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M odernization in the U.S. Navy and U.S. Coast 
Guard (USCG) includes an emphasis on auto-
mation systems to help replace manual tasks and 

reduce crew sizes. This places a high reliance on monitoring 
systems to ensure proper operation of equipment and to main-
tain safety at sea. Recently developed noncontact current and 
voltage sensors, [1] combined with nonintrusive load moni-
toring (NILM) methods [2], provide a nonintrusive, low-cost, 
and easily installed package for machinery monitoring. This 
paper presents an application case study using these NILM-
enabled sensors installed on the main electrical feeders of the 
USCG Famous Class Cutter SPENCER. The system records the 
power demand on the ship and disaggregates this demand by 
identifying transients corresponding to loads changing states, 
e.g., a pump turning on. Results of this study showcase these 
novel sensors' ability to monitor both generation and load-
side equipment while at sea or in port and provide information 
useful for tracking operation schedules, energy usage, and 
maintenance needs.

NILM on the USCGC SPENCER
The USCG Cutter (USCGC) SPENCER (Fig. 1) is a 270 ft. (82 
m) Medium Endurance vessel stationed in Boston, MA. Com-
missioned in 1986, the SPENCER hosts a 100-person crew and 
conducts operations providing environmental stewardship, law 
enforcement, fisheries protection, and national security. The ship 
has an operational tempo of 185 days at sea each year, with each 
patrol typically requiring 1 to 2 months away from homeport.

The ship's primary electrical generation plant consists of 
two 475 kW V12 Caterpillar diesel generator sets, which pro-
vide the ship's electrical power when at sea. When in a port 
with sufficient electrical service, the ship can receive power 
from shore via one of two feeder systems. Each shore tie con-
sists of four TSGU-200 cables (each cable contains one 4/0 

stranded copper conductor per phase), while each feeder 
connecting the onboard generators to the main switchboard 
consists of three TSGU-200 cables. The USCGC SPENCER's 
electrical distribution system is a delta-configured 254/440 V 
system, and electric loads on the vessel range from large (tens 
of kW) three-phase loads (such as salt water cooling pumps, 
HVAC equipment, fire protection pumps, and hydraulic sys-
tems) to smaller (hundreds of W) line-line loads including 
lights, washers and driers, and ovens.

Recently developed noncontact power meters [1] provide 
an opportunity to monitor the ship's microgrid without an in-
trusive retrofit. These meters do not require an ohmic contact 
for voltage measurements and can be installed on the outside 
of the multiphase cables of the generator and shore tie feed-
ers. Thus, they are quick and safe to install, and doing so does 
not require interrupting electrical service or compromising 
waterproof equipment. Further, incorporating NILM capa-
bilities, i.e., the ability to disaggregate this centrally recorded 
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Fig. 1. The US Coast Guard Cutter SPENCER at sea [3].
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power data into individual load information through transient 
identification [2], [4], allows individual machinery moni-
toring without a widespread sensor network. The potential 
advantages of the NILM approach are lower equipment and 
installation costs and increased reliability.

Fig. 2 diagrams the ship's electrical supply to the main 
switchboard and the installation of the noncontact meters. As 
shown, the meters' outputs are transmitted via USB to a cen-
tral computer. This computer is outfitted with a custom NILM 
database (NILMdB) [5] and operating software (NILM Man-
ager) [6] designed for efficient data storage, retrieval, and load 
identification.

The Noncontact NILM Package
Fig. 3 shows an installation of a noncontact sensor package 
around a multi-conductor cable. The sensor package con-
sists of a main sensor board containing a single Hall effect 
sensor circuit and a single capacitive pick-up sensor circuit, 
plus a microcontroller for data acquisition and transmission 

to the central computer. Supplemental Hall effect sensor 
boards attach to the main board via ribbon cables. The Hall ef-
fect sensors collect point-measurements of the magnetic field 
surrounding the cable, while the capacitive pick-up sensor 
measures the electric field. When combined with a calibration 
process, the Hall effect sensors provide measurements of the 
per-phase currents inside the cable, and the capacitive pick-up 
sensor provides the information for determining the instanta-
neous line-frequency and phase relationships of these currents 
and their corresponding phase voltages. The central computer 
processes these measurements into power streams contain-
ing real, reactive, and harmonic components. These power 
streams are then scanned for transients that match known ex-
emplars corresponding to specific loads turning on or off. This 
data and processing flow is depicted in Fig. 4.

