
IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014 2459

NilmDB: The Non-Intrusive Load Monitor Database
James Paris, John S. Donnal, and Steven B. Leeb

Abstract—This paper presents NilmDB, a comprehensive
framework designed to solve the “big data” problem of non-in-
trusive load monitoring and diagnostics. It provides the central
component of a flexible, distributed architecture for the storage,
transfer, manipulation, and analysis of time-series data. NilmDB
is network-transparent and facilitates remote viewing and man-
agement of large data sets by utilizing efficient data reduction and
indexing techniques.

Index Terms—Big data, intelligent powermetering, nonintrusive
load monitoring, smart grid.

E NERGY monitoring and smart grid applications have
rapidly developed into a multi-billion dollar market [1].

The continued growth and utility of monitoring technologies
is predicated upon a necessity to economically extract action-
able information from acquired data streams. User and operator
needs define the nature of relevant information regarding power
consumption and operation of the distribution system. The scale
of this information can vary greatly in time, frequency, and
amplitude or dynamic range. Basic energy-scorekeeping might
be accomplished with time series data of real and reactive
power consumption; essentially, information at or near line
frequency. Power quality monitoring might require knowledge
of line current and line voltage harmonics an order of magni-
tude higher in frequency. Diagnostic monitoring might require
knowledge of non-integer-multiple frequencies of the line, e.g.,
tracking the principal slot harmonic of an important rotating
machine. All of this data, and other streams as well, might be
needed on time scales ranging from fractions of a second, for
a transient study, to months or years, for energy scorekeeping
and behavior tracking.
One of the largest roadblocks to effective analytics for power

data arises from the disparities of scale inherent in data collec-
tion and processing, which often limits the speed and resolution
at which data can be captured and effectively managed. This, in
turn, affects the ability to extract actionable information from
the data. Furthermore, existing database systems are ill-suited
to power monitoring. Traditional SQL databases provide a pow-
erful query structure but do not perform well with very large
record sets. Partly for this reason, several NoSQL variants have

Manuscript received August 30, 2013; revised January 10, 2014; accepted
April 30, 2014. Date of publication July 01, 2014; date of current version
September 05, 2014. This work was supported in part by the BP-MIT Research
Alliance, the Office of Naval Research Structural Acoustics Program, in part
by the MIT Energy Initiative, and in part by The Grainger Foundation. Paper
no. TSG-00712-2013.
The authors are with the Electrical Engineering and Computer Science De-

partment, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: bigjim@Mit.edu; jdonnal@Mit.edu; sbleeb@mit.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSG.2014.2321582

gained popularity in recent years, but their key-value paradigm
does not provide an efficient query mechanism for timestamped
data [2]. Time series databases used in the financial sector to
capture high frequency trading information do provide the speed
and query structure required but are generally proprietary sys-
tems and assume that nodes are connected with extremely high
bandwidth links, often installed at great expense. [3] Power
monitors produce similarly large datasets but must operate with
relatively low bandwidth links and at minimal cost. The failure
of several high-profile attempts at delivering such analytics to
users, such as Google PowerMeter and Microsoft Hohm [4],
demonstrates the difficulty of the problem. Similarly, “smart
meters” may in many cases ultimately prove too limited in their
feature set, communication requirements, and adaptability to
justify their installation expense.
The non-intrusive load monitor (NILM) has been shown

to be an effective and efficient energy monitoring system,
and has been applied to a wide variety of systems [5]–[8].
With its ability to perform high-speed and high-resolution
data acquisition, NILM also provides significant advantages
for condition-based monitoring and diagnostics. This paper
presents NilmDB, a comprehensive framework for solving the
“big data” analytics problem of energy monitoring applications
[9]. NilmDB is a network-enabled database that supports ef-
ficient storage, retrieval, and processing of vast, timestamped
data sets. It allows a flexible and powerful separation between
on-site, high-bandwidth processing operations and off-site,
low-bandwidth control and visualization, through the use of
unique indexing and data compression techniques. Specific
analysis of NILM data can be performed as data is acquired,
or retroactively as needed, using short filter scripts written in
Python and transferred to the monitor. The NilmDB framework
takes advantage of inexpensive contemporary computing to
place adaptable processing power at locations in the utility
best suited to minimize communications requirements, while
preserving almost unlimited data analytics flexibility.
Large-scale power monitoring analytics poses a variety of

unique challenges related to storage, transfer, and processing of
data. Specific challenges include:
1) Data Relationships: Tracking the interrelationships be-
tween independent data streams, both raw and processed.

