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Electric Load Transient Recognition With a Cluster
Weighted Modeling Method
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Abstract—This paper considers the use of sequential cluster
weighted modeling (SCWM) for electric load transient recogni-
tion and energy consumption prediction that are promising for
isolating the deleterious load transients from delicate renewable
sources. Two computational processes co-exist in the SCWM
scheme. In the training process, we propose a cluster weighted
normalized least mean squares modification of the expectation
maximization method to address the singular matrix inversion
problem in updating the local model parameters. For the pre-
diction process, we propose a sequential version of the CWM
prediction that not only improves the real time performance of
load transient recognition, but also resolves online overlapping
transients. Other real time transient processing issues are also
addressed. The methods are demonstrated using benchmark
electric load transients.

Index Terms—Adaptive estimation, clustering methods, electric
variables measurement, expectation maximization, Gaussian dis-
tributions, least-mean-squares, load forecasting, maximum likeli-
hood estimation, statistical learning.

I. INTRODUCTION

F UTURESMARTgrid applications will likely focus on im-
proving the stability and frequency regulation of the elec-

tric utility grid. Storage mechanisms may be essential for miti-
gating fluctuations from renewable sources and demand-respon-
sive loads. A variety of technologies are under consideration
for providing electrical storage. A common feature across many
electrical storage schemes is a need to protect delicate storages
or conversion devices from deleterious electric load transients.
In this paper, we present new robust techniques for identifying
electric load transients in real time and mitigating the effect of
these transients on delicate sources, for example fuel cells, in
favor of sources capable of responding to transient demands.
Electric load transients often have significant initial peaks

in power relative to the long-range requirements. These tran-
sient peaks may have an impact on fuel cell system efficiency
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and lifetime [1], [2]. Multi-source fuel cell systems incorpo-
rating rapid energy storage devices have been proposed to re-
duce transient effects on fuel cells [3]–[5]. In these applica-
tions, the mechanisms for determining how much power the
fuel cell delivers during a transient are generally not specific
to the type of transient, even though many classes of electric
loads have repeatable transients that can be modeled and rec-
ognized [6]. We proposed a transient recognition control (TRC)
method in [7], in which the TRC module provides a prediction
of the long-range behavior of the incoming load based on the
initial transient peak information. The TRC model was devel-
oped based on the cluster weighted modeling (CWM) method
which was originally proposed for stochastic time series anal-
ysis and modeling [8]–[10]. The prediction of transient load be-
havior is of great utility in smart-grid applications more gener-
ally. In [11], a load features are selected and analyzed using a
neural network with an evolutionary algorithm to forecast load
demand. The method is demonstrated on demand data. In [12],
wide area synchrophasor measurements are incorporated in an
neural network for real-time prediction. This technique is ap-
plied to a distribution level model, and a remedial action scheme
based on the predictions is proposed. The authors of [13] con-
sider transient detection on a vehicle-level power system using
a wavelet based approach. This predictions are used to opti-
mize and facilitate the sharing of demand between a battery and
super-capacitor. This paper provides a novel, real-time CWM
technique that can use physically based models to provide tran-
sient behavior predictions for applications in smart grids.
CWM is a divide-and-conquer method that addresses the

global modeling problem by dividing the sample set into a
number of subsets where a simple local model can be applied
in each subset. CWM addresses the modeling problem through
a collection of clusters, using a Gaussian mixture framework to
associate inputs with clusters and map inputs to outputs using
the local model in each cluster. Model parameters are solved
iteratively through an expectation maximization (EM) process
that maximizes the joint log-likelihood of all the samples in the
training set. The training samples are effectively partitioned by
clusters. Only the samples strongly correlated with a cluster
will contribute significantly to the parameter tuning of the
corresponding local model.
The foundation of the TRC method is presented in mathe-