Current Sensors
Fig. 5 shows a schematic for each current sensor. The sensor 
consists of an Allegro MicroSystem's A1362 Hall Effect sensor 
chip buffered (the AD8676 op-amp) and capacitively coupled 
to a double-gain stage amplifier (two AD8513 op-amps). The 
chip has a programmable gain of up to 16 mV/G, sufficient for 
standard electrical system current levels. The 2.2 μF capacitor 
and 49.9 kΩ input resistance to the gain stages acts to high-pass 

Fig. 2. Diagram of the USCGC SPENCER's electrical supply to the main 
switchboard. Noncontact sensors installed on each feeder collect current 
and voltage data and transmit this data to a nearby central computer via USB 
cables.

Fig. 3. The noncontact sensors installed on the outside of a multiphase cable.

Fig. 4. Data flow and processing pipeline for converting raw sensor 
measurements into real, reactive, and harmonic power data useful for 
application analysis.
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the measured signal at 1.5 Hz. This serves to reduce effects of 
low-frequency drift and avoid signal saturation.

Voltage Sensors
To determine phase voltage information, a differential capaci-
tive-pickup sensor measures the electric field emanating from 
a conductor or multi-conductor cable. This sensor has the sche-
matic shown in Fig. 6. The differential inputs to the AD8421 
instrumentation amplifier are connected to copper plates on 
the main PCB. Each plate creates a capacitive coupling with 
the conductor of interest. Along with the 1 MΩ resistors, these 
capacitances create an input stage transfer function with the 
form:

	 ( ) =
+1

sRCH s
sRC

	 (1)

While the 1 MΩ bias resistors are large, the mutual capaci-
tance between the conductor and sensor is very small, on the 
order of picofarads. As such, RC is small, and (1) reduces the 
transfer function of a differentiator, i.e., H(s) ≈ sRC at the line of 
frequency (60 Hz) and its first several harmonics. Thus, the in-
strumentation amplifier is followed by an integrator to recover 
the voltage. An inverting op-amp provides signal gain. In ad-
dition, an integrator circuit provides feedback to the reference 
pin of the instrumentation amplifier, which eliminates offsets 
and low-frequency drift in the signal.

Data Sampling and Communication with Central 
Computer
The outputs of each sensor are sampled at a rate of 3 kHz by the 
built in 12-bit ADC of the Atmel SAM4S microcontroller on the 
main board of the noncontact meter package. This sample rate 
and bit-resolution are sufficient for capturing the fundamental 
amplitude and phase relationships of the current and voltage 
measurements as well as several harmonic components. Fol-
lowing sampling, the microcontroller transmits the sensor 
outputs via USB to the central computer for subsequent pro-
cessing into power streams.

Nonintrusive Calibration of Sensors
The drawback to using “point” reference sensors is that 
the magnetic and electric fields vary by position around 
the conductor of interest and decrease in strength with 
distance. Further, if other conductors are nearby (as is nec-
essarily the case in multi-conductor cables), the magnetic 
and electric fields in the space around the cable are lin-
ear combination of fields due to each conductor's current 
and voltage, respectively. Thus, it is necessary to calibrate 

the sensors for disaggregating individual phase power 
streams.

Phase Currents and Current Sensors Relationship: Assuming 
no ground faults in the ship's Delta-configured microgrid, the 
phase current relationship for each feeder is:

	 + + = 0A B CI I I 	 (2)

This means that the currents only span two dimensions as one 
current is always a linear combination of the other two. Then, 
the output of an N-length Hall effect sensor network monitor-
ing the conductors depend on only two phases, i.e.:
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Here, each m term corresponds to the sensor output contri-
bution of the two independent phase currents. As long as the 
sensor network spans the current space, i.e., the sensors are 
located around the conductors such that they sufficiently mea-
sure the independent currents, then knowing these m terms 
allows the calculation of currents from sensor measurements 
via (2) and:
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Here, K is the pseudoinverse of the m terms matrix in (3). For 
each meter installation aboard the ship, four Hall effect sensors 
were used so N = 4 in (3) and (4).

