T

t∫
t−T

x(τ) cos(kωτ)dτ (1)

where k is the harmonic index. Similarly, the quadrature spec-
tral envelopes bk are

bk(t) =
2
T

t∫
t−T

x(τ) sin(kωτ)dτ. (2)

These spectral envelopes may be recognized as the coefficients
of a time-varying Fourier series of the waveform x(t) [4]. For
transient event detection on the ac utility, the time reference is
adjusted so that the term cos(kωτ) in (1) is phase locked to the
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voltage measurement. The window T is typically one or more
periods of the fundamental frequency of the voltage waveform.
For ak and bk that are computed under these conditions, the
spectral envelopes are called Pk = ak and Qk = bk. Notice
that steady-state spectral envelopes P1 and Q1 correspond to
the conventional definitions of real and reactive power, respec-
tively. In a dc system with a constant bus voltage, current
measurements are proportional to the power consumed by a
load. Since loads that are intended for different tasks differently
consume power, the current transients in a dc system are useful
for distinguishing different loads.

Short-time Fourier transforms are used for computing spec-
tral envelope coefficients in the present NILM implementation.
Current and voltage data are resampled by linear interpola-
tion to provide power-of-two samples per period. In our case,
128 samples per period were used. A fast Fourier transform
(FFT) was applied to the resampled current and voltage, result-
ing in transformed vectors I and V . Note that since i and v
are real, their discrete Fourier transforms (DFTs) are conjugate
symmetric and could be computed using half the number of
points. We use the notation V1 to indicate the normalized
negative-frequency coefficient of the FFT of v corresponding
to the first harmonic. Although the data input to the FFT is
resampled, there is no means to control the phase of the voltage
relative to the window that is used in the FFT. Therefore, the
first harmonic coefficient V1 will, in general, have some angle θ.
To obtain the spectral envelope components of the current
relative to this voltage, the complex coefficients Ik are rotated
by θ to obtain the correct phase relationship to the voltage. In
particular, we define a complex phase correction, i.e.,

φ = e−jθ (3)

and compute phase-corrected spectral envelope estimates as
follows:

I ′k = φkIk ≈ Pk + jQk. (4)

As an example, consider the case of a resistive load where the
current is a scaled copy of the voltage. Because the phase of the
FFT data window with respect to the voltage is unknown, V1

and I1 will share some angle θ. Applying the rotation φ = e−jθ

to I1 and V1 yields phase-corrected V ′
1 and I ′1 that are real. For a

resistive load, the real-power spectral envelope coefficient P1 ≈
Re{P ′

1} is nonzero, and the reactive power coefficient Q1 ≈
Im{I ′1} is zero.

The spectral envelope estimates that are obtained using this
procedure are not identical to those obtained using (1) and (2) or
the various preprocessors described in [2] and [4]. However, the
estimates retain qualitative features that are useful for pattern
matching, including a close correspondence to envelopes of the
real and reactive power consumed by a load.

As an example, Fig. 2 shows a typical short-time Fourier
transformed spectral envelope computation for the free accel-
eration startup of a fractional horsepower three-phase induction
machine. The spectral envelope transient strongly reflects the
underlying physics. At the beginning of the transient, the ma-

Fig. 2. Spectral envelope estimate of P1 for a fractional horsepower induction
machine.

chine draws power to accelerate the rotor. The motor consumes
less power in steady state.

B. Event Classification

Electrical load transients in an incoming stream of data are
classified by comparison to a library of transient signatures.
Load transient signatures, or exemplars, are typically extracted
from measured data during a training phase [22]. It is generally
not necessary to record data for all possible loads because
different loads within a class tend to have spectral envelope
transients that are similar up to scale factors in duration and
amplitude [20].

A change-of-mean event detector triggers the process of
matching an observed transient with previously stored exem-
plars. This is in contrast to the system described in [20],
which scans every incoming point for patterns. If an exemplar
is accepted as a fit to some portion of the incoming data,
associated events are removed from the list of detected events
to prevent them from being claimed by other patterns. During
matching, complicated exemplars with the most sections are
tried before simpler exemplars. This prevents shorter exemplars
from claiming events that belong to a larger exemplar.