2) Data Uniformity: Managing the non-uniformity of data
rates, and the potential unreliability of data capture across
larger systems.

3) Efficient Storage: Supporting large amounts of stored
data, which can easily exceed hundreds of billions of
samples.

4) Analytic Flexibility: Supporting the extraction, and pro-
cessing, and insertion of arbitrary time-ranges of data.

5) Network Transparency: Connecting distributed moni-
toring systems and users.

1949-3053 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2460 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014

Fig. 1. NilmDB data streams contain homogenous data in a wide variety of
formats. Streams are organized in a tree-like hierarchy.

6) Simultaneous Access: Supporting simultaneous,
error-free access from multiple programs and users.

7) Data Visualization: Developing compression methods
and storage techniques to permit fast, efficient visualiza-
tion of data with minimal network bandwidth usage.

8) Disaggregation: Extracting information about individual
loads from aggregate data, and supporting diagnostics that
target these loads.

The NilmDB framework runs on any conventional Linux
platform, from a desktop to a Raspberry Pi [10]. It provides
powerful solutions to all of these challenges, as detailed in the
following sections.

I. DATA RELATIONSHIPS: STREAMS

Complex relationships often exist between collected data
sets. At the acquisition stage, a load monitoring system must
track each data source and its relationships to other data. For
example, three voltage waveforms may be related in that they
are three phases of the utility supply. Three currents may rep-
resent the current draw from that utility, for a particular motor.
At a higher level, a storage system should be able to group
motors, perhaps by room or building. Computed metrics, such
as total power computation and power harmonics, also require
such details to be tracked.
NilmDB achieves this by organizing all data in “streams”.

Streams contain time-series data from a particular source. This
data can represent physical quantities, computed values, or
any other timestamped information. Examples include voltage,
current, temperature, vibration, spectral envelopes, system
run-time and health metrics, error and event indicators, etc.
Streams are organized and identified in the database using a
tree-like path structure that mirrors an arrangement of files and
folders, as shown in Fig. 1.
Streams contain recorded or generated waveforms. They

can be viewed conceptually as large tables of data, as shown
in Fig. 2. Each row contains a unique timestamp and data that
matches the stream’s layout, which is determined when the
stream is created and indicates the number of columns and their
data type.
Besides timestamped data, NilmDB also supports storing

metadata with any number of arbitrary key/value pairs for each
stream. These key/value pairs can be used for any ancillary
information that should be stored alongside the stream. For
example, a “scale_factor” key with a value of “1.337” might

Fig. 2. Data contained within a NilmDB stream. A stream contains a fixed
number of columns of a homogeneous type, and can be conceptually viewed
as a table with an unbounded number of rows. Each row holds a single unique
timestamp and the data for that time.

be used to indicate a conversion ratio. Other uses for metadata
include adding appropriate labels for columns, or denoting the
source from which a processing filter read its input.

II. DATA UNIFORMITY: INTERVALS AND TIMESTAMPS

The data stored in streams may be non-uniform in time. For
example, a remote acquisition source that nominally captures at
8 kHz may vary sample rate slightly with temperature or battery
state. Streams containing data like spectral envelope harmonics
typically store one sample per line period of the utility voltage
waveform, which can vary greatly, particularly on isolated gen-
erator systems. Other types of load-monitoring data may not
follow any regular pattern at all, such as a stream that identi-
fies the turn-on events of a particular load.
Stream data may also be non-uniform due to unreliability of

the capture or data transfer process. A system that collects data
from remote sensors may periodically lose connection to those
sensors, leading to missing periods of data. A robust data an-
alytics system should handle these cases, allowing filters and
other processing to easily identify regions of time for which data
is and is not available.
In NilmDB, the time coverage of stream data is managed

through the tracking of non-overlapping data intervals, and
every sample of data within these intervals carries a unique
timestamp. If multiple data points must have the same time-
stamp or if two sets of data have overlapping intervals, two
or more streams can be used to represent the data as unique
and monotonic time series. Fig. 3 demonstrates four streams,
their intervals, and the data samples contained within those
intervals. For every half-open interval , the timestamp of
any sample stored within this interval satisfies the relationship

