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Abstract—Load modeling is essential for designing and oper-
ating power systems. This paper presents an approach for load
modeling on smaller power systems that could be “islanded,” an
approach that preserves the detail of a full differential equation
simulation of relevant loads while requiring far less computation
by employing behavioral models of important loads. Mixed do-
main models, e.g., stochastic, finite-state machine, and differential
equation models, are employed to provide accuracy in a computa-
tionally tractable framework. Where simple load models may not
be adequate, particularly for generation-constrained systems (in a
paper by Sotiropoulos et al.), and full models are computationally
unfavorable, this approach provides excellent results that enable
“what-if” studies and flexible re-evaluation during power system
design and operational assessment. Naval vessels, particularly
warships with relatively large and increasing load power require-
ments, offer a unique laboratory for understanding isolated power
grids. This paper examines the DDG-51 power distribution system
as an example.

Index Terms— Microgrids, power system dynamics, power sys-
tems analysis and computing, power systems planning, simulation.

I. INTRODUCTION

OWER distribution systems need to meet requirements

for sustained power delivery, transient response, and re-
liability and survivability in the face of unexpected electrical
and mechanical disturbances. Distributed generation will raise
new challenges for power system design and analysis. Local
system impedances and harmonic content are likely to be more
critical in determining system performance. Successful design
and satisfactory analysis may require an understanding of load
behavior more sophisticated than the relatively straightforward
“name plate rating” and sizing models traditionally used for
power system component sizing.

For power systems where a relatively small collection of
loads may constitute a large fraction of the power consumption
on the distribution system, comforting assumptions about
aggregate load behavior, e.g., a “resistive model” for the load,
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may not be adequate. Unfortunately, detailed simulation of
even a small collection of loads remains computationally
time-consuming, approaching intractable for “what-if” sce-
narios involving repetitive analysis under different conditions
[1]. A variety of techniques have been proposed for estimating
load demand for assessing power system operation and sta-
bility; some recent examples can be found in [1]-[3]. Stochastic
approaches to load modeling with varying degrees of time
resolution are presented in [4]-[7]. An excellent summary is
presented in [8] in the context of reliability assessment. Models
that predict aggregate power demand using probabilistic models
can provide relatively quick assessments of load flow under
various conditions. Statistical techniques are widely used to
solve “the short-term forecasting problem” for the utility [9].
However, particularly for smaller grids or isolated grids where
detailed load dynamics effect grid operation, dynamic models
of the loads are often required to design or assess operational
performance [10]. These assessments are computationally
expensive.

Computationally tractable approaches for forecasting or con-
ducting “what-if” studies like those in [1]-[7] avoid consider-
ation of detailed structure in the loads. A pumping station will
be modeled as a time-varying power demand modeled in some
way, rather than as a collection of motor-pumps each modeled
individually in a computationally tractable way that is then ag-
gregated. Generally, these methods estimate real power, or real
and reactive power, based on time-series or other probabilistic
metrics. For small power systems, or power systems that may
“become small” when islanded, these load models may fail to
take into account local correlations and dependencies inter-re-
lating the operation of different loads. Full simulations can re-
cover these details, but require adequate simulation models and
extensive computation resources. These models are therefore
less useful for the operator or designer of a local power distri-
bution network that might be reconfigured or redesigned at the
distribution level to optimize operating costs, maintenance, and
peak consumption parameters.

This paper proposes a hybrid approach to load modeling that
mixes stochastic and deterministic models to provide fine-grain
predictions of load behavior, including details of in-rush, reac-
tive power, and harmonic demand, while minimizing computa-
tion overhead and the burden of conducting “what-if” studies.

Here, multi-layered, flexible models for loads permit fast
“what-if” studies that can reflect different stages of operation
of loads on a small power system, and with proper accounting
of the effects of time of day, weather, and other exogenous
variables. This type of modeling is essential for assessing
the demands of cold-load pick-up (turning on a collection of
loads) with realistic sequencing. This type of modeling (em-
ploying flexible, computationally efficient load models with
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hierarchical behavior and operating characteristics) permits
estimation of electrically realistic load demand waveforms.
This approach accounts for exogenous inputs like time of day,
weather, and load condition, and permits easy experimentation
with hypothetical reconfiguration.