Exemplars are parameterized so that they can match different
transients within a class of loads. Fig. 3 shows the associated
degrees of freedom for an exemplar consisting of two sections,
with shape vectors s1 and s2. The origin of each section can
be shifted in time by k and by an associated offset bk, as in
Fig. 3. All the sections in the exemplar are subject to an overall
gain α. Sections need not consist of an uninterrupted sequence
of points—each of N sections in the exemplar is defined by
a shape vector s and a time vector t. Exemplars are currently
selected by hand from observed data to capture the relatively
high-derivative and most repeatable parts of a transient: a task
that could be automated. If the exemplars are properly designed,
the sections of two exemplars may interleave during matching,
allowing the transient classifier to tolerate a limited degree
of transient overlap. Numerically, exemplars are matched to
incoming data by individual sections rather than as a global
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Fig. 3. Pattern matching scheme. The exemplar has two sections with shape
vectors s1 and s2. An overall scale factor α and a time shift k and offset bk for
each section are determined to provide the best fit to the observations.

problem for the entire exemplar. In particular, the least squares
problem




s[1] 1
...

...
s[M ] 1




(
ak

bk

)
=




d [Te + t[1] + k]
...

d [Te + t[M ] + k]


 (5)

is solved for each M -point section over a range of the sample
time shift k. In (5), Te is the index of the event, d is the incoming
data, and s and t are the shape and time vectors, respectively,
describing the section. Final values of k, ak, and bk are assigned
according to the best least squares fit over the attempted values
of k. For the jth section of the exemplar, a vector

rj =




d [Te + t[1] + k]
...

d [Te + t[M ] + k]


 − bk (6)

is stored using final values of k and bk that are found for
that section. The overall gain α of the N -section exemplar is
determined by solving




s1
...

sN


 α =




r1
...

rN


 (7)

where the shape vector sj is the jth section in the exemplar. Of
the collection of exemplars, the exemplar offering the smallest
residual norm per number of points is selected as the best fit. If
the residual norm per number of points exceeds a threshold, the
transient is left unclassified.

C. Event Dispatch

A reconfigurable array of postprocessing and display pro-
grams postprocesses successfully classified transients. Any
number of postprocessing modules can operate at run time.
These postprocessing programs include simple scripts that
record contact times and classifications to disk, X-windows
programs that display contact information graphically, and in-
memory Web servers that prepare and serve HTML and graph-
ics descriptions of the transient and its classification.

The ability to reconfigure monitoring and diagnostics fea-
tures at run time facilitates the implementation of a variety

of special-purpose Web-accessible load and power-quality in-
struments with little programming effort. Another important
advantage of the modular event-dispatch model is that post-
processing programs can be implemented in the most effi-
cient language available. A typical configuration of the event
dispatcher might include a logging program recording textual
contact information from the tag queue to a disk, a graphics
display program converting information from the graphic queue
to HTML and portable network graphics images for a Web
server, and a few diagnostic programs that are written for
key loads of particular interest. Diagnostic programs might
be independently connected to logging programs or additional
graphic display programs.

III. EXPERIMENTAL RESULTS

The nonintrusive load monitoring and diagnostics system has
been installed in a variety of locations outside the laboratory.
These locations include commercial buildings in California,
an experimental building in Iowa, commercial facilities in
Massachusetts, a collection of U.S. Coast Guard and U.S. Navy
operational vessels and land-based test facilities, and a dor-
mitory on the Massachusetts Institute of Technology campus.
For the purposes of this paper, we have picked three scenarios
that highlight the capabilities of the instrument in ac and dc
environments for monitoring and diagnostic applications.

A. Automotive Transient Classification and Identification

The nonintrusive load monitoring and diagnostics system
was installed in a 1986 Chevrolet Nova for field testing in a
dc power delivery system. The installation was accomplished
by installing a number of current sensors at strategic locations
in the engine compartment. These sensors are connected to
an A/D converter and a portable computer in the passenger
compartment of the vehicle. Results can be monitored at the
console of the portable computer, although, in principle, a radio
modem or cellular data approach could be used for remote
monitoring.
1) Instrumentation: Fig. 4 shows a working model of the

