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Abstract-We consider a class of robust, rank-based signal 
processing filters, particularly with regard to its usefulness in 
the power electronics field. This class of nonlinear filters is 
characterized by the inclusion of a sorting element in the signal 
path. The sorting operation allows these filters to suppress im- 
pulsive noise while preserving edges and monotonic sections of 
signals. This introductory paper concentrates primarily on the 
median filter, it being the most accessible filter of the class. A 
working knowledge of issues arising in design and implemen- 
tation is developed. 

I. INTRODUCTION 
INCE the early 1970’s there has been growing use of S a class of discrete, nonlinear, and shift-invariant filters 

that incorporate a sorting element in their signal-process- 
ing path. The inclusion of a ranking operation gives them 
abilities unavailable to linear filters, such as the capability 
to suppress impulse or transient noise from signals while 
preserving any underlying edges. These nonlinear 
smoothing properties, coupled with ease of implementa- 
tion, have made such filters popular for many signal-en- 
hancement tasks in the fields of geophysical, biomedical, 
image, and radar signal processing. Present uses include 
smoothing and suppression of spike and other noise 
(known as speckle noise in images) [ 13, [2], edge detec- 
tion [3], feature extraction, and signal coding [4], [5]. 
This growing group of applications has generated interest 
in a number of issues, ranging from the theoretical prop- 
erties of such filters [6], [7] to fast VLSI implementations 
[8], [9] and has prompted us to consider their use for sig- 
nal processing in the field of power electronics. This in- 
troductory paper concentrates mainly on the median filter 
as being illustrative of these filters, though other elements 
of the class are presented briefly in Section IV. 

In situations where signal and noise spectra occur in the 
same range (such as high-frequency noise and “edgy” 
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signals) and linear filters perform poorly, median-type fil- 
ters can provide a good alternative to linear smoothing. 
The superior performance of median (and more general 
rank-based) filters arises from the fact that linear filters 
are frequency-oriented filters, shaping the spectra of sig- 
nals, whereas median filters can be considered as geo- 
metrically oriented filters, shaping the local form of sig- 
nals. For example, although the spectral content of 
impulses and steps are similar, they are geometrically dif- 
ferent; steps are locally monotonic, whereas impulses are 
not. In this terminology, median filters “pass” signals 
that are locally monotonic (or constant) and filter or 
smooth those that are not. We will make these notions 
precise. 

11. THE MEDIAN FILTER 
A median filter functions by sliding a symmetrically 

placed window across the data point by point and produc- 
ing the median of the data in the window at the current 
time as output. This process is illustrated in Fig. 1 for a 
window of size 2N + 1. Here, x ( n  + N) is the input 
signal and y ( n )  is the output signal. The other filters of 
this class all share this moving window form. For the me- 
dian we have 

y(n)  = median of [x(n  - N ) ,  . * * , x ( n ) ,  * . . , 
x ( n  + N)]. (1) 

For finite length signals, the beginning and end of the data 
are usually padded with the first and last value, respec- 
tively, as necessary to fill the window, although other 
methods (e.g., padding with zeros) are possible. For con- 
venience, we often refer to a median filter with window 
size 2N + 1 as a filter of size N. 

To illustrate the effect of the median filter on signals in 
comparison with linear filters, Fig. 2(a) shows an ideal 
square-wave sequence, with amplitude values 0 and 5 ,  
corrupted by impulse (Cauchy) noise [lo]. Fig. 2(b) 
shows this signal after both median and fourth-order But- 
tenvorth lowpass filtering. The filter size for the median 
was set at N = 20 points and the bandwidth of the digital 
Butterworth low pass set at w = 0 . 1 5 ~ .  Note how the 
median removes the spikes and effectively reconstructs the 
edgy signal. In contrast, the linear filter responds to the 
spikes as if they are impulses and fails to recover the un- 
derlying waveform. 
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Fig. 1. The median filter. 
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Fig. 2.  (a) Square wave corrupted with impulsive noise. (b) After median 

and Butterworth lowpass filtering. 