(1)

Two streams can differ based on their intervals even if they con-
tain the exact same data samples, as demonstrated in Fig. 3 in
streams A and B. Similarly, two contiguous intervals
and are functionally equivalent to the one long in-
terval , as shown in streams C and D.
Intervals in a stream are immutable. Creating an interval and

inserting data into that interval is a combined operation; once
created, no data can be added to, or removed from, that par-
ticular interval. Instead, new non-overlapping intervals can be
created in the same manner, or intervals or segments thereof can

PARIS et al.: NILMDB: THE NON-INTRUSIVE LOAD MONITOR DATABASE 2461

Fig. 3. Data intervals within a stream. Intervals mark ranges of time for which
data is present; within these ranges, individual timestamped data values can be
stored. Here, A and B contain the same data, but different intervals; C and D are
equivalent.

be removed together with their data. These constraints allow for
efficient storage, lookup, and retrieval of data within NilmDB.

III. EFFICIENT STORAGE: BULKDATA

Low bandwidth, higher-level data in NilmDB, such as the
list of intervals for a particular stream, the stream names, and
metadata variables, are stored in a standard SQL relational data-
base. However, standard database engines are unable to store the
vast quantities of data generated by a typical non-intrusive load
monitoring system, which can easily exceed samples per
monitored system, per year, equivalent to terabytes of data. In-
stead, the majority of NilmDB data is handled by the “bulkdata”
storage system. Bulkdata is an addressable row store, meaning
that each sample of NILM data is stored under, and can be re-
trieved by, a unique row number. It provides three fundamental
operations:
• Extract data from a specified row number.
• Insert new data, and return the row numbers corresponding
to the starting and ending rows of that new data.

• Remove data corresponding to a range of row numbers.
The rows of data are stored as raw binary on disk. The format
of each row is derived from the stream layout, and each row of
a stream takes up a fixed number of bytes, denoted .
The structure of the bulkdata storage is shown in Fig. 4.
Stream paths, such as “/stream/one”, are used as directories
in the filesystem. The data itself is stored in numbered files
inside these directories. The number of rows in each data file,

, is determined automatically at stream creation
time, based on stream layout, so that the data file size is ap-
proximately 128 MiB. Depending on the underlying operating
system, there may be a limit to how many files can efficiently
be stored in a single directory. To avoid this issue, the data files
are further grouped inside numbered directories. The group
size is typically .

A. Bulkdata Row Extraction

Extraction of data from a particular row or range of rows is
straightforward. Because each row takes up a fixed amount of

Fig. 4. The “Bulkdata” storage system. Stream data is stored in fixed-size files,
in a multi-level structure that prevents any individual directory from growing
too large. Removed data segments are tracked so that their space can be freed.

space in the binary storage, the location of row in a given
stream is fixed. The group directory number is given by:

(2)

Similarly, the file number is:

(3)

The specific offset of the row in the file is:

(4)

The binary data for the requested is then read out from the
bytes at offset , in the file , in

the directory .

B. Bulkdata Row Insertion

The bulkdata storage is append-only; that is, all newly in-
serted data is appended to the last existing file, and the corre-
sponding row numbers for the new data will be greater than any
other data in the stream. The system tracks the maximum row
number ever used for a particular stream. When inserting
rows of data, the new data is written to file offsets corre-

sponding to row through , with file
offsets calculated as they were for data extraction, and is
updated accordingly.

C. Bulkdata Row Removal

Every data file, such as “0000”, can have an associated row
tracking file, “0000.removed”. This file contains a serialized
representation of a list, created in the Python “pickle” format
[11]. Each entry in this list is a pair of row numbers [start, stop],
indicating a range of “removed” rows that are no longer refer-
enced by any intervals and will no longer be accessed. As more
rows are removed, more entries are added to this file. When sup-
ported by the underlying operating system, removed row data is
marked as unused file regions in order to immediately reclaim
the freed space. When every row in a particular data file has

2462 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014

Fig. 5. Red-black interval tree, used to efficiently locate and manage the inter-
vals in which data is stored. The structure is maintained such that the height of
a tree with nodes is at most .

been marked as removed, both the data file and its tracking file
are completely deleted from disk.