electrical system in the test vehicle. Three LEM LA55-P active
Hall-effect current sensors were used to measure the aggregate
current i1 + i2 + i3 due to electrical loads in the vehicle. The
sensor response was digitized using a 12-bit 150-Hz A/D
converter that is connected to the serial port of a portable
computer. This choice of measurements eliminates currents that
are returned to the engine block, including the current that
is required for the starter motor and the ignition system, and
the charging current between the battery and the alternator.
Although these currents might contain interesting information,
they are of different character—they have either a considerably
higher magnitude or frequency—than other transients in the
vehicle.
2) Transient Classification: Loads in the car are mostly

lights and motors. For testing, the monitor was supplied with
nine exemplars for loads, including the hazard lights, the brake
lights, the fan, the headlights, and the cigarette lighter. Of these
loads, scaled exemplars for incandescent lightbulbs proved to
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Fig. 4. Working model of a car electrical system, including measured currents
i1, i2, and i3.

Fig. 5. X-windows NILM interaction showing detection of a headlight tran-
sient. Solid lines in the graph are measured data; the points show the fit of the
exemplar to the transient.

be very similar. This is not surprising because a large incan-
descent lightbulb performs the same physical task as a small
lightbulb. Exemplar scale factor information could be used,
for example, in an application requiring that the headlights be
distinguished from the dome light.

Fig. 5 shows a correctly classified headlight transient. Turn-
ing on the headlights actually results in two transients, as can be
seen in Fig. 5. This is because the first position on the headlight
control activates the parking lights, and the second position
activates the headlights. Fig. 5 is the output of a graphical

display program that is connected to a queue on the event
dispatcher.
3) Ventilation System Parameter Identification: In addition

to classifying a variety of transients in the automobile, the
nonintrusive monitor was also configured to dispatch transients
due to the ventilation fan to a parameter identification program.
The passenger compartment ventilation system is particularly
interesting because it is essentially a ducted fan that is con-
nected to a user-reconfigurable mechanical system of vents,
louvers, and pipes. No direct electrical signal is available to
provide information about the state of the mechanical settings.
However, electrical transients from the fan motor and an ap-
propriate model can be used to extract information about the
attached mechanical system.

We model the ventilation system as a dc motor that is
connected to a ducted fan. A series resistance R captures the
motor and wire resistance and the ballast resistor that is used to
set the fan speed. Also included in the model are the inertia J ,
the motor constant K, and a drag coefficient βf . The inertia J
lumps the effects of the components on the shaft of the motor
with the air mass coupled to the shaft through the fan. The
mechanical equation of motion for this system is

J
dωr

dt
= Te − βfω2

r (8)

where ωr is the shaft speed, and Te is the torque of the electric
origin, i.e.,

Te = Kim. (9)

Noting that

im =
vm − Kωr

R
(10)

(8) may be rewritten as follows:

J
dωr

dt
= K

vm − Kωr

R
− βfω2

r . (11)

This system apparently has four parameters; however, under the
substitution x = (JR/K)ωr, it can be rewritten as

dx

dt
= vm − α1x − α2x

2 (12)

with observations

im = α3(vm − α1x). (13)

In terms of the original parameters

α1 =
K2

RJ
(14)

α2 =
βfK

J2R
(15)

α3 =
1
R

. (16)
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TABLE I
COMPARISON OF PARAMETER ESTIMATES FOR AUTOMOBILE

VENTILATION SYSTEM WITH SELECTOR ON “VENT” OR “HEAT”

Fig. 6. Measured data (points) and fit of (13) for the recirculation/heat
scenario in Table I.

The parameters for this model were identified by adjusting the
parameters to minimize the residual

r = I − îm(α1, α2, α3) (17)

where I is the measured current, and îm(α1, α2, α3) is the
modeled current obtained from (13).

Using the techniques in [23] and the data dispatched
from classified transients, parameters were obtained for four
configurations of the ventilation system. The estimated param-
eters, which have been summarized in Table I, make a good
physical sense. Switching from vent to heat involves chang-
ing the airflow from short pipes to longer pipes. In terms
of the natural parameters of the system, R and K might
be expected to stay the same; the fan motor is unchanged,
and the fan was run at the same set speed. In terms of
the identified parameters, α3 should stay the same. However,
the air mass that is coupled to the fan should increase as the
duct length increases; therefore, the lumped inertia J should
increase. Larger J corresponds to smaller α1. Based on this
physical reasoning, α1 in Table I should be smaller for the
“heat” settings than the “fresh” settings. Also, the estimates
of α3 in Table I should be roughly the same. The parame-
ters in Table I are consistent with these expectations (see
also Fig. 6).