matical detail in this paper and is further improved to handle
real-time transient scaling and situations where multiple tran-
sients overlap. Here, we propose a sequential reformulation of
the CWM prediction process called sequential CWM (SCWM).
This method is distinct from other contemporary discrimina-
tors used for machine learning, like support vector machines
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(SVM) and the k-nearest neighbors (kNN) algorithm. These ap-
proaches to machine learning do not support sequential esti-
mation. As such, SCWM is qualitatively different from many
other approaches to machine learning, and distinctly different
from other schemes like artificial neural networks, which fail
to provide the high degree of localization offered by SCWM.
These benefits of SCWM are essential for smart grid appli-
cations, in that SCWM affords real-time, evolving predictions
with the ability to discriminate fine differences between elec-
trical loads with similar but distinct transients. SCWM, for ex-
ample, has the unique benefit of producing a tail prediction for
a partially received transient, which makes the method uniquely
robust to certain transient overlap situations.
In the case of electric load transient modeling, the EM

training algorithm may have a singular matrix inversion
problem in adjusting the local model parameters because the
load transient dimension is large. In this paper, we also develop
a normalized least-mean-squares method based on a proposed
posterior likelihood weighted mean square error criterion. The
method does not have an explicit matrix inversion and requires
little computational effort.
The standard cluster weighted modeling method is briefly re-

viewed in Section II. The proposed cluster weighted normalized
least-mean-squares algorithm is also developed in this section.
In Section III, the sequential CWM for real time load transient
recognition under both overlapping and scaling situations is de-
veloped, and transient detection technique is discussed. Simu-
lations are conducted on several benchmark load transients in
Section IV, demonstrating the success of the proposed methods.
Finally, conclusions and possibilities for future work are out-
lined in the last section.

II. CLUSTER WEIGHTED MODELING AND NUMERICAL
IMPROVEMENTS

A variety of machine-learning and classification techniques,
including neural networks and support vector machines, can be
applied to the problem of transient recognition in smart grid ap-
plications. However, these methods generally do not generalize
to real time by producing a new estimate as each point of the
incoming transient is received. Also, these methods are not di-
rectly adapted to the use of physically based, verifiable local
models as is CWM.

A. Cluster Weighted Modeling

CWM is reviewed in this subsection based on the presen-
tation and notations in [14] where more detailed derivations
can be found. CWM is a divide-and-conquer method for max-
imizing the joint probability density and constructing
a function mapping between the input vectors and desired
outputs over a sample set drawn from the
problem being studied. The output is assumed to be scalar
in this paper, but generalization to the vector case is straight-
forward. CWM solves the modeling problem with a mixture
of clusters. The structure of a cluster is described by three
priors, . The cluster probability

, where is the cluster label, is the normalized cluster

weight, reflecting the relative importance of one cluster to the
modeling problem. The input probability density is
the likelihood between the input vector and the cluster that
describes the global distribution of clusters in the input space
and the local grouping information of input patterns around
each cluster. The input-output dependance probability density

describes the local functional relationship between
the input vectors and the desired outputs in one cluster and the
uncertainty of the local mapping. The joint likelihood
is a measure of the error between the established global CWM
model and the true mapping behind the sample data. is
estimated by

(1)

where is the pre-determined number of clusters. For the elec-
tric load transient modeling problem, CWM can be applied by
assigning the load transient pattern as the CWM input vector
and the corresponding load transient long-range value as the de-
sired output . A cluster could represent a specific transient
or a class of transients [7].
The prior probability densities are assumed to be Gaussian

distributions, i.e.,

(2)

(3)

In (2), is the pre-defined vector dimension for the input vec-
tors, is the dth component of the diagonal variance ma-
trix of the input vector, and is the dth component of the
center vector of cluster . A diagonal variance matrix is
used for to save computation and storage resources be-
cause the pattern dimension may be large in this work. In (3),
a local model with parameter vector is embedded
in each cluster as the mean value for , and de-
scribes the uncertainty of the local model. The role of local mod-
eling of is apparently shown in the CWM output (pre-
diction) which is defined as the conditional expectation of the
model output given the input vector ,