IV. ANALYTIC FLEXIBILITY: INTERVAL TREE AND
DATA EXTRACTION

Data analysis and processing within the NilmDB framework
is accomplished through the use of filters, which query NilmDB
in order to extract and process data from arbitrary time inter-
vals. The database provides analytic flexibility in this regard,
by being able to efficiently supply any requested time range

of data, even if this time range does not match
up directly with one of the previously-inserted intervals of data
in the stream.
The arbitrary data extraction is based on the stream interval

tracking and the stream data timestamps. Rather than searching
through each interval in a linear fashion to locate the requested
data, or creating and maintaining a database index on the times-
tamps, extraction is performed quickly and efficiently by first
utilizing an interval tree, as shown in Fig. 5. The interval tree
is a red-black tree, a form of binary search tree with a per-node
“coloring” [12]. The coloring is used to guarantee a balanced
structure by maintaining the following invariants:
• The root node is black.
• If a node is red, its children are both black.
• All paths from the bottom of the tree to a particular node
contain the same number of black nodes.

When inserting or deleting nodes from the tree, these invariants
can be maintained in time by recoloring and moving
nodes as necessary [12]. The maximum height of a balanced
tree with nodes is at most , and so search oper-
ations also take time. Thus, the time needed to insert,
remove, and locate a specific interval in a stream grows with
the logarithm of the number of intervals present. This is used to
efficiently locate the set of all intervals that intersect the re-
quested time range .
Given , the NilmDB database layer proceeds to find the

bulkdata rows, corresponding to these intervals, that specifi-
cally contain timestamps in the range . Since any
particular interval in the bulkdata storage stores only monoton-
ically-increasing timestamps, the rows can be found efficiently
with a binary search. Intervals are represented as a starting
timestamp and row number (,) and an ending timestamp
and row number (,). The algorithms EXTRACTDATA and
LOCATETIME, shown in Algorithms 1 and 2, are used to perform

this search. They return the rows of data corresponding to the
requested interval, completing the data extraction.

Algorithm 1: Data extraction from an arbitrary time range
, given the set of all stream intervals that

intersect this range.

function EXTRACTDATA()

result Initialize empty result list.

for all intervals in do For each interval.

Get interval parameters.

Locate start.

Locate end.

for do

return result Return all matched rows.

Algorithm 2: Binary search to locate the first bulkdata row in
the range with a timestamp greater than .

function LOCATETIME()

Initial search range is all of the rows

while do Repeat until row is found

Find midpoint

if then

Narrow search to right half

else

Narrow search to left half

return

V. NETWORK TRANSPARENCY: CLIENT/SERVER MODEL

Modern energy monitoring systems are increasingly dis-
tributed in nature. Sensors and data acquisition systems may
involve a variety of network-connected or wireless compo-
nents that are often capable of doing nontrivial computation
themselves. As the complexity of data processing and analytics
grows, the use of distributed or “cloud” computing models is
crucial to maintain required performance levels.
NilmDB supports these forms of networked computing by

following a client/server model. The general architecture of the
NilmDB server is shown in Fig. 6. Multiple clients, or end users,
can access the server, and perform requests and actions. Users
and systems can utilize a variety of interfaces to communicate
with the server, such as command-line or web-based applica-
tions. Regardless of the source, all interaction with the NilmDB
server eventually takes place through a standard HTTP/1.1 com-
pliant interface [13]. The HTTP defines methods that perform
actions on particular resources, which are identified by Uniform

PARIS et al.: NILMDB: THE NON-INTRUSIVE LOAD MONITOR DATABASE 2463

Fig. 6. NilmDB system architecture. Client programs and filters interact with
NilmDB via Hypertext Transfer Protocol (HTTP), which supports local and re-
mote connections equally well.

Fig. 7. Example script which performs median filtering. Scripts can be dynam-
ically issued to remote NilmDB installations for efficient processing of large
amounts of data.