Our approach uses behavioral modeling like that used in [11]
for load models, but vastly updated to take advantage of modern
computational tools for probabilistic and finite state modeling.
We demonstrate this approach using the DDG-51 Naval power
system as an example. This paper begins with a look at cur-
rent design practice, and considers computationally reasonable
enhancements employing behavioral load modeling to improve
the fidelity and predictive power for design studies. The analysis
and the computational tools described here are intended not only
for the analysis of shipboard power systems but as a potential
framework for understanding small or islanded power systems
in general.

II. ELECTRIC PLANT LOAD ANALYSIS (EPLA)

Current design practice for USN shipboard electrical plants
reflects good practice for designing any traditional power dis-
tribution network for a multi-megawatt scale. One approach for
plant sizing commonly employed involves electric power load
analysis (EPLA), summarized in the data design sheet (DDS)
310-1 [12]. EPLA is used to determine component sizing in the
electrical distribution system for everything from generating ca-
pacity to breaker and cable sizing. EPLA does not really address
transient requirements, does not provide an orderly or structured
approach for conducting speculative studies, and does not par-
ticularly address quality of electrical service [13], [14].

EPLA begins with a list of all loads installed on-board the
ship and uses one of three methods for calculating demand
power.

1) Load Factor Analysis: The load factor represents the
long-term average operating power level as a fraction of the
component's rated load for a given operating condition. A load
factor is calculated by estimating the fraction of the operating
time (FOP) that a system will be functioning in a particular
operating condition and the average power the component will
draw when in operation (Ppyg). The load factor (LF') is the
product of these values:

LF = FOP - P, (1)

For each load, the load factors are tabulated and then used to
compute a calculated electrical demand for various operating
conditions. The calculated load power P.,j. is the product of
the load factor LI and the rated load power P,,t.q4 as shown in

(2):
Pcalc =LF. PRated- (2)

Expected load on-board the ship is calculated by summing the
expected load of all components on-board the ship. Tabulated
estimates for specific load centers or switchboards can be per-
formed in a similar manner to aid in sizing these portions of the
electrical distribution system.

2) Stochastic Load Analysis: Stochastic load analysis is
an alternative method provided in DDS 310-1 for estimating
the demand power on-board a ship in the design process. This
method assumes that a probability distribution function (PDF)
and an associated cumulative distribution (CDF) for electrical
loading can be determined or estimated for each load. The DDS
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310-1 [12] describes the uniform, triangular and discrete distri-
butions as the three most common distributions to characterize
the stochastic behavior of the components.

A simulation process, e.g., Monte Carlo simulation, com-
pletes the total overall loading profile. The total load is then a
summation of the loading of each component. This simulation
is then run for a large sample group to determine relevant output
statistics.

For each loading condition of the ship, there will not only be
an estimated mean value for the load, but a standard deviation.
Understanding the range of expected loading provides improved
information for sizing the electrical distribution. This type of
stochastic EPLA will exhibit potential variations with different
simulation runs. However, these variations do not necessarily
reflect actual correlations in power demand that may occur on
the ship power system.

3) Modeling and Simulation: Direct modeling and simula-
tion is the most computationally complex of the three methods
for performing an EPLA. This approach requires physics and
mathematical modeling of the loads and their interactions with
other ship systems. Transient simulation is especially time con-
suming. Detailed simulation may be demanded when loads are
large relative to generation capacity, when loads have abnormal
characteristics, or when the loads cannot be modeled by the
means discussed above [12].