Phase Voltages and the Voltage Sensor Relationship: For a 
three-phase electrical distribution system, the phase voltages 
are related as:

	 ( ) ( )ω= cosAV t V t 	 (5)

	 ( ) πω 
= − 

 

2cos
3BV t V t 	 (6)

	 ( ) πω 
= + 

 

2cos
3CV t V t 	 (7)

Thus, the electric field sensor output is a linear combination of 
voltages with the same frequency, and itself will be a single si-
nusoid of the form:

	 ( ) ( )ω φ= +cosVS t A t 	 (8)

where  represents the phase-relationship between the mea-
sured sensor output and VA.

Fig. 5. Schematic for the Hall effect current sensor.
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Fig. 6. Schematic for capacitive pick-up voltage sensor.

Nonintrusive Calibration Procedure: To calibrate the noncon-
tact sensors without interrupting service, a resistive load is 
pulse-width modulated (PWM) to create a discernible sig-
nal in the measured currents amongst the intrinsic shiploads, 
which are treated as background noise. In this way, the cali-
bration load can be differentiated from the background loads 
using spectrum analysis. This method leverages the superpo-
sition principle to calibrate the sensors. It should be noted that 
the accuracy of this method depends on the linear response of 
the sensors; therefore, this method fails if the Hall effect sen-
sors saturate or if circuitry gains cause signals to clip.

Using a microcontroller and a solid-state relay (SSR), the cal-
ibration load, an 8.5 kW heater is cycled at a frequency of 0.33 
Hz and duty cycle of 33%. This oscillating load is connected 
across phases A − C for 90 seconds and then B − C for 90 sec-
onds. During this process, the NILM software on the central 
computer takes the fast Fourier transform (FFT) of the current 
sensor measurements and finds the fundamental and harmonic 
components corresponding to the PWM calibration load. These 
components are then matched against the Fourier series co-
efficients of a PWM signal. This process allows the computer 
to determine the m1A – m4A terms of (3) when the load is across 
phases A − C (at this time IB = 0), and the m1B – m4B terms when 
the load is across phases B − C (IA = 0). With these terms known, 
the matrix K is known, and the current sensors are calibrated.

Assuming (5) – (7) hold, i.e., the ship's voltages are stiff 
with constant phase relationships, only A and  are required 
to convert the measured signal of (8) to the voltages of (5) – (7). 
When the load is connected from VA to VC, the load current has 
the form:

	 ( ) πω 
= − 

 
3 cos

6L
VI t t
R

	 (9)

where R is the resistive value of the load. With IL available from 
the calibrated current sensors,  can be calculated as:

	
πφ θ= −
6

	 (10)

where  is the phase difference between SV (8) and IL (9). Col-

lectively then, VA, VB, and VC can then be estimated by scaling 

SV by the factor V
A

 and phase shifting the waveforms in accor-

dance with (5) – (10).

Power Calculations
Once calibration is achieved, the Sinefit algorithm and spec-
tral envelope processor [7] runs on the central computer to 
produce phase power and harmonic calculations. This pro-
cessor effectively fits a sinusoid to one voltage stream over a 
single line-cycle to estimate the instantaneous frequency and 
provides that frequency for the spectral analysis of the current 
measurements. The outcome is the compression of informa-
tion into three-phase real (P) and reactive power components 
(Q) as well as 3rd, 5th, and 7th current harmonics (H) at a rate 
equivalent to the line-frequency (60 Hz in the case of the ship's 
main distribution system).

In laboratory settings, power estimates achieved using non-
contact current and voltage sensors have shown accuracies to 
within 1% of the power reported by a conventional power me-
ter. The accuracy of these meters, however, is highly affected 
by the installation and calibration process. Most notably, the 
Hall effect sensors can show nonlinear effects including satu-
ration and hysteresis [1] if the magnetic field emanating from 
the wire is too strong. This can happen if the sensor is installed 
too close to the conductor (for example, if the conductor insu-
lation and cable jacket are thin). In this case, the sensor requires 
“spacers” between itself and the cable. The time-length of the 
calibration process also affects power measurement accuracy, 
as do the characteristics of the concurrent loads on the electri-
cal system.