Resource Locator (URL). These actions correspond to the fun-
damental NilmDB operations, such as creating a stream, listing
available intervals, and inserting or extracting data.
In order to fully support a distributed computation model,

the NilmDB framework includes a secondary server, NilmRun,
which gives clients the ability to control the execution of soft-
ware on remote NilmDB hosts. For example, consider a system
where a remote NilmDB server is collecting and storing data,
and a local client wishes to manipulate this data in some way, to
extract a single metric. Using NilmRun, the client can transmit
short processing scripts to the remote machine, execute them
there, and retrieve the status and results. This conserves band-
width, and increases throughput, compared to the client pulling
down the data and computing the metric itself. Fig. 7 shows an
example processing script.
The networking capabilities of NilmDB are heavily used by

NILM Manager, which is fully described in [14]. NILM Man-
ager is a unified and centralized management infrastructure for
the distributed NilmDB system as shown in Fig. 8. TheManager
connects to remote NilmDB systems through a secure virtual
private network (VPN), providing a simple, user-friendly and
web-based interface to any authenticated user with an Internet
connection. This interface includes a wide variety of tools, in-
cluding configuration of servers and streams, real-time data vi-
sualizations, and the interactive testing and development of new
data processing filters. Privacy management can be tailored to
each installation by restricting access to particular data streams
over the secure network. As the bulk data remains on the end

Fig. 8. NilmDB network and global system architecture. Individual NilmDB
instances are accessed and controlled through NILM Manager.

Fig. 9. Serialization of database operations. Incoming HTTP requests are han-
dled by amulti-threaded server, which performs lower-level database operations
through a serializer thread. All operations are then run in a single thread, in the
order they were enqueued.

system and can be processed remotely, a wide range of privacy
policies can be implemented.

VI. SIMULTANEOUS ACCESS: SERIALIZATION

Support for simultaneous access from multiple clients is a re-
quirement for real-time load monitoring applications, as ana-
lytics must continuously be performed while data is being cap-
tured. In order to support this use case, the HTTP server in-
terface of NilmDB is multi-threaded, and supports client con-
nections and requests that can come in at any time. Receiving
these requests, or sending responses, might proceed slowly, de-
pending on network conditions, and so the server supports and
can transfer data on any number of simultaneous connections.
However, operations that modify the database state generally
need to be performed one at a time, in order to maintain in-
ternal consistency of the stored data and state. While complex
fine-grained locking and ordering may allow some database op-
erations to run concurrently, NilmDB uses a more straightfor-
ward approach where direct database access must be performed
from one thread only.
Single-threaded access is accomplished through the use of

the “serializer” module, which allows any running thread to en-
queue a function call “request” and wait for the result. When
the database is not busy, the serializer will retrieve the earliest
request from the queue, perform its function call in a single,
global thread, and return the result to the original thread. Thus,
the serializer ensures that any operations on the database are
serviced one at a time, in first-in, first-out (FIFO) order. The

2464 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014

Fig. 10. Visualization of NilmDB streams through the NILM Manager. The NILM Manager provides a user-friendly interface that allows interactive navigation
and zooming of arbitrary NilmDB data streams.

process of running queued requests in the serializer thread is
shown in Fig. 9.
Some HTTP requests may take an unbounded amount of time

to complete, such as extracting data from a large interval. To en-
sure fairness between clients, the NilmDB database layer may
choose to only perform a portion of the requested operation be-
fore returning, which gives other threads that are waiting for the
serializer a chance to run. The HTTP server handles such occur-
rences automatically, resubmitting the remainder of the opera-
tion to the serializer until it is complete. The client sees it as
single HTTP request and response.

VII. DATA VISUALIZATION: NILM MANAGER
AND DECIMATION

Visualization of data provides significant benefits to load
monitoring. In the installation and testing phases of a non-in-
trusive load monitor, the ability to visually explore stored data
enables real-time refinement of sensor networks. During the
research and development of specific models, performance
metrics, and reports, a visual display of initial, intermediate,
and final processing results provides significant insight into the
analytics under development. For end-users, the ability to plot
and explore data trends, energy usage, reports, and diagnostic
indicators leads directly to actionable results.
The NILM Manager, shown in Fig. 10, provides a powerful

data visualization and navigation interface for NilmDB systems
[14]. This interface forms a central component of the manager,
and is used both as a standalone tool for exploring NilmDB

streams, and as an embedded component for controlling and
visualizing the output of other tools. The features of the plot
engine include:
• Live, draggable, zoomable plots with “Google Maps-like”
navigation.

• Dual axes with independently adjustable scaling and
positioning.

• Simultaneous plotting of data with compatible units.
• Overview window to facilitate navigation of large data
streams.

• Antialiasing of high frequency data through shading of
signal envelopes.