We propose a hybrid approach to power systems modeling
that avoids excessive computational burden while producing
power consumption profiles that reflect accurate time-series be-
havior of load demand. This approach blends stochastic mod-
eling and time series data to produce estimates. We assemble a
power system simulation with a three step process. The first step
in modeling is defining high level operational requirements and
conditions for the system. For a ship, for example, this would in-
clude information like seasonal weather and rigging conditions,
e.g., cruising versus general quarters operation. Analagous in-
puts for other power systems are immediate, e.g., outdoor tem-
perature and time of day for an office park. Next, ship systems
and subsystems are modeled with a variety of computation-
ally speedy models, e.g., finite-state machines or probabilistic
models or combinations, which best capture the system behavior
in light of the high level inputs. This modeling level produces
a multi-level or quantized power profile for each load. Finally,
approximate time-series data for a variety of power system vari-
ables can be quickly created using the quantized power profiles
to “modulate” stored time-series data for each load. The time-se-
ries data can be collected in the field or produced with focused
simulations for specific loads as needed (as opposed to trying to
simulate the entire ship power system). Modeling can therefore
be conducted with a selectable degree of likely fidelity, that is,
with a selectable level of detail in estimated consumption char-
acteristics.

Behavioral modeling allows a user to define system responses
to global inputs and uses both deterministic and stochastic
models to predict component electrical demand within the
system. Unlike a direct differential equation modeling and
simulation approach, behavioral modeling is not based on dif-
ferential equations governing load electrical properties. Instead,
behavioral modeling uses rules, time series data, and statistical
characterization to develop realistic load profiles over time.

For situations where the power system exists and operating
data is available, measurements can be folded into the behav-
ioral models to ease the effort of a priori modeling and to im-
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prove accuracy. However, it is equally possible to use the behav-
ioral approach to model a power system before it is ever con-
structed. Here, the approach is illustrated using extensive data
from the DDG-51 power system to demonstrate the modeling
framework and its ability to produce data at varying levels of
detail for a power system.

III. BEHAVIORAL MODELING FOR DDG-51 SYSTEMS

Operational data was gathered for the power system and
loads on DDG-51 class destroyers. This included raw opera-
tional data, e.g. log books, which was gathered from visits to
the fleet concentration areas of San Diego, CA, Norfolk, VA,
and Pearl Harbor, HI. Data from the machinery control message
acquisition system (MCMAS) was acquired from the Navy's
Ships Systems Engineering Station (SSES). The MCMAS
program contains a record of the configuration of the ship's
systems over time, which provided a basis for understanding
and profiling equipment behavior [15].

The DDG-51 program office also provided documents that
were critical in the development of the concepts discussed later
in this paper. These documents included baseline data for the
DDG-51 class, such as the EPLA and electric plant schematics,
but also included a report produced as part of the new construc-
tion process for the DDG-111 (USS SPRUANCE) [16], [17].
This study logged power readings for hundreds of components
on the ship and showed the steady state and transient behavior.

Fig. 1 shows an overview of the multi-ring power system em-
ployed on a DDG-51. The “nodes” in the ring bus are monitored
and guarded by multi-function monitors (MFM) that endeavor
to provide zonal electrical distribution (ZEDS) and the ability to
isolate different ring elements during a fault. The ship's power
system is organized as a collection of power buses, shown as
“straight line” buses in Fig. 1. Conventional radial panel distri-
bution networks, not shown in the figure, are connected to the
six switchboards shown, three along the top and three along the
bottom of the diagram. Switchboards are associated with each
power buss, like the 1SA switchboard shown in the lower right
corner of Fig. 1. Power is fed to each buss using a ring net-
work that connects the entire ship and that can be fed from the
three generation buses (shown in the center of Fig. 1. The eleven
MFM's guard the inlet and outlet power connections of the ring
network at each buss. A high-speed information network con-
nects the MFM's, which operate in concert to isolate faulted sec-
tions of the ring buss, leaving healthy sections available for con-
tinued operation. One, two, or three gas-turbine powered gener-
ators can feed electrical energy to the network from the bus-ties
in the center of the diagram.

The behavioral approach for modeling power systems is il-
lustrated by focusing on an examination of the behavior of the
1SA switchboard.

A. Behavioral Modeling

In behavioral modeling of the power system, subsystem and
component behaviors are decoupled from electrical responses.
An example of how a component power simulation is imple-
mented is illustrated in Fig. 2, which depicts a notional system
component or electrical load. The load is described by a model
sensitive to global inputs like ship operating speed, time, and
relevant independent or dependent random variables. In this ex-
ample shown in Fig. 2, the top trace shows a square wave of sim-
ulated operating state for a component. The load has two pos-
sible operating states in this particular example, on and off. The
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Fig. 2. Creating a power trace (see text).

center trace shows a transient electrical response for the load
(note the time scale change) that could be acquired through mea-
surement, simulation, or estimation. Modulating the component
state (top trace) with appropriate copies of the transient power
(middle trace) produces the bottom trace, a quick and accurate
emulation of the behavior of the load on the power system.