B. AC Transient Classification and Identification

As an ac system application example, the nonintrusive mon-
itor was connected to a single phase of a three-phase 120 V ac
line-neutral service. In this case, instrumentation consisted of a

Fig. 7. Web browser showing detection of induction motor transients in an ac
service. Solid lines in the graph are spectral envelope data; the points show the
fit of the exemplar to the transient.

standard personal computer that is connected to a local network,
an Advantech PCL818L A/D interface, and an LEM LA55-P
current transducer. With the exception of the device driver
and spectral envelope preprocessing routines, the software was
identical to that used in the automobile.
1) Transient Classification: A variety of loads are present

on the monitored phase, including induction machines, a com-
puter, an instant start, a compact fluorescent, a rapid start, and
incandescent lights. For testing purposes, the transient classifier
was supplied with a set of eight exemplars, including at least
one exemplar per load class. These exemplars were generated
using measured data that are collected and modified by hand
with the aid of a MATLAB/octave script that is written for this
purpose.

Fig. 7 is an example of the Web-based output capabilities
of the nonintrusive classifier and illustrates the classification of
a motor turn-on transient in an ac service. Solid lines show
spectral envelope data, whereas the points indicate the fit of
the exemplar to the data. The tag data, which is shown in the
bottom part of Fig. 7, include the text “motorwrapper.” This
indicates to the event dispatcher that a parametric model, i.e.,
“motorwrapper,” is available for further identification of the
classified transient.
2) Induction Machine Parameter Identification: A three-

phase, 200-W, 1725-r/min Robins and Myers induction
machine that is connected to a three-phase 120 VAC line-to-
neutral service was used to test the combination of nonintrusive
classification and identification in an ac situation.

The dynamics of a three-phase induction machine can be
modeled according to the synchronously rotating coordinate
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TABLE II
PARAMETER ESTIMATES FOR INDUCTION MOTOR CLASSIFICATION AND IDENTIFICATION TESTS. SINCE K ∝ (1/J),

K SHOULD BE SMALLER IN LOADED CASES THAN WHEN UNLOADED

frame or dq-space equations, i.e.,

d

dt




λqs

λds

λqr

λdr


 =




vqs

vds

0
0


 −




rsiqs + ω0λds

rsids − ω0λqs

rriqr + (ω0 − ωr)λdr

rridr − (ω0 − ωr)λqr


 (18)

where ω0 is the frequency of excitation at the stator, ωr is the
rotor speed, and λ’s are the flux linkages with rotor quantities
and parameters as reflected to the stator [24], [25]. The voltages
vqs and vds are the excitation at the stator, and rr and rs are the
resistances associated with the rotor and the stator, respectively.
The flux linkages and currents are related according to

λqs = Lliqs + (Ll + Lm)(iqs + iqr)

λds = Llids + (Ll + Lm)(ids + idr)

λqr = Lliqr + (Ll + Lm)(iqs + iqr)

λdr = Llidr + (Ll + Lm)(ids + idr)

where Ll is the leakage inductance, and Lm is the magnetiz-
ing inductance. Mechanically, a friction and mass mechanical
model was assumed and modeled in terms of the rotor speed as
follows:

d

dt
ωr = 3K(τ − βωr) (19)

where τ = λqridr − λdriqr is proportional to the torque of
the electrical origin, and K is a parameter that is inversely
proportional to the inertia, which is connected to the motor
shaft. Since only a single phase of the motor current was
available for measurement, the lab-frame output equation

ias = iqs cos(ω0t + φ) + ids sin(ω0t + φ) (20)

was used, where φ is the angle in the line cycle when the
machine was switched on. Parameters were determined by least
squares minimization of the residual

r = I − îas(µ) (21)

with measurements I and parameter vector

µ = (rs rr Lm Ll K β)′. (22)

In the ac nonintrusive monitor configuration, the preproces-
sor phase-locks in software to compute spectral envelopes. The
measured data consist of current and voltage waveforms that
are resampled to a power of two points per line cycle. In this
case, the sampling rate of I was about 7.7 kHz or 128 points
per line cycle.