Transient Identification
For identifying individual load transients in these power 
streams, a correlation-based event identification algorithm, 
Trainola [5], is built into the NILM system. In this algorithm, 
a measure of the correlation between an exemplar, i.e., a re-
corded or modeled transient event of a specific load, and an 
equivalent-length section of electrical data is calculated as the 
window moves across a data stream. When this measure peaks 
within a defined range, the algorithm marks the time instance 
corresponding to the beginning of the moving window as that 
of an event corresponding to the exemplar.

Consider an exemplar, g, of length T, and the equal-length 
windowed portion of a data stream, f. The sum of squared er-
rors between these two waveforms is defined as:

	 ( )
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This error term can be expanded and ultimately rewritten in 
terms of dot products, i.e.:
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If the waveforms are identical, the sum of squared errors term
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 is E = 0, and (14) can be reformed as:

	
+
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·
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Further, if the magnitudes of the exemplar and the measured 
waveform are the same, i.e. =g f , then (15) reduces to:

	 =2

· 1f g

f
	 (16)

Thus, we can define a function for each power stream and each 
exemplar:

	   =  2

·f gM k
g

	 (17)

that generates a local maximum with a value around 1 when 
the windowed section, f, of a data stream starting at time in-
stance, k, matches well in amplitude and shape to exemplar, g. 
When Trainola detects this peak, it creates a marker indicating 
the time of the corresponding event.

Fig. 7 helps to understand the performance of the Train-
ola algorithm. The top two plots show the real and reactive 
power streams that contain a fire pump turn-on event at ap-
proximately the 14-second mark. The pump later turns off 
around the 28-second mark. All other transients in the streams 
are other loads. To find this turn-on event, as the computer re-
ceives this data, the Trainola algorithm effectively sweeps the 
3-second fire pump turn-on exemplars across the streams. 
When the exemplar time-aligns with the transient, the algo-
rithm metric for the real and reactive power stream, MP and 
MQ, respectively, results in positive peaks values of 0.87 and 
0.94, respectively. Both are very close to the ideal value of 1. 
This process can be repeated for each phase and harmonic for a 
multidimensional analysis. It should be noted that the Trainola 
identification method is not robust to time-domain changes in 
transients, such as a significant increase in peak power or an 
increase in the time the transient takes to decay to steady state. 
Ultimately, transient exemplars might need periodic updating 
if using this method for disaggregation over long time periods.

Creating a Database With Labeled 
Events
To date, this noncontact NILM system has collected data 
throughout multiple operational patrols, as well as several 
months with the ship stationed in port in Boston, MA. Data 
collected during each patrol are retrieved following the SPEN-
CER's return to port. During this time, the sensors are checked 
to ensure they are still tightly attached to the cables, which 
they usually are. Thus, recalibration is not usually required. 
However, on rare occasions we found sections of improba-
ble power data between two hours and several days in length 
(e.g., power flow into a generator). Typically, the NILM system 

recovers without intervention. Potential reasons for these peri-
ods of inconsistent data could be field interference from rarely 
energized equipment not accounted for during calibration or 
software bugs causing errors in the data processing. Efforts to 
better understand this issue are underway, including testing 
magnetic shielding as part of revisions to the sensors.

Fig. 8 shows an approximately nine-day period of aggregate 
real power data collected while the vessel was underway and 
returned to port. In this figure, the red, green, and blue traces 
indicate the three-phase power supplied by generator 1, gen-
erator 2, and fore shore power, respectively. While the ship is 
underway, from Dec. 24th through Dec. 30th, each generator 
alternates supplying power to the ship interspersed with peri-
ods of both generators supplying power. Early on Dec. 31st, the 
ship pulled into port, connected to shore power, and shut down 
the two diesel generators. In these traces, the darker solid line 

Fig. 7. Trainola performance using the first fire pump #1 transient as the 
exemplar around the time of the third fire pump #1 transient.
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signifies a decimated moving average of the recorded power, 
while the lighter shaded region gives an indication of the local 
variance of the power values about the mean trace.