This approach is attractive in that a very limited duration sim-
ulation or time series of measured data, e.g., the middle trace in
Fig. 2, can stand in place of a much longer duration and com-
putationally expensive simulation. There are also a variety of
caveats. A simple approach assumes a “stiff” system voltage, in
which case the emulated power trace (bottom trace in Fig. 2)
may reasonably well represent observed system behavior. A
more realistic emulation would account for voltage variations
on the system by tracking system currents and anticipated or
known system line impedances, resulting in a scaling factor for
system voltage. This scaling factor can be applied to the tran-
sient power trace of the transient (middle waveform) used to as-
semble the emulated power trace. For reasonable disturbances,
linear scale factors are often adequate for achieving acceptable
fidelity in the emulation trace. Also, the behavioral simulator
can proceed assuming that some scale function is to be applied,
and use a posteriori check to make sure that assumptions made
in the behavioral simulation are reasonable.

The following sections consider the information a designer
must assemble to create a behavioral model.
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Fig. 3. Graphical main interface screen.

B. Global Inputs

Global inputs are external parameters that drive the behav-
iors of systems within the ship. The global inputs evaluated in
the DDG-51 example include propulsion plant operating mode,
ship speed, time, season, and ambient temperature. For demon-
stration purposes here, the data used was actual operating infor-
mation for a deployed DDG Flight IIA ship.

In the behavioral simulation tool, which runs on a personal
computer in the MATLAB environment using an object oriented
programming model, the designer is presented with an opening
screen shown in Fig. 3.

Three selection buttons are provided on the main screen: one
for modifying the ship inputs, one for the environment inputs,
and one for model parameters. The ship inputs include ship clas-
sification (surface combatant for a DDG-51), propulsion type
(gas turbine) and electrical distribution type (gas turbine). The
environment inputs include the operating conditions of the ship.
For the study presented here, the DDG-51 was in the cruise con-
dition. The speed-time profile of the ship, engine configuration,
and temperature were provided as input data files to the sim-
ulation. These files could be real data where available, or hy-
pothetical data representing to-be-studied operating conditions.
For example, a “what-if” study might vary how often the ship
might use both propulsion shafts versus only one. We have con-
ducted “what-if” studies with the simulator, and also compared
these simulations with real fleet data, as will be shown in the
following sections.

Next, a designer would proceed to define electromechanical
components and systems on the ship or power system.

C. Modeling Ship System & Subsystem Behaviors

Models for the ship systems and subsystems provide wave-
forms like the top trace shown in Fig. 2. The power system is
modeled as a collection of components relevant for different
tasks, allowing the power system designer to logically organize
loads by function. A functional task on the ship, for example,
cooling, heating, or providing fire-fighting water, is modeled by
loads organized as systems that contain subsystems and com-
ponents. The interrelations between the system, subsystem, and
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component levels can be entered graphically in our simulator.
Each system handles a specific function within the entire ship.
In this case, the air conditioning system is a collection of five
identical subsystems consisting of two components in each sub-
system, a compressor and a chilled water pump. With the sys-
tems, subsystems, and components organized, each level can be
modeled with specific behaviors. Systems may be operated at
different times and under different environmental conditions,
e.g., hot weather for the cooling systems. Subsystems within the
system may, for example, operate on a rotating time schedule to
distribute wear and maintenance. Components within the sub-
system may vary their power consumption according to more
or less detailed models as desired to reflect electrical waveform
characteristics likely to be observed on the power system.

When a new system is entered using the graphical interface,
the user is effectively creating a new system object that is re-
sponsible for generating operational data like the top waveform
in Fig. 2. For the DDG-51, six types of system models were
identified that reasonably well represent all of the behaviors of
loads on the ship:

1) Single-State: The single-state condition refers to a system
or subsystem that maintains a single configuration in a given
ship state, that is, a “base” load that is always “on”. Examples
of such systems include ventilation fans, some radars, or com-
munication equipment that runs continuously during ship oper-
ation.