(4)

In (4), the local model outputs are combined by
the normalized cluster weighted prior likelihoods

of the input pattern
to the associated cluster to generate the CWM model output.
Distant local models for an input pattern have little effects on
the CWM output because their likelihoods are small. The local
model could be as simple as a linear model,

(5)
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This model may suffice even for complicated nonlinear mod-
eling problem because the Gaussian clusters have good local-
ization properties. The linear local model also helps simplify
the parameter optimization process.
The parameters in the cluster priors are optimized in the sense

of maximizing the joint log likelihood
over the sample set. The closed form solutions of the optimized
parameters can be found by setting the partial derivatives of
with respect to the parameters to zero.
The cluster prior parameters are estimated through a expec-

tation maximization (EM) process that iteratively estimates the
prior and posterior parameters.
First, the cluster prior parameters,
, are respectively estimated using the posterior likelihood

evaluated from the sample set in the last iteration:

(6)

(7)

(8)

(9)

(10)

where the notation is the normalized posterior likelihood
weighted estimation that is defined by

(11)

In (11), is the individual estimation of the parameter by
; and is the nor-

malized posterior likelihood weight reflecting the relative im-
portance of the th sample pair in estimating the parameters in
the cluster .
Second, the posterior likelihood can be estimated using the

updated cluster prior likelihoods and applying the Bayes the-
orem,

(12)

From a signal processing point of view, CWM can be thought
of as a bank of filters as shown in Fig. 1. Each filter can be
tuned individually to a specific group (cluster) of signals with
similar features. The filter bank output is a probabilistic com-
bination of the outputs of the activated filters that match the
input signal. The criterion of choosing the activated filters is
the cluster weighted likelihood of input signals to the associ-
ated filter.

B. Numerical Improvement

A badly conditioned or singular matrix inversion may occur
for the matrix in (9) when is large. This can
happen if the number of parameters of the local model is more
than the number of available sample data, i.e., the problem is
under-determined. Singular value decomposition (SVD) is sug-
gested in [15] for calculating the inverse matrix. However, SVD

Fig. 1. Graphical explanation of CWM. CWM achieves the complicate non-
linear modeling problem by partitioning the global modeling problem into a
series of sub-modeling problems corresponding to clusters. The input can in-
clude a variety of time-resolved physical information, including reactive power,
phase angle, or other measurements.

involves high computation effort for a large . A much sim-
pler least-mean-squares (LMS) algorithm based on the CWM
framework is proposed to iteratively find the optimal value of
. Accordingly, a posterior likelihood weighted mean squares

error criterion is defined on the local model output residuals of
the given cluster,

(13)

A LMS algorithm is derived based on the method of stochastic
gradient descendent regarding (13). A problem for the LMS es-
timation of the electric load transients is that the transients nor-
mally have significant initial peaks relative to the transient tails.
Similar to the gradient estimate noise defined in [16], the esti-
mate of is computed using a gradient with noise

(14)

which contains terms proportional to . Therefore for
large amplitude may have a long, erratic convergence. A
scalar normalized LMS (NLMS) algorithm with respect to an
individual that can mitigate the problem was derived in
[17]:

(15)

In (15), the superscript represents the iteration step.
is introduced to normalize the step size for . (15) can
directly replace (9) in the CWM EM training routine.
As with any other data-driven technique, there is the possi-

bility when updating the parameters of the local models that
poor data can produce poor results. However, unlike many other
methods, over training is significantly less of a concern when the
local model has been selected, e.g., by picking an appropriate
order for , to reflecting the underlying physics of the load. It is
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anticipated that in smart grid applications, the number of clus-
ters and order of the associated models will be considered in
advance and updated as needed through a supervised process.