A.  Uses in Power Electronics 
The class of nonlinear filters represented by the median 

filter promises to be valuable for signal processing in the 
power electronics setting by removing spike or other im- 
pulselike noise while preserving critical edges in wave- 
forms. We discuss two applications of these filters: first, 
as an off-line tool for “cleaning up” experimental data, 
and second, as a real-time element for online monitoring 
and control applications. 

It is often of interest to see how well simulated wave- 
forms match such features as the rise times and slopes of 
measured data. In a simulation model, however, the par- 
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Fig. 3 .  Switch voltage. 

asitic components, such as MOSFET body capacitances, 
are not included for reasons of numerical efficiency. 
Therefore, simulated waveforms will not display such 
characteristic parasitic features as the ringing shown on 
the voltage step in Fig. 3 .  The median filter is useful for 
removing such parasitic ringing from measured wave- 
forms, along with spikes and hash, while preserving sig- 
nificant underlying features so that the pertinent charac- 
teristics of these waveforms may be compared with 
theoretical values. 

To illustrate the potential of the median filter in a power 
electronics setting, consider the flyback converter pass 
stage shown in Fig. 4. This converter was operated in 
discontinuous conduction mode with a switching fre- 
quency of 5 kHz and is capable of delivering 25 W through 
the 10-V output winding. All displayed waveforms were 
sampled at 10 MHz with a digital storage oscilloscope and 
processed off-line. For the experiments presented here, 
the pass stage was run open loop. No effort was made to 
increase the robustness or general utility of the circuit. Its 
purpose was to provide, for the sake of illustration, ex- 
amples of typical problems found in power electronic cir- 
cuits. 

Fig. 3 shows the switch voltage when the controllable 
switch turns off. The spike on the rising edge of the switch 
voltage is caused by MOSFET body capacitance ringing 
with the parasitic inductance in the transformer. Fig. 5(a) 
shows the data after a median filter of size N = 8 is ap- 
plied. Fig. 5(b) shows the corresponding results of filter- 
ing the data in Fig. 3 with three different fourth-order But- 
terworth filters whose cutoff frequencies span a range of 
values with respect to the sampling frequency. None of 
the analog filters is as capable of removing the parasitic 
ringing while preserving the step edge as the median fil- 
ter. Fig. 6 shows the voltage across the switch current 
sense resistor R1 when the controllable switch is closed. 
Again, note the ringing at the start and end of the ramp 
caused by the MOSFET body capacitance. The spike at 
the start of the ramp is particularly problematic in a con- 
trol setting because it could cause pretriggering of the 
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Fig. 5. Filtered switch voltage. (a) Median. (b) Lowpass. 

PWM latch in a current-mode controller. A median fil- 
tered version of the ramp (N = 5 )  is shown in Fig. 7(a). 
Shown in Fig. 7(b) are the results of using three different 
fourth-order Butterworth filters on the data. The median 
filter is able to remove the spike while preserving the slope 
of the ramp. 

B. Real-Time/Implementation Issues 
Since the median filter requires only sorting, it is in- 

herently immune to many of the pitfalls that must be 
avoided in digital implementations of linear filters, such 
as round-off error during floating-point mathematical op- 
erations. In applications where a median filter would be 
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Fig. 7. Filtered switch current. (3) Median. (b) Lowpass. 

desirable, it would therefore also appear to have signifi- 
cant implementation advantages over linear filters. To in- 
vestigate these expectations, we implemented a real-time 
median filter using a Texas Instruments TMS32020 digi- 
tal signal processor. 

The implementation revealed several drawbacks to the 
use of the current generation of commercial signal pro- 
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cessors for real-time median filtering. The TMS32020, 
like most signal processors of its type, has an inherently 
serial architecture. As a result, the sorting process re- 
quired to find the median window value is relatively time 
consuming, especially for large window sizes. Even after 
carefully optimizing our computation strategy and algo- 
rithm, we found that the time required for this sorting op- 
eration limited operation of the filter to sample rates of 40 
kHz at moderate window sizes ( N  = 5 ) .  