Methods for disaggregating power streams typically fall 
into two categories, event-based or non-event based, which 

generally utilize supervised and unsupervised machine 
learning techniques, respectively [7]. For supervised tech-
niques, algorithms require labeled data for training, while 
unsupervised techniques do not. Even so, labeled data aids in 
cross-validating the performance of unsupervised techniques. 
To begin compiling a dataset useful for both categories of load 
disaggregation, events are manually labeled by correlating 
electrical transients in the data streams to previously mea-
sured load “exemplar” waveforms around times when crew 
logs specifically recorded events, e.g., energizing a fire pump. 
These exemplar waveforms are short data streams captured 
in coordination with the crew, who energized and de-ener-
gized specified loads while we marked the transients in the 
data streams.

The loads with at least one identified exemplar are listed 
in Table 1. These loads are primarily pumps ranging in size 
from 3 kW to 56 kW. A watchstander records the operation 
of these loads, except for the gray water pumps, which op-
erate automatically. These records provide an opportunity 

Table 1 – Initial set of confirmed load exemplars from the first monitored operational patrol

Load Name
Electrical 

Specifications

Logged Operational Events

Labeled Minimum Unlabeled

On Off On Off

Watchstander Logged Loads

  Fire Pump 1
56 kW

8 8 0 0
0.88 PF

  Fire Pump 2
56 kW

3 3 0 0
0.88 PF

  Aft Steering Pump 1
22 kW

6 6 0 0
0.85 PF

  Aft Steering Pump 2
22 kW

6 6 0 0
0.85 PF

  CPP Pumps
7.5 kW

11 8 9 10
0.80 PF

  Inport ASW Pump
7.5 kW

2 2 1 1
0.79 PF

  Underway ASW Pump
11 kW

2 2 1 1
0.79 PF

Diesel Engine Auxiliary Loads

  Jacket Water Heater
9 kW

13 13 34 34
1 PF

  Lube Oil Heater
12 kW

13 13 34 34
1 PF

  Pre-Lube Pump
3 kW

13 13 34 34
0.8 PF

Other Loads

  Gray Water Pump
3.7 kW

7 7 N/A N/A
0.79 PF

Fig. 8. Nine-day period of three-phase power measurements from the three 
power sources utilized: generator 1 (red), generator 2 (green), and fore shore 
power (blue).
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to check the accuracy and precision of machine identifi-
cation. The number of on and off events confirmed with a 
high level of confidence is shown in the “Labeled” (3rd and 
4th) columns of the table. The 5th and 6th columns, entitled 
“Minimum Unlabeled,” correspond to events indicated in 
the machinery logs, but whose corresponding electrical tran-
sients were not identified with a high level of confidence. 
This could be due to mislabeled or mistimed entries in the 
logs, or other simultaneous events, or both. Still, it remains 
likely that in many cases the recorded event occurred around 
the time logged. Thus, that an unlabeled transient occurred 
can still be useful information in developing disaggregation 
algorithms.

The gray water tanks are located in close proximity to the 
meters. As such, it was easy to note the timing of the tank 
pump run events during in port testing of the noncontact 
NILM system. Thus, several exemplar waveforms were iden-
tified for use with the Trainola correlation feature, however no 
estimate of the total number of events is available.

Automated Testing Applications
We used the dataset described above and the baseline transient 
detection algorithm, Trainola, to investigate several auto-
mated analysis applications: measuring and reporting power 
system metrics, generating watchstander log reports, and con-
dition monitoring for cyclic loads.

Generator Operation Metrics
In addition to performing load-disaggregation based mon-
itoring tasks, the noncontact NILM system also affords 
opportunities for generator monitoring. The processed power 
data streams are available in near real-time for metrics con-
cerning the health of the generation and distribution system. 
These metrics can then be reported to crewmembers instigat-
ing further investigation if required.