2) Cycle Type: A system with cycle-type characteristics is a
“two-state” load that behaves periodically, but independent of
the time of day. These systems have stochastic on/off cycling
behavior. For example, a lube oil purifier runs periodically at a
set interval to clean circulating oil. A user can define stochastic
models that govern the length of time the system remains in
the “on” or “off” states. These behaviors can be characterized
speculatively by a designer, or, for existing loads, determined
using methods developed for stochastic modeling in Section I'V.

3) Finite State Machine: A more general load behavior can
be defined by a finite state machine (FSM), which allows the
prediction of load demand based on probability of transitioning
between various states. For the FSM type, the user specifies a
transition probability matrix which governs how the model tran-
sitions from state to state.

4) Level-Type: The level-type system is directly dependent
on the state of a specific input. In this case the system may be
on whenever a specified condition is met, and secured during all
other conditions. An example of this is the fuel service system,
in which a pump for a specific plant will be energized whenever
one of the two gas turbine motors (GTMs) is operating. In this
case, the subsystem is dependent on the “level” state of the cor-
responding GTMs shown graphically in Fig. 4. For a DDG-51,
the GTM configuration is dependent on the ship speed as cer-
tain speeds require certain plant configurations as specified in
the current NAVSEA design standards.

5) Time Dependent: The time-dependent system depends on
the time variable of the model to drive the cycling performance
of the system. These systems tend to operate in a predictable
manner over the course of a day, or periodically over the course
of several days. For example, food service equipment in the
galley is operated during meal hours, and sparsely during other
times of day.

6) Random Subset: For reliability and operational robust-
ness, a ship or other power system may contain a multiplicity
of loads for redundancy. That is, not all loads are operated at all
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Fig. 4. Fuel service system model.

times, and more of a type of load may be present than is gener-
ally needed. For example, a DDG-51 includes 6 fire pumps, two
in each of the three electrical zones. Only two pumps operate
nominally at any instant in time under normal operation, one
pump in one zone, one pump in another. These and similar loads
are modeled using a “random subset” method. A random subset
of two of the six is chosen to operate at appropriate simulation
instants based on operating procedure rules included with the
model, e.g., no more than one pump operating in one electrical
zone under normal conditions. HVAC plants on the DDG-51 are
also well modeled in this way and a more detailed description
of the AC system will be discussed in Section V-A.

D. Load Electrical Modeling

The designer defines all subordinate components within each
subsystem. Component models provide waveforms like the
middle trace shown in Fig. 2.

For example, within the “Fuel Pump” subsystems shown in
Fig. 4, the designer defines “best available” electrical waveform
behavior for each fuel pump, e.g., for “Fuel Pump 1A.” The
user identifies each component as a master or slave. A slave
component has the operational profile of its subsystem. When
the subsystem is active, the component is always on, and the
component model provides a waveform like the middle trace in
Fig. 2 that directly scales the subsystem operating waveform.
Alternatively, a master component is on when its subsystem is
active, but has its own operational profile that also modifies or
defines the top trace in Fig. 2, described by a stochastic model
that is defined by the user.

Four separate methods of implementing a component re-
sponse were found relevant for DDG-51 loads: constant,
finger-print, finite state machine, user-defined. Each of these
methods provides a unique means of developing a power trace.

1) Constant: When no other information is available and no
further speculation is desirable, a component or load may be
modeled by traditional means, e.g., a load factor, which could
be derived from nameplate data and a guess or known utilization
duty cycle.

2) Fingerprint: The fingerprint method assumes that the
component power trace consists of three phases: a transient
turn-on phase, a steady-state phase, and a transient turn-off
phase. Essentially, the designer provides a piece-wise linear
model of the anticipated or known electrical waveform. Each
electrical phase is individually defined within the model. This
method is most useful for components such as motors that
exhibit regular behavior, and is most applicable when the
operating profile for a component is readily available.
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Fig. 5. Example electrical operating data [17].

An example is shown in Fig. 5.