Our experience with the TM32020 system has led us to 
explore more efficient ways of implementing median fil- 
ters using both analog and digital hardware. Many custom 
architectures for implementing the median filter have ap- 
peared in the signal processing literature in recent years 
[8], [9], [ 1 13-[ 171. Most architectures are digital imple- 
mentations that provide specialized hardware to perform 
fast ranking of the data in the filter window. These custom 
architectures, often operating in the video frequency 
range, are ideal for implementing median-type filters, just 
as the fast floating-point multiply-accumulate units found 
in current digital signal processors are ideal for the im- 
plementation of linear filters. Discrete-time analog archi- 
tectures optimized for the median filter have also been 
developed [ 181. These developments suggest that general 
high-performance sorting hardware might also have a 
place in future signal processor chips, just as fast floating- 
point multiplication units have become essential to the 
present generation of digital signal processors. We will 
report the results of our experiments with such specialized 
sorting hardware at a later date. 

111. MEDIAN FILTER PROPERTIES 
There are a number of ways to understand the function- 

ing of the median filter and the broader class of nonlinear 
filters that are under consideration, including interpreta- 
tions based on stochastic [6], deterministic, and geomet- 
ric concerns [7]. Historically, the median filter arose out 
of robust statistical considerations [ 191, a route followed 
by other filters of the class (e.g., the M [20], L [21], and 
R filters [22]). Here, we focus on a geometric formalism 
to understand the properties of the median filter, as it is 
the most accessible for design and implementation pur- 
poses. This formalism will allow us to develop insights 
and intuitions similar to those for linear filters, including 
extensions of the concepts of bandwidth and invariant sig- 
nals. Some of the other filters of the class containing a 
sorting element are presented in Section IV. 

A. Geometric Approach 
From Fig. 2 we can see qualitatively that the median 

filter smooths signals. This smoothing effect increases 
with the filter size N .  However, because median filters are 
nonlinear, they do not obey the superposition principle of 
linear filters, making discussion of frequency properties 
of limited value. Instead, we think of the median filter in 
a shape-oriented way [23]. Rather than viewing signals as 
composed of sinusoids (signals whose shape is unchanged 

by linear filtering), we present geometric structures whose 
shape is unchanged by the filters of interest as our signal 
building blocks. Such signals and structures that are in- 
variant to a given filter (i.e., a fixed filter size N )  are 
defined to be roots in the literature [7]. The example of 
steps and impulses being spectrally similar but geometri- 
cally different is one such case. We will show that steps 
are root structures of median filters while impulses are 
not. Concentrating on roots and their properties will thus 
focus our attention on fundamentally geometric aspects of 
signal structure. 

In order to make these notions precise we need some 
notation. We use the following definitions from [7]: 

1) Constant neighborhood: a section of at least N + 1 
consecutive points, all of which are identically val- 
ued. 

2) Edge: a monotonically rising or falling region be- 
tween two constant neighborhoods. 

3 )  Impulse: a section of one to N points surrounded by 
identically valued constant neighborhoods whose 
boundary points are different from the constant 
neighborhoods. 

4) Oscillation: any section that is not part of a constant 
neighborhood, an edge, or an impulse. 

Note that any signal may be decomposed into a series of 
the structures defined above, which may thus be consid- 
ered as a set of geometric building blocks for signals. 
Also, our ‘‘ruler” for distinguishing different structures 
is of length N ,  and hence a function of the size of the filter 
under consideration. Thus there is a direct relation be- 
tween the size of a given filter and what is considered an 
edge, impulse, etc. We may now start our taxonomy of 
median filter and root properties following [7], [24]. 

Property 1 (Impulse Elimination): Impulses are elim- 
inated after a single pass of the median filter. 
This property formally states the impulse filtering ability 
of the median filter noted earlier. We may simply char- 
acterize all root signals and structures of the filter as fol- 
lows: 

Property 2 (Root Characterization): A signal is a root 
of a median filter of size N if and only if the extended 
(padded) signal consists only of constant neighborhoods 
and edges. 
The above root characterization allows us to develop a 
notion of “geometric bandwidth” for the median filter, 
akin to the familiar frequency bandwidth used for linear 
filters. 