Two mechanisms for load-induced failure in diesel gen-
erators such as those aboard the SPENCER are imbalanced 
loads and low power factor loads. Imbalanced current de-
mands on the three phases of the generator can cause poor 

Fig. 9. Generator operation metrics showing load balancing between phases and each generator, and power factor for each phase and each generator. (a) Dec. 
27, 2015, 1140:50 - Load Balance. (b) Dec. 28, 2015, 1342:32 - Load Balance. (c) Dec. 27, 2015, 1140:50 - Power Factors. (d) Dec. 28, 2015, 1342:32 - Power Factors.
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efficiencies, thermal and mechanical stresses [8], [9], and vi-
brations that increase the noise signature of the ship [10]. 
Low power factor loads require increased currents for a given 
power demand. Thus, low power factors limit the generator 
capability.

The NILM system can generate metrics of phase balance 
and power factor and report them to the crew in near real-time. 
Fig. 9 shows an example of such metrics. The figure features 
bar plots reporting each generator's loading by phase as well 
as a comparison of overall loading between generators on Dec. 
27, 2015 at 1140:50 (Fig. 9a) and Dec. 28th at 1342:32 (Fig. 9b). 
From Fig. 9a, crew operators can immediately note that while 
Generator 1 is well balanced, Generator 2 is not. Instead, Phase 
B is roughly 40% more loaded than Phase A, and Generator 2 
is about 50% more loaded overall than Generator 1. At 1342:32 
on Dec. 28th, the plot shows that now only generator 2 is op-
erating, and while it is slightly more balanced, the generator is 
nearing its maximum capacity.

Operating at this capacity, however, requires an operating 
power factor of at least 0.8. The power factors for each gener-
ator are similarly reported in Fig. 9c and Fig. 9d. Fig. 9c shows 
that each phase of both generators are operating near or above 
their rated power factor levels on Dec. 27th at 1140:15. Simi-
larly, Generator 2 is operating above the rated power factor 
level on Dec. 28th at 1342:32 (Fig. 9d). Thus, the real power de-
manded of the generator at this time is still in compliance with 
the generator's power delivery capabilities.

Automated Machinery Log
The machinery log is an official document, and in the event of 
an accident caused by machinery malfunction or operator er-
ror, the document becomes a legal reference in court. Thus, it 

is important that these logs be accurate. Further, automating 
log generation helps to modernize the marine environment 
by reducing crew time commitments dedicated to low-level 
manual tasks. The noncontact NILM system can aid in both 
objectives. Specifically, given a crew-generated log with rough 
timings of events, it can identify exact times of transients cor-
responding to the log events, thus improving the log accuracy. 
Ultimately, as improved event detection and identification 
algorithms are applied, the need for a crew-generated log dis-
appears entirely.

The NILM's ability to automatically log events is contrasted 
against the manual log for a four-hour period on Dec. 24th, 2015 
(Table 2). Each event recorded by the watchstander is listed 
with the time in the first column and a shortened description 
in the second. Typically recorded events, which were identi-
fied by the NILM but not recorded by the watchstander, are 
also shown, e.g., 1541 - “Secured both CPP “C” pumps.” Check 
marks indicate if the event was recorded in the manually gen-
erated log and the NILM generated log, respectively.

Of the twelve events listed by the officer, the NILM system 
is able to automatically record nine. Currently, the NILM sys-
tem cannot distinguish well between identical loads, e.g., fire 
pumps #1 and #2, as their transients are extremely similar and 
thus well correlated. Some events, such as “round of E/R,” 
which means the watchstander inspected the equipment in 
the engine room, provide no electrical transient for the NILM 
system to detect. The NILM system did indicate that the watch-
stander missed recording events typically included in the log 
and incorrectly recorded other events. Notably, at 1655 the 
watchstander recorded that all electrical loads were singled on 
Generator #1, though the data streams at that time show Gen-
erator #2 singling the loads. Regarding the events detected by 

Table 2 – Comparison of manually generated log to NILM detected events. In this table, MPDE is an acronym 
for Main Propulsion Diesel Engine, E/R stands for Engine Room, RMD stands for Restricted Maneuvering 

Doctorine, and CPP stands for Controllable Pitch Propeller.