III. SEQUENTIAL CWM FOR MULTIPLE OVERLAPPED LOAD
TRANSIENTS RECOGNITION

A. Sequential CWM Prediction

The CWM input vector dimension is a critical parameter
for transient recognition control [7]. Conventionally, CWM re-
quires a full set of data points of an input pattern to make
a prediction and results in a delay of D steps. If is set to
be small, the transient pattern may not be effectively modeled
and the resulting prediction is not reliable. If is too large,
the output delay may render the prediction useless. In contrast,
sequential CWM (SCWM) can generate a prediction when the
first data point of a transient is detected, and can update the pre-
diction as more data is received. Under the SCWM prediction
scenario, the modeling dimension is not critical and can be set
large enough to include the maximum physical length of tran-
sients in the sample set . In effect, SCWM auto-
matically finds a minimum delay for each transient to output
an accurate prediction.
Suppose a transient is detected at the time point 1 and the

transient recorded by the time point is where the sub-
script marks the segment from the first point to the th
point. For , the SCWM prediction at the time is

(16)

The dummy un-received transient tail can be added
into the likelihoods and by

(17)

(18)

Substitute (17) and (18) into (16), and further decompose
and into clusters and apply the

probability expectation for variable , we have

(19)

The linear local model output in (19) can be separated into two
parts at the time point ,

(20)

Substitute (20) back into (19) and note that

(21)

therefore the SCWM prediction at time is derived to be

(22)

where

(23)

is the reconstruction of the complete input transient vector by
cluster . is the prediction by cluster for the
transient tail not yet received. A reconstruction
of the complete input pattern by cluster is available
at any time of the sequential prediction process. The reason-
ableness of each cluster’s prediction is evaluated by the corre-
sponding normalized cluster weighted partial input prior likeli-
hood . Im-
plausible reconstructions, such as being the first points of
an incoming bulb transient and being the remaining
tail of the lathe’s cluster center, may significantly affect the
model output accuracy at the beginning—it is clearly impossible
to predict transient behavior if only one or two points have been
received. Empirically, only a small initial part of a load transient
is needed for accurate prediction of the remaining transient tail,
and the delay of the transient recognition is small.

B. Sequential Resolution of Overlapping Load Transients

Time-overlap of transients poses a challenge for SCWM in
real load monitoring environments. As shown in Fig. 2, the tran-
sient overlaps and is significantly deformed by the tail of
transient after time . This could cause the recognition and
the long-range behavior predictions for both and to fail.
However, the prediction of the un-received transient tail of
by each cluster derived in the last subsection can be subtracted
from the composite signal to recover . This combined pre-
diction is the Cluster Weighted Tail Prediction and is defined
as , where is the physical length of tran-
sient , in excess of the CWM input vector dimension used
in the last subsection. Through a derivation similar to the one
in SCWM prediction in the last subsection, the closed form of
cluster weighted tail prediction is

(24)

As shown in (24), the cluster weighted tail prediction is de-
termined by weighting all of the clusters’ predictions with the
corresponding normalized cluster weighted partial input prior
likelihoods, with the same structure as (4) and (22). When
is greater than the necessary modeling dimension of , the ir-
relevant predictions vanish in (24) because the associated like-
lihoods are small, and the tail prediction ap-
proximates the true signal .
The transient overlapping resolution is illustrated in Fig. 2.

The transient can be recovered by subtracting
from the overlapped signals. The

dashed line in Fig. 2 is the predicted tail of calculated
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Fig. 2. Transient overlap elimination. Transient (with physical length )
is detected at time 1. Transient (with physical length ) is detected at time

. is overlapped and therefore deformed by the tail of . The true
vector (shown by the line marked with circles) can be recovered by subtracting
the tail of from the overlapped signals. ’s tail can be estimated by the
cluster weighted tail prediction defined in (24) and is shown by the dashed line
in the figure.

by (24). The recovered shape is shown by the line marked
with circles. Like (22), the cluster weighted tail prediction in
(24) is also formulated sequentially, therefore the transient
overlapping resolution can be performed online, along with the
SCWM prediction process. The tail prediction error at time
for the th component is