• Support for discontinuous data and gaps in streams.
Crucially, the plotting engine achieves these features while
transferring only a minimal amount of data from the remote
NilmDB server. Typically, the number of data points retrieved
to display a particular window of data is on the order of 1,000
per plotted stream, regardless of zoom level.
The plotting engine achieves these low data transfer rates in

two ways. First, it makes heavy use of the stream and interval
support of NilmDB, particularly when extracting data. For ex-
ample, when extracting data corresponding to the currently dis-
played -axis, the server manages all details of finding and re-
turning only that data which is both present and needed.
The second feature that enables efficient plotting is decima-

tion. Here, decimation is a process by which ancillary streams
of filtered, downsampled data are pre-computed and stored on
the server, similar to the computer graphics technique of “MIP

PARIS et al.: NILMDB: THE NON-INTRUSIVE LOAD MONITOR DATABASE 2465

Fig. 11. Decimation of stream data. Each decimation level tracks the min-
imum, mean, and maximum of a block of values from the previous level. The
total storage requirement for original samples is only , regardless of the
number of levels.

mapping” [15]. An example of the decimation process is shown
in Fig. 11.
Decimated streams store the mean value for each column of

an input stream, including the timestamp, calculated over small
successive blocks of rows. Typically, . Thus, for an input
stream with rows, the first decimation contains rows.
The process can be repeated in multiple “levels”, with each level
having correspondingly fewer rows, until just one row remains,
containing the average of all the data in the stream. In addi-
tion to the mean, decimated streams also store the minimum
and maximum values of each successive block. For repeated
decimations, these are calculated over the previously computed
extrema.
When a requesting data for a plot, NILM Manager queries

NilmDB for the total number of data rows in the desired in-
terval. Based on the response, it automatically determines and
requests data from the decimation level that contains the optimal
number of points for display. The means are plotted as a line,
and the minima and maxima are used to plot signal envelopes
in a lighter shade. This helps maintain a visual indication of
the data range of the original stream, similar to the display of
a digital oscilloscope. The averaging operation also provides a
simple low-pass filter, removing aliasing effects from the plot.
The additional storage requirements for the decimated

streams are modest. Consider a stream with rows and one
column per row that is decimated by a factor , as shown in
Fig. 11. Decimated streams store three times as many columns
(minimum, mean, and maximum) as the original stream, but
each decimation level contains rows. The total number of
stored values for the original data plus decimation levels is
given by the geometric series:

(5)

(6)

For the case , the limit of this as is:

(7)

(8)

Therefore, storing every decimation level of a stream inNilmDB
will at most only double the storage requirements of the orig-
inal data, when decimating by a factor of 4. This overhead is
low enough that it is almost always outweighed by the resulting
bandwidth reduction and visual quality of the plots.

VIII. DISAGGREGATION: TRAINOLA AND DIAGNOSTICS

One of the defining aspects of non-intrusive load monitoring
is sensor reduction through the acquisition of aggregate power
measurements from a collection of loads. Individual load iden-
tification and diagnostics requires subsequent disaggregation
of these loads. Generally, this relies on the existence of some
unique metric or feature of individual systems that distinguishes
loads of interest. Typical metrics include steady-state power
level and transient event shape, amplitude, and sequencing. In
particular, event identification based on exemplar matching has
been demonstrated as a particularly useful technique for iden-
tification and diagnostic monitoring [6], [16]–[18]. To support
this, NilmDB and NILM Manager provide the “Trainola” tran-
sient event identification tool.
Trainola illustrates how a particular type of identification al-

gorithm, namely the Euclidean norm, can be implemented in
the NilmDB framework. For loads without consistent transients
other algorithms may prove more reliable. Using the dynamic
filter architecture of NilmDB, different detection algorithms can
be tested and deployed as required.

A. Trainola User Interface

Trainola is exposed by NILM Manager as an interactive
workspace, shown in Fig. 12. The lower half of the window
mirrors the data visualization interface, where the user can
freely select, plot, and navigate NilmDB streams. At the top,
the user can create and name exemplars based on the data
currently in view. Typically, these exemplars correspond to
particular “turn-on” and “turn-off” events, and extend to in-
clude a few seconds of steady-state behavior before and after
each transient event. For streams with multiple columns, such
as spectral envelope preprocessor harmonics, the exemplars
consist of whichever columns are visible when the exemplar is
saved.
To run the automatic identification process, the user visu-

ally navigates to the target data stream and zooms out to the
time-frame over which events should be identified. The exem-
plars and target data do not have to come from the same stream,
but the same named columns must be present in both. Then, the
“Run Trainola” button starts an identification process on the re-
mote machine, which will classify events. During and after the
identification, matched events can be viewed as vertical lines
overlaid on the plot, by selectively enabling each exemplar. The
events are also stored in a dedicated NilmDB output stream, and
can be accessed by other filters and tools.

