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Abstract 

Increased interest in energy scorekeeping, load forecasting and improved control of electricity-consuming equipment has focused attention 
on the instrumentation required to obtain the desired data. Work performed by the authors and other researchers has shown that individual 
loads can be detected and separated from rapid sampling of power at a single point serving a number of pieces of equipment, for example the 
electrical service entrance for an entire house or all of the central space-conditioning equipment in a commercial building. This technique has 
worked well in tests in houses but faces more difficult challenges in commercial buildings. We present our results for this centralized or non- 
intrusive load monitoring technique, applied to the space-conditioning equipment in an office/laboratory building in which equipment start- 
up and shut-down was centrally observed and analyzed on the basis of changes in steady-state power. We further describe our enhanced 
technique for distinguishing loads by matching start-up transients to known patterns, and present laboratory tests or fully automated detection 
hardware and software. 
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1. Background 

This paper focuses on metering techniques for disaggre- 
gating individual electrical loads in individual buildings. 
Excluded from the scope of the study are engineering models 
or statistical methods for separating loads, by annual energy 
use or load shape, in large numbers of buildings grouped by 
classes. The purpose of this paper is to identify the need for 
and methods of obtaining disaggregated load data, to present 
two techniques for detecting the start-up of individual loads 
without submetering, and to compare these two methods. 

Knowledge of electricity consumption and time of USC in 
individual buildings is vital toconsumers andelectric utilities. 
This information, typically provided by a revenue meter at 
the point of electrical service to a building or group of build- 
ings, is the basis for billing and payments. Correlations of 
consumption and peak load with time on a monthly scale can, 
if extended over periods of similar weather, reveal trends, up 
or down, that indicate in a rough way the impact of or need 
for conservation activity or load control. The same monthly 
data, available from billing records, can be correlated with 
outdoor temperature to separate baseload activity from 
weather-dependent consumption, particularly electric heating 
or cooling [ 11. 
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A time scale on the order of 15-60 min, as can be obtained 
from utility load-recording meters, improves the temporal 
resolution beyond that afforded by daily or monthly totals of 
electricity usage and provides some information about the 
scheduling of electricity-consuming devices, particularly in 
commercial buildings where schedules are typically very reg- 
ular. Major changes in electrical power are readily associated 
with the switching of large banks of lights, ventilation fans 
or chillers [ 21. Irregularities in known patterns are often clues 
about faulty equipment operation, including unnecessary 
operation, failure to operate when needed, or gross changes 
in power when operating. However, it is difficult to take the 
next step with 15-60 min whole-building data and accurately 
partition it into major components to determine daily disag- 
gregated load shapes, even if equipment operating schedules 
are tixed. Variable loads are a major problem. If, for example, 
there is no on-site chiller (or it is winter) and if tenant loads 
are nearly constant (with day-to-night variation allowed), 
ventilation equipment can then be distinguished from tenant 
loads. Any variation in total electricity consumption is 
ascribed to the response of the ventilation system to changing 
thermal loads. If a chiller is present and chiller power as well 
as fan power varies throughout the day, load separation solely 
on the basis of the metered data becomes unfeasible. 



For residential buildings, major electrical loads switch on 
and off frequently and often irregularly. Water heating ele- 
ments are thermostatically controlled and cycle to maintain 
tank temperature. Clothes dryers are used whenever the occu- 
pant desires. Refrigerator compressors cycle on and off in 
response to temperatures within the refrigerator. Air condi- 
tioner compressors work in a similar fashion, responding to 
the thermostat’s control signal. Most loads have historically 
been nearly constant when equipment is in operation, 
although recent application of variable-speed motor drives to 
air-conditioning compressor motors breaks this pattern. 
When motors or heaters are either on or off at a constant 
power level, with no other states, the load disaggregation 
problem is one of sorting out, on a relatively fine time scale, 
a series of step changes in the total electricity usage. The 1 S- 
60 min time scale typical of load recording meters is too 
coarse, because multiple events can occur within that period. 