Property 3 (Geometric Bandwidth): In a root signal 
containing both increasing and decreasing regions, the 
sections of increase and decrease must be separated by a 
constant neighborhood (a section of at least N + 1 iden- 
tically valued points). 

Any root structure is therefore limited as to how quickly 
its slope sign may change, since a region of positive slope 
and negative slope must be separated by a constant region 
of at least N + 1 points. There are not restrictions, how- 
ever, on how quickly the signal itself may change (i.e., 
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the magnitude of the slope). This result explains why the 
median filter is effective at eliminating spike noise while 
preserving steps and monotone structures. We can also 
relate the set of root structures at a given window size to 
those at another window size. Specifically, these root sets 
are nested as follows: 

Property 4 (Root Nesting): If a signal is a root of a 
median filter of size N ,  then it is also a root of a median 
filter of size N - 1 .  

This property may be viewed as a generalization of the 
linear concept of bandlimited signals. Here, the bandlim- 
iting is in a geometrical sense, where the structures of a 
signal in the “passband” of a median filter of size N will 
pass unchanged through any filter of size K < N .  

From a design standpoint, Properties 3 and 4 serve as 
a guide for choosing a filter size N .  For greater smoothing 
we want to choose a larger filter size, since more non- 
monotonic signal structures will appear as impulses and 
oscillations to the filter and be removed and reduced, re- 
spectively. On the other hand, to preserve signal structure 
of interest we cannot make N too large. Since the smallest 
signal structure passed by the filter will be only N + 1 
points long, we should choose N + 1 no larger than the 
smallest signal structure we wish to preserve. For exam- 
ple, to eliminate the ringing in Fig. 6 at the indicated sam- 
pling rate, a filter of size N 1 5 is needed. Conversely, 
to preserve the peak structure of the ramp we want N as 
small as possible. These constraints represent the conflict- 
ing requirements of smoothing and resolution, as in linear 
filter design. A final important property of the median fil- 
ter pertaining to root signals is that any finite-length sig- 
nal, if repeatedly filtered (i.e., the output of one filtering 
used as the input to the next), will become a root in a finite 
number of passes. 

Property 5 (Obtaining Roots): Any nonroot signal 
(containing oscillations and impulses) of length L will be- 
come a root structure after at most ( L  - 2)/2 successive 
filterings. 

In general, substantially fewer passes are needed to 
produce a root and certain variants of the standard median 
filter, such as the recursive median filter to be discussed 
as follows, produce roots in a single pass. The importance 
of this property is that structures, such as oscillations, 
which are not root structures and yet are not eliminated 
by a single median filter pass, can be removed by repeat- 
ing filtering to a root (or by a filtering strategy that yields 
a root in one pass, as does the recursive median filter). 

In summary, the foregoing properties yield a shaped- 
based, geometric approach to the understanding and de- 
sign of median filters. These insights and intuitions are 
parallels of the concepts used in linear filtering, such as 
bandwidth and invariant signals. When these methods are 
used, new filters can be designed with desired properties 
and the effects of existing filters can be analyzed. 

IV. OTHER FILTERS 
As indicated throughout this work, the median is only 

one of a group of filters with similar noise suppression 

properties related by their use of an ordering element. One 
problem with the median filter-and a motivation for ex- 
amining other filters-is that the median filter often pro- 
vides insufficient smoothing of nonimpulsive noise. This 
problem is particularly acute in situations where the noise 
is basically well behaved (Gaussian) but is contaminated 
by a “small” amount of impulsive noise. Some alterna- 
tive filters within the same class are described next. 

1) L$Zrers: The L filters are obtained by applying L 
estimates on a moving basis. An L estimate of a 
parameter is obtained as any linear combination of 
the ordered data, where the weight of each data 
point depends only on its position in the ordered set. 
This ordered set is known as the order statistics of 
the data [21]. An example L estimate is the 
a-trimmed mean. A fraction a of the largest and 
smallest data values are deleted (weighted by zero) 
and the remaining values averaged (weighted by the 
inverse of their number). To create an L filter, a 
moving window of data is obtained and sorted as for 
the median filter, but now a linear combination of 
the sorted elements is produced as the output at each 
point. This operation is shown schematically in Fig. 
8(a). The example of an a-trimmed mean L esti- 
mate would yield the a-trimmed mean filter. Note 
that when a = 1/2 the median filter is produced 
and when a = 0 a simple moving average results. 
As another example, by choosing the second or third 
largest (the near maximum) value in the window, a 
peak detecting filter would be produced but with less 
sensitivity to impulses than a true peak detector [21]. 