(25)

The first item in (25),

, is the essential uncertainty
of the transient signals and is therefore the theoretical
upper limit of SCWM tail prediction precision. The item

is the extra “model prediction error” due to the
implausible transient recognition to the irrelevant cluster in the
early stage of the prediction. The model will converge to the
right cluster (i.e., the relevant likelihoods converge to 1 and
irrelevant likelihoods varnish) very soon as more points of
transient signals being received. The model prediction error
finally disappears and the total prediction error converges to

. Meanwhile, empirically drops quickly along the
time, i.e., for . The SCWM predictions
converge along these two co-exist error dropping curves.
In online applications, the true physical length of the current

transient needs to be estimated to determine whether the current
transient is still active when a new transient is detected, and
accordingly to turn on/off the transient overlapping resolution

procedure. The expected transient length of can be estimated
by an equation similar to (24), i.e.,

(26)

where is the expected “transient length” of cluster that
is evaluated in the training process. Similar to (6)–(10) in the
training process, can be estimated by

(27)

Illustrated by Fig. 2, if , then the transient
overlapping resolution procedure will be turned on to recover
transient ; if , then is not overlapped
by and can be processed by SCWM directly.
Tail prediction method for transient overlapping resolution,

illustrated in Fig. 2, may not work perfectly in all situations.
A worst case for tail prediction is that two different transients
have identical initial transient segments (e.g., in Fig. 2),
and different remaining tails (e.g., in Fig. 2) from
each other. The tail prediction in this situation could be false,
and cause the transient overlapping resolution fail. However,
the possibility of the worst case of tail prediction can be pre-
dicted from the CWMmodel cluster mean parameters. Any two
clusters having the identical initial segments and different tails
could be marked.

C. Online Load Transient Scaling

An empirical observation important to the non-intrusive load
monitor [6] is that transients from differently sized but physi-
cally similar loads tend to be similar up to scale factors in am-
plitude and time. The storage and computational efficiency of
the transient recognition can be improved by introducing an am-
plitude scale factor and an amplitude offset between the de-
tected transient and the cluster centers. The offset can be con-
tinuously estimated by an appropriate unit gain low pass filter.
The scale factor for the most relevant cluster is determined by
sequentially solving the two-step maximum likelihood estima-
tion problem,

(28)

(29)

where is the maximum likelihood scale factor between
and for cluster . The maximum likelihood

solution for is

(30)

Load transients are pre-scaled by the coefficients and be-
fore being used for the SCWM prediction. There are limits im-
posed on the scaling range for each to prevent scaling that
may lead to poor results, especially at the beginning of the se-
quential prediction. The pre-scaling operation is conducted se-
quentially and integrated with the SCWM process.
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Fig. 3. Change of mean detector combining tail prediction method for transient
detection in overlapping situation.

D. Online Transient Detection and Off-Training Set Transient
Indication

Electric load transients typically have a sudden change at the
beginning of the transient, making them relatively easy to de-
tect. The change-of-mean detector proposed in [6] is applied in
this paper for transient detection. The detector compares the dif-
ference between the input and a low-pass filtered version of the
input. If the difference is greater than a threshold, a new tran-
sient is detected.
A difficulty with this simple scheme is that it may not work

properly when transients overlap. Fig. 3 shows one method to
solve the problem by using the SCWM tail prediction of the
overlapped transient. In Fig. 3, the tail predictions of currently
evolving transients are subtracted from the input before the
change-of-mean detector.
One of the advantages of SCWM is that the likelihood of

the input with respect to the clusters is continuously available
as new data arrive. This likelihood can be used to detect “off
training set” inputs that might produce spurious outputs. In a
practical implementation, a threshold monitoring this likelihood
could be used to both protect the system from “new” transients
and also to isolate new transients for possible future training.