The NILM was configured to recognize the transient of the
test motor, as in Fig. 7, and dispatch the associated measure-
ments to an identification program to find the parameters. Dur-
ing a series of runs, a small pulley was either added or removed
from the shaft to test whether the diagnostics could detect a
change in the system. This test simulates a situation where
changes in the mechanical load of a nonintrusively monitored
motor are of diagnostic interest. Results are given in Table II.
Because the same motor was used for each test, the electrical
parameters and β in Table II should be essentially the same
for all 12 trials. In contrast, the estimates for K should reveal
whether the pulley was attached to the shaft. Since K ∝ (1/J),
the trials with the pulley attached should have smaller values
of K. In Table II, the average K value for the loaded case is
about 613 with a sample standard deviation of 3. The extreme
unloaded value is 618: a difference of less than 1%. The average
K value for the unloaded tests is about 640, with a sample
standard deviation of less than 9. The last column of Table II
shows the relative error of the residual as a measure of the
quality of fit. Given the variation across the experiments, three
significant figures are appropriate for the electrical parameters
and β. A dc test of the stator at the motor terminals yielded
an rs of about 9.7 Ω, providing additional assurance that the
values in Table II are reasonable. Part of the discrepancy in the
rs value is due to the resistance of the wiring that separates
the NILM installation location from the motor terminals. In
addition, a high-current line-frequency startup transient may
lump losses in rs that are not present in a low-current dc test.
Typical agreement between the measured data and the model is
shown in Fig. 8. In contrast to the high-noise vehicle monitoring
problem, the differences between prediction and measurement
in Fig. 8 appear to be modeling errors.
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Fig. 8. Measured data (points) and fit of (20) for data set 12 in Table II.

C. AC Electromechanical Diagnostics

Numerous systems that are aboard modern naval vessels use
couplings to link pumps and other mechanical systems to their
driving motors. The failure of such couplings can have a drastic
impact on mission capability. For instance, the auxiliary sea-
water (ASW) cooling system on the United States Coast Guard
Cutter Seneca has two pumps that are both linked to induction
motors via flexible couplings. These couplings have shown a
tendency to fail over time. The ASW system provides cooling
water to vital shipboard loads, such as the diesel generators.
Thus, coupling failure can cause machinery to overheat and
sustain damage. This section details the specifics of the problem
that was observed aboard the Seneca, and it presents a prog-
nostic metric that the NILM can compute as a postprocessing
dispatch to identify an impending problem.
1) Preliminary Analysis of Seneca ASW Data: To investi-

gate the effects of coupling failure in the Seneca ASW system,
a fresh standard-issue United States Coast Guard coupling
was installed, and the pumps were cycled on and off several
times. During each start, an NILM monitored the power that is
delivered to the pumps. An example of the real power that is
drawn during an ASW pump start is shown in Fig. 9.

Upon comparing the power that is drawn during each of
the various pump starts, it was noticed that the amount of
high-frequency “ripple” that is present in the real-power spec-
tral envelope transient increased as the coupling progressively
failed. To study this trend, we extracted a data vector from
each waveform, as shown in Fig. 9, and computed its frequency
spectrum using a 128-point windowed DFT. Fig. 10 displays
the magnitude of the resulting frequency spectrum for the data
vector that is highlighted in Fig. 9.

A resonance in the mechanical coupling subsystem interact-
ing with the motor can be predicted by physical modeling to
appear near 44 Hz for the Seneca ASW system. We antici-
pated that the progressive failure would cause variations in the
damping and stiffness coefficients, which, in turn, would cause
variations in the amplitude of the observed oscillations. The
physical model and an illustrative simulation are presented in
[26] and [27]. Analyzing the frequency content of the power
that is drawn by the motor over successive starts, we found that

Fig. 9. Real power that is drawn during a typical ASW pump start. The
relative location of the data vector shown here was the same for each of the
pump starts. The data shown here were sampled at 120 Hz: the nominal output
rate of the NILM preprocessor.