B. Matching Algorithm

The Trainola tool matches the shape of exemplars to the
input data using the following algorithm. Consider two sampled
waveforms of equal size , for example, an observation
and an exemplar . After removing dc offset, a measure of

2466 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014

Fig. 12. “Trainola” exemplar-based event identification. The user graphically identifies examples of transient events in an input stream, which can then be auto-
matically located and marked in an output stream. Matching events are plotted as vertical lines, overlaid on the input data.

similarity between two waveforms is the Euclidean distance,
defined as:

(9)

This expression can be expanded to:

(10)

(11)

which is more conveniently expressed in terms of the dot
product:

(12)

(13)

If the waveforms match, the Euclidean distance between them
would be , and so the equation reduces to:

(14)

(15)

Furthermore, if the amplitudes match, , giving:

(16)

(17)

Fig. 13. Correlation metric for a matching exemplar. A peak that falls within a
detection window around 1.0 indicates that the exemplar matches at that time.

Thus, (17) holds when the two waveforms match in ampli-
tude and shape. Non-matching waveforms may also satisfy this
condition in degenerate cases, but in general,
has been found to be a useful figure of merit to use when
judging power signature similarity [18]. As approaches 1.0,
it indicates confidence that and match, both in shape and
amplitude.
When the full waveform contains more points than the ex-

emplar , the calculation can be performed over sliding win-
dows of the input data, determining at each window offset.
As “slides” over a feature in the that matches in shape and
amplitude, will approach a local maximum of 1.0. Fig. 13
demonstrates this metric for a matching exemplar. In Trainola,
a peak-finding algorithm is applied to locate local maxima, and
values that fall within a small detection window around 1.0 are
marked as matched events.

PARIS et al.: NILMDB: THE NON-INTRUSIVE LOAD MONITOR DATABASE 2467

C. Diagnostics

Once individual transient events have been identified by
Trainola, processing algorithms can be used to extract action-
able system status information, such as health metrics, failure
indicators, and motor speed estimations. Many such diagnostics
have been developed within the context of the NILM [8], [17],
[19]–[21], and can be applied within the NilmDB framework.

IX. CONCLUSIONS

The NilmDB data storage and management framework rep-
resents a shift in the design and implementation of load mon-
itoring systems. It provides a fully structured, consistent, net-
work-aware architecture that enables the development of action-
able diagnostics across a wide variety of systems. It provides
these services while minimizing demand for network commu-
nication resources. NilmDB organizes and standardizes the col-
lection and processing steps, enabling modular and reusable
filter components to streamline and simplify the deployment of
monitoring systems. With NILM Manager, NilmDB provides
the solution to the “big data” analytics problem of large-scale
power system monitoring. It enables modern advanced NILM
techniques, which can disaggregate and report the operating
schedule of individual loads strictly from measurements of ag-
gregate current consumption, while maintaining low network
bandwidth requirements and flexible computing options.

REFERENCES

[1] D. J. Leeds, “The Soft Grid 2013–2020: Big Data & Utility Analytics
For Smart Grid,” Tech. Rep. GTMResearch, 2012 [Online]. Available:
http://www.greentechmedia.com/research/report/the-soft-grid-2013

[2] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,”
in Proc. ICPCA, 2011, pp. 363–366.

[3] E. Budish, P. Cramton, and J. Shim, “The High Frequency Trading
Arms Race: Frequency Batch Auctions as a Market Design Response,”
2013 [Online]. Available: home.uchicago.edu/~shim/Papers/HFT-Fre-
quentBatchAuctions.pdf

[4] An Update on Google Health and Google PowerMeter, Google, Inc.,
Jul. 26, 2013 [Online]. Available: http://googleblog.blogspot.com/
2011/06/update-on-google-health-and-google.html

[5] S. B. Leeb, S. R. Shaw, and J. J. L. Kirtley, “Transient event detection
in spectral envelope estimates for nonintrusive load monitoring,” IEEE
Trans. Power Del., vol. 10, no. 3, pp. 1200–1210, Jul. 1995.