3) FSM: The finite state model is similar to that described
in the fingerprint model, but requires a more complex series
of inputs. This model corresponds to a potentially multi-level
power consuming load, whose behavior further modulates or
scales the subsystem operating trace. For components described
by an FSM, the user must define the stochastic model for each
state and a transition probability matrix like those discussed in
Section I1I-C-3.

4) User Defined: “User Defined” component modeling
works for input-dependent systems. In this case, one of the
input variables for the model drives the electrical profile of
the load. When using this method, the user defines the inter-
relations between global inputs to the model and component
electrical response. The air conditioning plants in the DDG-51
are modeled with a user-defined component behavior. The air
conditioning loads are determined by multiple factors. The first
piece of information required is the fingerprint power trace
of the compressor components. Furthermore, the global input
temperature affects the total load as diurnal variations occur. A
detailed discussion on the AC plants is found Section V-A.

IV. STOCHASTIC MODELS

Stochastic models are used to describe processes with dis-
tribution functions that are known or can be estimated. These
models are important for both subsystem and also component
level models, as both, for example, might use an FSM model
with stochastic transitions. Reference [19] uses normal distri-
butions to model the uncertainty of daily power peak loads in a
system. Reference [20] proposes the use of normal, log-normal
and beta distributions to model high voltage loads and [21] ad-
vocates that load distribution is a combination of normal, log-
normal and Poisson distributions.

For loads in the DDG-51 power system model, useful sto-
chastic distributions included constant (deterministic), uniform,
normal and exponential. While these distributions were suffi-
cient for modeling the loads surveyed in the development of this
framework, other distributions could be used, e.g., log-normal,
Poisson, and Beta.

A. Constant

The constant method represents a distribution that defaults to
deterministic. In this model the user defines a value of a, which
is related to the random variable X, by

P(X.=a)=1 3)
B. Uniform

A random variable X;r has a uniform distribution, fx,, (), if
the PDF is constant within the interval ¢ and b. In this case, the
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Fig. 7. Histogram of the steady-state region in the electrical response of a fuel
oil purifier.

user defines the values of a and b, and the distribution is shown
in (4):

1
fxp(@) = ——, fora<uz<b

— 4)

C. Normal

When a random variable X » has a normal distribution the
user must input the mean, u, and standard deviation, ¢. The
system will then cycle with a frequency dictated by these values
according to the distribution shown in (5). Care must be used in
implementing this distribution, to ensure the probability does
not return negative time values:

1 _(w=p)?
2

freu@) = <=5~

For component power traces created using the fingerprint
method, The steady-state portion of the electric consumption
might be modeled, for example, with normal distribution.
Consider the actual transient electrical response of a fuel oil
purifier in Fig. 6.

A normal distribution describes the behavior of the steady-
state region as there is an underlying mean with some variation
around the mean. The histogram of the steady-state region is
shown in Fig. 7 and the underlying normal distribution is preva-
lent.

To estimate the mean p and standard deviation ¢, N points
of the steady-state region are extracted. With N observations
(21,22,...,2n) and the maximum likelihood method to esti-
mate parameters [22], the estimates of the mean and variance of
the underlying normal distribution are

)

1 N
1 ’L;l
N ZNZ(M — i) (7

=1
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Fig. 8. Example normal distribution for several values of N. Standard devia-
tion decreases as IV increases.

D. Exponential

A random variable Xp has an exponential distribution
fx (z) when the PDF is defined as shown in (8):

Fxp(T) =, (8)

for A > 0. When the exponential distribution is used, the user
must input the variable A, which is the rate parameter for the
function. The choice of this value will determine how quickly
the exponential function decays away, and will therefore influ-
ence the width of the distribution of cycle time.

The exponential random variable is widely used in to describe
the interarrival times in a stochastic process. With N observa-
tions of the interarrival times, a maximum likelihood estimate
An can be calculated as

forz >0

N N
AN =

R ©)
Z Ty
i=1

E. Consistency

In statistics, a consistent estimator is one whose sequence of
estimates becomes more concentrated around the true value of
the parameter as the number of data points uses increases.