Utilities have compensated for the limitations of typical 
single-point load recording meters by opting for improved 
spatial rather than temporal resolution. That is, submeters 
have been installed to definitively isolate loads. In the resi- 
dential sector, submeters have been used to measure con- 
sumption of water heaters and air conditioners. In commercial 
buildings, submeters are used to obtain data for case studies 
of particular buildings, often over periods of days to months, 
to measure changes in electrical power before and after con- 
servation or load control programs. Submeters are also use- 
fully employed to determine part-load performance of 
equipment with variable electrical power draw and thereby 
improve models of equipment performance. Further, sub- 
meters are the source of data needed to validate engineering 
or statistical models used to estimate disaggregated load 
shapes for classes of buildings [ 31. The capital cost of sub- 
meters, the expense of their installation, their intrusive nature 
(by definition on the customer side of the revenue meter, 
therefore requiring access to customer houses for installation, 
maintenance and removal) and, finally, the cost of transfer- 
ring the data from the meters to a centralized facility and then 
performing the analysis combine to throw considerable 
weight against this approach. 

Both modeling and metering have become more difficult 
in recent years as equipment part-load performance improves 
and power drawn by the equipment more closely tracks the 
demand for some sort of service; it is easier to model an on- 
off device than one drawing variable power, This trend is true 
across the board, as service includes chilled water (affecting 
the chiller), airflow (fans), light (due to occupancy and 
daylight sensors) and, recently, computation or printing 
(with office equipment switching to a low-power state when 
not in use). 

This paper describes an alternative to electrical submeter- 
mg, that of measuring electrical power at a single or small 
number of points and assigning changes in power to individ- 
ual pieces of equipment. It begins with a brief description of 
work down by others to pioneer this technique and apply it 
to residential buildings. It then distinguishes commercial 

buildings, the subject of our research, on the basis of load 
detection, measurement and identification. Next is a presen- 
tation of our work to date to detect and measure loads in a 
commercial building by use of algorithms based on the 
essence of the approach used in residential buildings, that of 
assessing the difference in power between two steady-state 
levels, separated by start-up or shut-down events. The paper 
then describes our approach to load detection based on rapid 
sampling and analysis of the shape of a start-up transient. 
Finally, this approach is compared to the steady-state 
approach and conclusions are offered. 

2. Non-intrusive load monitoring in residential 
buildings 

For houses, the on-off nature of most loads suggests that 
a close look. temporally, at building-total electrical power 
can compete favorably with submeters. This view of the 
metering problem led researchers to develop a low-cost, 
microprocessor-based recorder that samples the whole-build- 
ing electrical service at relatively rapid intervals. This 
metering approach is called non-intrusive because the meter 
does not cross the customer-utility boundary. The prototype 
non-intrusive load monitor (NILM) described in detail in 
Ref. [ 41 consisted, logically, of five steps: power measure- 
ment, detection of on or off events, clustering of similar 
events, matching of on and off events over time, and equip- 
ment identification. Real and reactive power was calculated 
from measurements of current and voltage at one-second 
intervals. Steady power was defined by three or more samples 
falling within an empirically defined tolerance; when an 
appliance switched on or off, power samples changed and a 
new steady power level was established. The difference 
between the two steady power levels defined an event. These 
events, characterized by changes in real and reactive power 
and a time stamp, were clustered; that is, events within an 
empirically established tolerance of real and reactive power 
were considered to be associated with one or more pieces of 
equipment with the same characteristics. Start-up and shut- 
down events for simple types of equipment yield clusters of 
identical magnitude but opposite sign. For a given pair of 
clusters, a time series of on and off events was constructed. 
Finally. appliance identification was made by comparing 
powers with known characteristics of typical appliances. The 
meter was subjected to a limited field test and its output 
compared against submetered data in four houses, using data 
sets of 1-2 weeks in duration. Results were typically very 
good for most appliances and ranged from excellent for water 
heaters, where the difference in energy consumption as meas- 
ured by submeters and estimated by the NILM differed by 
more than 10% in only one of four houses, to poor for electric 
ranges, where rapidly flickering heating elements were often 
not detected by the NILM [ 51. 