Time Event Manual Log NILM Log Notes

1505 Secured both MPDE ✓ ✓ NILM does not distinguish engines

1509 Energized #1 fire pump ✓ ✓ NILM does not distinguish pumps

1515 Secured #1 fire pump ✓ ✓ NILM does not distinguish pumps

1520 Secured both steering pumps ✓ ✓ NILM does not distinguish pumps

1530 Round of E/R ✓ No exemplar transient for NILM

1540 Secured from Special Sea ✓ No exemplar transient for NILM

1540 Secured from RMD ✓ ✓ Recorded at 1541 by NILM

1541 Secured both CPP “C” pumps ✓ Not recorded by watchstander

1602 Swapped potable water suction ✓ No exemplar transient for NILM

1655 Singled electrical load on Gen. #2 ✓ Watchstander log indicates incorrect Gen.

1707 Secured Gen. #1 ✓ ✓ Recorded at 1653 by NILM

1843 Started both MPDE ✓ Not recorded by watchstander

1900 Secured both MPDE ✓ ✓ NILM does not distinguish engines

1903 Commenced fuel transfer ✓ ✓ Recorded at 1912 by NILM
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the NILM but not recorded by the watchstander, it is certainly 
possible that these events are false positive detections. How-
ever, at least in the case of the “Secured both CPP “C” pumps” 
event at 1541, being secured from RMD almost always corre-
sponds to also securing the CPP “C” pumps, thus giving a high 
level of confidence that the event did indeed occur.

Cyclic Load Condition Monitoring
A final application for the noncontact NILM system is con-
dition monitoring. By detecting and assigning transients to 
specific loads or simply grouping together transients with 
similar traits, the NILM system can detect changes in event 
timing patterns, which can be indicative of machinery faults 
[11]. This is particularly important in closed-loop controlled 
loads, e.g., cyclic loads such as gray water tank pumps, as pre- 
catastrophic faults can easily go unnoticed.

The gray water waste system aboard the SPENCER col-
lects the wastewater from non-sewage and non-recycling 
water loads such as sinks, showers, and washers. This waste is 
collected in a holding tank before being filtered and pumped 
overboard or combined with sewage, depending on the ship's 
location and local pollution regulations. Tank level indicators 
(TLIs) provide feedback to the pump's control system, indi-
cating when the water level is high and needs to be pumped 
down.

Using exemplar waveforms of such pump runs, the Train-
ola function reported very high-frequency pump operation 
but with very short run times. Fig. 10 depicts this short cycling 
operation. The phase A real and reactive power streams are 
plotted over a seven minute period on Dec. 7, 2015. During this 
period, seven transients indicative of pump runs were iden-
tified by the NILM system, but these transients only lasted a 
few seconds.

A common failure mode for the gray water pumps occurs 
when the is TLI sensors become clogged with debris and oil, 
leading to premature “full tank” indications and causing the 
pumps to shut off only a few seconds after switching on. Even-
tually this leads to pump failure by overworking the pump 
and working it with no discharge fluid. On the SPENCER, 
this fault was the root cause of the pump's short cycle oper-
ation. However, the fault had gone unnoticed by the crew as 

the control system still moves gray water on from the tank and 
full failure had not yet happened. Thus, the NILM system can 
detect such faults before they cause failure and can be auto-
mated to do so by monitoring the statistical distributions of the 
pump's run frequency and run length [12].

Conclusion
Noncontact current and voltage sensors represent next-gener-
ation sensor technology for NILM systems. As shown through 
their application aboard the U.S. Coast Guard SPENCER, these 
sensors, when combined with signal processing and signal 
disaggregation techniques, create a powerful tool for auto-
mated testing of electrical systems and loads. These sensors 
are easy to install and uninstall, making them useful for crew 
technicians needing to perform on-the-go diagnostic tests of 
subsystems or individual pieces of equipment.

The data collected from the USCGC SPENCER have been 
matched against manually generated machinery logs in order 
to build a dataset for testing disaggregation algorithms. With 
the sensors still installed aboard the ship, more data are contin-
uously being collected and new instances of machinery events 
identified. Moving forward, we plan to develop and apply more 
advanced disaggregation, condition monitoring, and energy 
scorekeeping algorithms to further improve the autonomy, ac-
curacy, and automated testing abilities of the noncontact system.
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