The estimators in (6), (7), and (9) are consistent estimators.
The jiy estimator of i, the mean of the normal distribution in
(6), is itself a normal distribution with a mean of x and a stan-
dard deviation of 2 /N. As more data points are collected, N
increases and the standard deviation of /iy tends to O.

Fig. 8 illustrates how the standard deviation decreases as IV
increases and most of the distribution is centered around the
mean.

Mathematically, the estimator [z is consistent if

lim P (|pny —pl >€)=0 (10)
N—oo
for any fixed € > 0. As more data are collected to update the
value of the estimator, the higher the probability that it is close
to the true value of the parameter. The estimators in (7) and (9)
can be proven consistent through a similar exercise [22].

Even with a collection of data, such as those from [16], [17],
there may not be enough sample points to reliably trust the esti-
mated value of the parameters. For the DDG-51 simulation pre-
sented here, these surveys provided a foundation in which to
develop the framework and estimate parameters to fit the under-
lying distribution. However, confidence in these values could be
improved if more field observations are available.

V. BEHAVIORAL MODEL OUTPUT AND RESULTS

When the power system global inputs, systems, and compo-
nents have been defined and the time parameters set, the simula-
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tion can run using the user-defined models. After the simulation
is complete, the GUI allows the user to plot power traces of indi-
vidual components and, for example, of the entire 1SA switch-
board. The examples below show the results of simulating com-
ponents with the framework.

A. AC Plants

The chilled-water air conditioning (AC) plants on-board
the DDG-51 operate by refrigerating a chilled water loop and
rejecting heat to seawater. The chilled water is then piped
throughout the ship to provide air conditioning and elec-
tronic equipment cooling. There are 5 AC plants on-board the
DDG-51 class, labeled 1, 1A, 2, 3, and 4.

An average distribution of the plants over the time period for
the operation of a single AC plant was developed by examining
several weeks of data from MCMAS. This distribution is shown
in Fig. 9.

The PDF inherently contains two separate pieces of design in-
formation required by DDS 310-1, the plant configuration and
operating distribution. The plant configuration can be inferred
by the amount of time spent with no power, which occurs ap-
proximately 40% of the time. In the normal operating configura-
tion 3 of 5 AC plants are operating on-board the ship, so this cor-
roborates expectations. The other piece of information available
from this PDF is the running distribution of power. With this
known distribution, a triangular or normal distribution could be
fit to the data set for the purpose of stochastic modeling.

A plot of the total load consumed by all AC compressors is
shown as a time series in Fig. 10. It is important to note the long
tail to the right hand side of the graph (loading seen at approxi-
mately 190 kW) that does not exist in Fig. 9 for the average AC
plant. This tail is representative of the overlap time that exists
when switching between AC plants, yielding a temporary con-
dition where 4 AC plants are in operation. From this time se-
ries, it is evident that the loading profile has a couple of notable
features. The first is that the transient periods of switching AC
plants yield power spikes periodically, as discussed previously.
The second is that the AC plant loading is heavily diurnal; over
each one-day period there exists a minimum that occurs in the
early portion of the morning and a maximum that occurs in the
afternoon.

The diurnal behavior presents an additional difficulty for a
stochastic model. To examine the temporal effects, the data
was sorted such that individual profiles were obtained for each
2-hour block of time over the course of a day: 0000-0200,
0200-0400, etc. Fig. 11 summarizes observed operating data
that can be used as a general summary of behavior for a single
AC plant. The top trace shows the average power in kW drawn
over the course of a 24-hour time period. The bottom trace
shows the standard deviation in this consumed power, a varia-
tion of just under 2 kW. Given this observed data, the AC plant
subsystem, a single AC plant, is sufficiently well characterized
to permit good estimation and “what-if” studies for the entire
installation of 5 AC plants on-board ship under a variety of real
or speculative operating scenarios.

The AC system loading changes with the day-to-day varia-
tions in ambient temperatures. During the time period of anal-
ysis the vessel is operating in a single location performing a con-
tinuing presence in anti-piracy operations. This singular mission
profile allowed the investigation the effects of ambient temper-
ature. By plotting the daily high, low, and mean temperatures
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seen in cities near the ship's operating location in the Gulf of
Aden, the weak effects of the temperature can be seen in Fig. 12.