IV. RESULTS

The load transient recognition algorithm introduced here is a
“silver bullet” for bringing energy storage to smart grids. This
method permits optimization of energy and power flow from
different sources. For example, it can optimize the relative con-
tributions of sources with high power and low energy densities
in combination with sources that provide low power density
but higher energy density. Optimized combinations perfectly
supply load transient and steady-state demands while protecting
expensive energy storage sources. The proposed approach is
demonstrated with a scenario using real-time electric load tran-
sients, including situations with multiple transient overlap and
while other loads are operating.
Load transients can be characterized by one or more narrow

segments with relatively high derivative or mean value variation
information, called v-sections [18]. Using v-sections instead of
the entire transient to model the load transients is useful be-
cause the v-sections involve less computation and storage re-
quirements. The individual v-section can be itself viewed as an
independent transient because it is only necessary to predict the
long-range value change following each v-section. In this paper,
informative v-sections were used for load transient modeling.

TABLE I
ASSIGNMENTS OF TRAINING/TESTING SAMPLES AND CLUSTERS WITH RESPECT

TO DIFFERENT LOAD TRANSIENTS

Simulations were conducted in Matlab. Five types of
benchmark load transients (including transients from a lathe,
computer monitor, bulb, drill, and vacuum cleaner) were
measured from ac loads supplied by an invertor. Current was
measured from the dc bus between the converter and inverter.
The recorded data stream was pre-processed to eliminate the
120 Hz ripple from the inverter. Then the v-sections of the load
transients were extracted, sorted to different transient classes,
and synchronized with others within the same class. A total of
265 transients were recorded. Each class of transients is split
into two parts, one subset used for CWM modeling (training),
and the other subset used for the primitive testing of the SCWM
prediction performance after training. The assignments of
load transients with respect to training and testing subsets are
shown in Table I. Finally a fully functional SCWM module
was implemented using CWM model parameters and verified
using test data assembled from the measured current transients
but with added noise, scaling in amplitude of transients, and
overlapping of transient profiles.

A. CWM Training

The expectation maximization and normalized least-mean-
squares mixed algorithm was used to initialize the parame-
ters . includes the main
diagonal components in the variance matrix of . The
Gaussian likelihoods were manipulated in log domain to
overcome the finite machine precision problem. A numerical
improvement involves scaling the likelihood and

in (12) by the same scale factor, which does
not affect evaluation of the posterior or the
EM update. A useful scale factor is the maximum value of

, so that at least one item in
the summation in the denominator of (12) has a non-zero value
that can be easily represented in the machine.
The CWM input vector dimension for transients was set to

and a 100 ms sampling interval was used. Cluster
probabilities were equally initialized to be-
cause uniform distribution suggests the maximum likelihood es-
timation if no prior information exist at all. Twenty-two clus-
ters were used in this example to model six classes of tran-
sients/v-sections. The allocation of clusters to different tran-
sient classes is summarized in Table I. The number of clusters
per transient can be adjusted in a supervised off-line process to
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Fig. 4. The convergence curve of the joint log-likelihood over the training sam-
ples. The variable , as defined in Section II. The
variable extends beyond zero because the two Gaussian and

are re-scaled to prevent division by zero.

handle the range of variability within a class of transients. Be-
cause CWM generates the probability of an observation with
respect to the set of clusters, the method is self-diagnostic with
respect to whether the number of clusters is sufficient. The clus-
ters used to model each class are initialized to the average center
of that class, adding small random perturbations so that the clus-
ters adapt to span the transient variability. Local model param-
eters were initialized with small random numbers.
The variances of two Gaussian distributions were initialized to
be a constant 10. During training, it is also necessary to add
small constants to the variances to prevent them from shrinking
to zero [14]. The adaptation step size for NLMS is 0.002. One
thousand iterations were performed for training. Cluster param-
eters were checked by hand after training to ensure that no de-
generate cases, i.e., two identical clusters, resulted. The final
convergence curve of the joint log-likelihood over the sample
set is shown in Fig. 4, which suggests that indeed 50–100 itera-
tions are sufficient in this example.