[6] L. K. Norford and S. B. Leeb, “Non-intrusive electrical loadmonitoring
in commercial buildings based on steady state and transient load-detec-
tion algorithms,” Energy Buildings, vol. 24, pp. 51–64, 1996.

[7] J. Paris, “A Framework for Non-Intrusive Load Monitoring and Di-
agnostics,” Master’s, Dept. Elect. Eng. Comp. Sci., MIT, Cambridge,
MA, USA, 2006.

[8] R. W. Cox, “Minimally Intrusive Strategies for Fault Detection and
Energy Monitoring,” Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci.,
MIT, Cambridge, MA, USA, 2006.

[9] J. Paris, “AComprehensive System for Non-Intrusive LoadMonitoring
and Diagnostics,” Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci.,
MIT, Cambridge, MA, USA, 2013.

[10] Raspberry Pi, Wikipedia Foundation, Aug. 30, 2013 [Online]. Avail-
able: http://en.wikipedia.org/wiki/Raspberry_Pi

[11] Pickle – Python Object Serialization, Python Software Foundation,
Aug. 30, 2013 [Online]. Available: http://docs.python.org/2/li-
brary/pickle.html

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1 IETF, 1999,
RFC2616.

[14] J. Donnal, “Home NILM: A Comprehensive Non-Intrusive LoadMon-
itoring Toolkit,” Master’s thesis, Dept. Elect. Eng. Comp. Sci., MIT,
Cambridge, MA, USA, 2013.

[15] L. Williams, “Pyramidal parametrics,” in Proc. 10th Annu. Conf.
Comput. Graph. Interactive Tech., New York, NY, USA, 1983, pp.
1–11.

[16] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, “Nonintrusive
load monitoring and diagnostics in power systems,” IEEE Trans. In-
strum. Meas., vol. 57, no. 7, pp. 1445–1454, Jul. 2008.

[17] E. Proper, R. W. Cox, S. B. Leeb, K. Douglas, J. Paris, W. Wichakool,
L. Foulks, R. Jones, P. Branch, A. Fuller, J. Leghorn, and G. Elkins,
“Field demonstration of a real-time non-intrusive monitoring system
for condition-based maintenance,” presented at the Electric Ship De-
sign Symp., National Harbor, MD, USA, Feb. 2009.

[18] J. Paris, Z. Remscrim, K. Douglas, S. B. Leeb, R. W. Cox, S. T. Gavin,
S. G. Coe, J. R. Haag, and A. Goshorn, “Scalability of non-intrusive
load monitoring for shipboard applications,” presented at the Amer.
Soc. Naval Eng. Day, National Harbor, MD, USA, Apr. 2009.

[19] P. R. Armstrong, “Model Identification with Application to Building
Control and Fault Detection,” Ph.D. dissertation, Dept. Architecture,
MIT, Cambridge, MA, USA, 2004.

[20] W. Greene, J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar,
R. Cox, C. Laughman, and T. J. McCoy, “Non-intrusive monitoring
for condition-based maintenance,” presented at the Amer. Soc. Naval
Engineers Reconfigurability Survivability Symp., Atlantic Beach, FL,
USA, Feb. 2005.

[21] U. Orji, Z. Remscrim, C. Laughman, S. B. Leeb, W. Wichakool, C.
Shantz, R. Cox, J. Paris, J. Kirtley, and L. Norford, “Fault detection
and diagnostics for non-intrusive monitoring using motor harmonics,”
in Appl. Power Electron. Conf., Palm Springs, CA, Feb. 2010.

James Paris received the B.S., M.S., and Ph.D. de-
grees from the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2003, 2006,
and 2013, respectively.
He is currently doing independent consulting work

in Boston, MA, USA.

John S. Donnal received the B.S. degree in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2007 and the M.S. degree in electrical
engineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2013, where
he is currently pursuing the Ph.D. degree.
His research interests include nonintrusive load

monitoring synthesis, energy harvesting, and com-
munications systems.

Steven B. Leeb received the Ph.D. degree from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 1993.
He has been a member on the MIT faculty

in the Department of Electrical Engineering and
Computer Science since 1993. He also holds a joint
appointment in MIT’s Department of Mechanical
Engineering. He is concerned with the development
of signal processing algorithms for energy and
real-time control applications.