Examining this data, it was noted that there was an addi-
tional correlation between the mean value for temperature and
the total load placed on the AC compressors. By allowing the



1422

Actual AC Plants
220 T T

<200+
= : :
X A0k
2 160
[e]
O 140F oo B0

L i | |
1200 5 10 15 20
AC Simulation with Temperature Effects

220

2 160
o
1205 5 10 15 20
Time (days)
Fig. 13. Comparison of AC load simulation and actual profile.
Simulated 1SA Switchboard
1800 r - r T T T T T T
r-\1600 ........................ R EEEERE TR RRREEEN R R TR R TR ~
51400 : : :
35 1200 :
% 1000} - - - — AT h ........................... h
0 goof: RS
T - e Jr -
Time (days)
Fig. 14. 1SA simulation (10 days).
Actual 1SA Switchboard
2000 r T T T T T
51500-
[}
2 1000
a
00— — %
Time (days)
Fig. 15. 1SA actual load (10 days).

mean shown in Fig. 11 to drift slightly with the variation in tem-
perature a more accurate behavioral model could be developed.

The results for the AC plant total compressor simulated and
actual loading are presented in Fig. 13. These results show the
strong correlation level between simulation and fleet data that
can be created using the behavioral modeling.

The large spikes in the profile represent the operating condi-
tion where 4 compressors are on line in the intermediate state
of switching AC plants. The simulation performs this randomly
with similar periodicity to that seen in the fleet, but it would not
be expected to line up at corresponding times.
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Once all individual systems, subsystems, and components ap-
plicable to the 1SA switchboard were defined the simulation
was run. The most important aspect of the simulation for the
calculation of an EPLA is the overall loading, since this will be
the primary result used for the sizing of electrical distribution
equipment.

The output profile for the 1SA switchboard is shown for a
ten-day simulation is shown below in Fig. 14, while the ac-
tual loading on the 1SA switchboard during this time period is
shown in Fig. 15.

While the simulation does not perfectly recreate the 1SA
switchboard, it captures many features that exist within the
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system. Power transients associated with starting loads are
captured, and much of the behavior over time is included.
Since power transients have an impact on the sizing of gener-
ators, breakers, and cabling this behavioral model could allow
designers to rely less on large margins and instead optimize
the plant for expected load conditions. These results, using
a relatively small subset of fleet data, demonstrate that the
method can deliver high fidelity results and could enhance the
ship design process. Overall, the simulation for the 1SA switch-
board is bound within the same general region (800—-1200 kW),
indicating a good data fit for this simulation.

The randomness of the system models dictates that no two
simulations will be the same, and that the different power levels
seen in Fig. 14 will change for each run. Behaviors linked to
inputs (such as GTM stops and starts) would be the same for
every simulation. By running the simulation many times a long
term statistical description of ship behavior could be created,
similar to the process for a Monte Carlo method.

An additional benefit of using the program is that the indi-
vidual results for a selected system could be analyzed if desired.
This would provide the ability to use model results to inform
selection of components, or could be used for the purposes of
model validation.

VI. DISCUSSION

The framework described in this paper provides a flexible
solution to the increasingly complex problem of conducting
“what-if” studies for a proposed or existing power system
design. The approach presented here offers a blend or family
of load mathematical models that are computationally effi-
cient, provide detailed electrical load behavior, and admit the
incorporation or effect of arbitrary exogenous variables like
temperature, insolation, and human usage or behavior. Here,
the focus was on an “islanded” power system, specifically, the
distribution network of a DDG-51 destroyer. The emulation
described in this paper can be used to reproduce the behavior of
the ship and power system under a variety of different operating
scenarios. The emulation can be used to provide base data for
other studies, including fuel consumption surveys, damage as-
sessments, and sensitivity analyses to determine the reliability
of metrics like EPLA load factors. It is an invaluable tool for
focusing design decisions and operating analysis for further
study by more time-consuming methods like time-domain
simulation of differential equation models. This approach can
be extended to other “small” power systems like microgrids,
or regions of a power system that can be considered from a
local perspective where substantial renewables and distributed
generation may be present.
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