2) FIR-Median Hybrids: This filter structure is shown 
in Fig. 8(b), and it can be seen to be something of 
the dual of the L-filter structure. For an L filter, the 
windowed data are first sorted, then FIR filtered, 
whereas for these filters the data a r e j r s t  FIR fil- 
tered in groups, then a median operation is per- 
formed. Advantages of these filters include greater 
potential noise reduction on linear portions of data 
and a larger class of root signals (including triangle 
waves) than for the median [25]. 

3) Recursive Median: A straightforward generalization 
of the median filter that involves feedback is the re- 
cursive median filter [7]. It is obtained by using the 
most recent output as part of the filter input, as 
shown in Fig. 8(c). This simple modification pro- 
duces a filter that yields a root signal after a single 
pass. The root obtained this way, however, will not 
generally be the same as one obtained after repeated 
ordinary median filtering. In fact, for a given size 
N ,  the effect of the recursive median will be greater 
than the corresponding ordinary median. This means 
that it may be possible to use a smaller (thus faster) 
filter to achieve similar effects. However, the im- 
plicit feedback of the recursive median filter may 
result in greater distortion of the output signal than 
with the ordinary median filter. For larger window 
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sizes, the recursive median filter produces output 
that has many flat sections, thus giving the output a 
“blocky” look. This distortion is a trade-off for the 
smaller filter size and may be acceptable in some 
applications. Because the median operation in- 
volves choosing one of the input values for output, 
the output of this filter must be one of the original 
data points. Thus even though there is feedback 
from output to input, there is no stability issue, as 
with linear filters. 
Adaptive Median: Another variant of the median fil- 
ter involves the use of adaptation on its size N .  With 
the standard median filter we have somewhat con- 
flicting demands to make N large to increase 
smoothing but small to preserve resolution. One ap- 
proach to this trade-off has been to estimate the sig- 
nal structure “on the fly” and then vary N based on 
this estimate as the filter window progresses. Where 
the signal appears relatively static, N is allowed to 
grow and where the signal appears to be changing, 
N is reduced. This approach attempts to optimize 
both smoothing and resolution in a time-varying so- 
lution. A recursive form was also examined and 
found to improve on the standard recursive median. 
Algorithms and hardware suggestions may be found 
in [26], [27]. The improved performance of adap- 
tive median filters is obtained at the expense of more 
intensive computational requirements than the 
straightforward median. 
Morphological Filters: The family of morphologi- 
cal filters is so named because of their emphasis on 
affecting the shape of signals. The primitive opera- 
tions that comprise the building blocks of these fil- 
ters (erosion, dilation, opening, and closing) are ob- 
tained as a simple running maximum or minimum 
of the signal added to a translated kernel function. 

This translated “max/min of sums” operation is 
reminiscent of the translated “sums of products” 
operation of convolution, with the filter kernel serv- 
ing the role of the impulse response. More compli- 
cated filters are obtained as compositions of these 
four primitive operations. A theory encompassing 
both these filters and linear filters and even the me- 
dian has been developed but is beyond the scope of 
this work. We refer the interested reader to [23], 
[281. 

V. CONCLUSION 
In this paper we have considered a class of nonlinear 

filters with potential application in power electronics. A 
main attribute of these filters, of which the most basic is 
the median filter, is their ability to remove impulsive noise 
while preserving edges. They are generally simple to im- 
plement off-line and should be included as an additional 
set of analysis tools for the power systems designer. Con- 
siderable work is currently underway to facilitate the use 
of these filters in real-time applications. The ideas pre- 
sented in this paper should help the reader explore the 
properties and uses of this family of filters. 
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