B. Testing

A separate set of transient data, not used for training, was
used for testing. Training and test data sets are different. The
test data sets include noise and different power amplitudes from
the training set data. Two kinds of testing were conducted. The
first test used 56 primitive v-sections, similar to the ones used
in training, to verify whether the SCWM prediction converged
accurately and quickly in the transient scaling situation. The
second test used the continuous transient stream data to evaluate
the fully functional SCWMmodule implemented in Matlab, in-
cluding the pseudo-online signal pre-filtering, transient detec-
tion, scaling, recognition, and elimination of transient overlap.
The results of the first test are shown in Fig. 5. The dashed

lines shown in each sub-figure describe the family of load
transients under scales different from the default scale used
in training. The solid lines show the SCWM prediction of
the transients’ long-range behaviors, and the cross-marked
solid lines show the tail prediction errors of the corresponding

partially received transients. The tail prediction error is defined
as

(31)

Early in the observation of the transient, there are significant
errors in the tail predictions and consequently in the SCWM
outputs. This is acceptable since it is impossible to predict the
future behavior of a transient depending on only one or two data
points. However, in almost all cases, the tail prediction and the
SCWM output settle accurately and quickly compared to the
transient length. In practice, a “lock-out” interval can help block
the initial behavior.
A fully functional SCWMmodule for the second test includes

signal filtering, transient detection, scaling, overlap resolution,
and long-range transient behavior prediction. A new transient
processing line is set up for each newly detected transient, and
any processing lines are marked as active if the associated tran-
sients are still evolving. The active status is checked by the asso-
ciated transient starting point and expected transient length cal-
culated by (26). When a new transient is detected, the outcomes
of the currently active transient processing lines (such as the
tail prediction, the expected transient length, and the long-range
behavior prediction) are not updated anymore but remain avail-
able for future use. The long-range behavior outcomes of the
inactive transient processing line are used to update the system
offset one time before the line is closed. We assume a new tran-
sient comes in not overlapping the current transient which is still
in “lock-out” period. The performance of the fully functional
SCWM module is verified in the pseudo real-time Matlab envi-
ronment.
Three simulations were conducted to verify the fully func-

tional SCWM module, including a full computer monitor tran-
sient (including two v-sections), a mixed drill-bulb transients
stream, and a mixed vacuum cleaner-lathe transients stream.
The results are shown in Fig. 6. The transient signals after pre-
filtering are shown in figures for the purpose of visibility. The
SCWM output within the “lock-out” period is not blocked in the
figure in order to show the full details of the SCWM action. The
performance of the fully functional SCWM module, especially
the transient overlapping resolution through the idea of tail pre-
diction, were verified by the presented results.

V. CONCLUSION

Cluster weighted modeling was studied in this paper for
electric load transient recognition. A mixed expectation max-
imization and normalized least-mean-squares algorithm was
proposed to solve the singular matrix inversion problem in the
model training process and also consequently to improve the
numerical stability and save computational cost. A sequential
modification of CWM prediction (SCWM) was developed
to solve the real time transient recognizing and predicting
problem. A sequential transient overlapping elimination
method was also developed based on the idea of tail prediction
for the partially received transient head. Other electric transient
processing issues like scaling and transient detection under
overlapping were also discussed. Several benchmark transient
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Fig. 5. SCWM test of prototype electric load transients with different scale factors. The dashed lines describe the family of load transients under scales different
from the default scale used in training. The solid lines show the SCWM prediction of the transients’ long-range behaviors, and the cross-marked solid lines show
the tail prediction errors of the corresponding partially received transients.

Fig. 6. SCWM test of concatenated and overlapping load transients.

examples were used in the simulation to verify the developed
model and the possibility of implementing the SCWM in real
time parallel processing hardware. Future work will be concen-
trated on the improvement of the real time implementation of
the SCWM module on FPGA that is to be embedded into real
power system controls.
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