Fig. 10. Magnitude of the frequency spectrum of the windowed data vector
shown in Fig. 9.

the amplitude of a spectral peak located at approximately 44 Hz
indeed progressively increased as the coupling failed. This
behavior can be seen in Fig. 11. Fig. 12 displays photographs
of the coupling over a life cycle of use.
2) Diagnostic Indicator: Our experimental observations

and analytical results suggest that a way to diagnose deterio-
rating coupling conditions is to trend the behavior of the high-
frequency spectral peak that is associated with the coupling.
Our preliminary diagnostic software uses the three key steps
listed below.

• DFT computation: First, we compute the DFT of a win-
dowed segment of the real power spectral envelope that is
drawn during a motor start.

• Peak frequency location: The DFT samples spanning the
frequency band from 30 to 60 Hz are searched to find the
location of the largest spectral peak in that band.
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Fig. 11. Details of the high-frequency segment of the magnitude of the
frequency spectrum of P1 during several pump starts. The top trace was
recorded after one of the first starts with a fresh coupling, and the bottom trace
was recorded during the start before the coupling finally completely failed. Each
start is designated by a letter written to the right of the corresponding trace.

Fig. 12. Photographs showing the state of the coupling over a life cycle of
use. The letters in each photograph correspond to the start letters in Fig. 11.
Note the tearing that develops as the coupling deteriorates.

• Diagnostic indicator computation: We compute the energy
in a band of frequencies centered around the spectral peak
(see [26]).

Table III summarizes the diagnostic indicator values corre-
sponding to each of the actual ASW pump starts that are used
to form Fig. 11. Note that this value significantly increases
between starts B and C. When this behavior is observed in the
field, the NILM can immediately alert the engineer officer. This
would enable inspection of the coupling well before mission-
critical failure.

IV. DISCUSSION

We are on the verge of an era of “sensor bloat.” It has become
almost second nature to expect that local or global networks
and information exchanges will be used to connect arrays of
sensors with ever-increasing quantities of analysis software.
The design complexity and the monolithic integration afforded

TABLE III
COUPLING DIAGNOSTIC INDICATOR VALUE FOR EACH OF THE STARTS

by modern electronics have led to a “more is better” attitude in
the construction of control and monitoring systems. This trend
is apparent in diagnostic, control, and monitoring devices in all
areas, particularly including building energy management sys-
tems, transportation systems, and industrial process controllers.

The value of physical simplicity should not be overlooked.
Complex arrays of monitoring sensors tend to increase the dif-
ficulty and the cost of installation, particularly for short-term or
temporary monitoring. Larger arrays of less-expensive sensors
may diminish overall reliability and require the collation of data
streams from different points.

The nonintrusive monitor that is presented in this paper
minimizes the sensor requirement and provides a flexible plat-
form for diagnostic and control monitoring for almost any
electromechanical system or plant. The NILM is quick to
install and physically reliable because of its relative hardware
simplicity. The NILM’s ability to associate observed electrical
waveforms with the operation of particular devices makes it a
perfect foundation for diagnostic and power quality monitoring
systems using state and parameter estimation techniques, as
described in this paper and its references.

There are, of course, practical limits to the NILM’s abil-
ity to disaggregate load behavior from aggregated electrical
measurements. At some level of aggregation, a high level of
simultaneous or nearly simultaneous transient events will make
complete disaggregation practically impossible. The rate of
event generation at a particular monitoring point determines, in
part, the likely success of the NILM in a given application. Our
preliminary field tests with the NILM have indicated excellent
performance with low rates of event detection errors in typical
buildings and transportation systems. Also, the performance of
the NILM may degrade fairly gracefully as the rate of event
generation increases. Significantly large transients or transients
with particularly distinctive features may be detectable, even in
a very complex aggregated signal. The NILM may be able to
extract these important features, even when the monitor is in-
stalled in a location that precludes the exhaustive classification
of all events.

The difference between the nonintrusive capabilities that are
exemplified by the NILM and conventional monitoring can
be viewed as a design tradeoff. Ignoring the possibility of
sensor hardware failure, the highest confidence in event and
diagnostic detection and recognition will be achieved with
individual sensors for every load of interest. The greatest
ease of installation, the greatest overall monitoring system
reliability, and the lowest cost are probably associated with a
nonintrusive monitoring approach. A designer of a monitoring
system can, therefore, use the nonintrusive approach to make a
flexible tradeoff in expense, reliability, and detection error by
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determining an appropriate level of “nonintrusiveness” for any
monitoring system.
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