Characteristics of the meter include the following. 



(i) Easy installation at the monitoring site. Unlike sub- 
metering, the NILM requires a single set of electrical ties. 

(ii) Automatic load identification. The NILM can auto- 
matically identify simple ‘two-state’ appliances in a target 
building without the need for a load survey. Some caution is 
needed here because the NILM can potentially be fooled by 
abnormal equipment performance and not match clustered 
electrical measurements with an appliance found in its library. 
The NILM, as a load survey instrument, can provide building- 
specific information useful for conditional demand analyses 
of classes of buildings, described briefly in Ref. [ 3 1. 

(iii) Potential for on-site data analysis. The prototype 
meter, however, did not perform the time-matching and iden- 
tification, which were done off site on the basis of clusters of 
data sorted by the NILM. 

Continued research on the steady-state detection algorithm 
used in the NILM has extended its application to machines 
that have more that two states of operation [ 41. Refrigerators. 
for example, have defrosters as well as compressors, and the 
two-state NILM can only detect the dominant state. 

The steady-state detection approach can also be extended, 
but as yet has not been, to include the harmonic content of 
the electrical current, making the NILM a potentially impor- 
tant platform for power quality monitoring, particularly in 
commercial buildings. Many loads, such as computers and 
other office equipment, gas discharge lighting fixtures, and 
adjustable-speed motor drives, can draw distorted, non-sinu- 
soidal current waveforms. By correlating changes in 
harmonic content with the operation of specific equipment, 
the NILM could track down power-quality offenders. 

3. Challenges of extending the NILM to the commercial 
sector 

The thermal loads and HVAC equipment sizes in a store- 
front may differ little from those of a house, although usage 
patterns are typically distinct. On the other hand, the types of 
equipment that generate power quality problems are more 
likely found in commercial buildings, making power-quality 
monitoring a more attractive feature of a NILM that is applied 
to commercial buildings. The similarities and differences 
between these two classes of buildings can be evaluated in 
terms of the NILM’s three chief functions: load detection. 
load measurement, load identification. 

3.1. Loud detection 

Detecting loads on the basis of changes in steady-state 
power makes the residential NILM susceptible to confusion 
if two loads start up at nearly the same time. That is, there 
must be a discernible steady-state power level between the 
changes due to each of the two loads; if not, the NILM will 
detect a single load with real and reactive power equal to the 
sum of the two components. This sum will typically not 
cluster with any other device. When the two devices turn off, 

their individual powers are properly clustered. The time series 
will be missing start-up signals for the two devices but the 
NILM software can then interpret the isolated start-up power 
as the sum of the two shut-down events and therefore as the 
best explanation of the data missing from the clusters of start- 
up events. Problems arise as the number of loads increases; 
for example, the sum of the two loads may naturally cluster 
with an entirely different load. 

This problem is mitigated by the availability of other infor- 
mation, namely control signals that are sent from a building 
automation system to turn on or off individual pieces of 
equipment, A NILM brought into a commercial building and 
attached via a communications line to the building automa- 
tion system, or even incorporated into such a system, is more 
intrusive but more intelligent. It will know when equipment 
turns on and off and can therefore identify overlaps. For 
equipment not controlled by the building automation system, 
the steady-state detection algorithm is more suspect. 

3.2. Loud measurement 

Commercial buildings are more likely to have electrical 
loads that vary smoothly over time, rather than undergoing 
one or more discrete changes in state that can be approximated 
by steps. Variable-speed motor drives are perhaps the best 
known example, but even fixed-speed motors will draw var- 
ying power when connected to centrifugal machinery that 
experiences variable hydraulic loads. Dimmable lighting fix- 
tures are another example. In these cases, a primary problem 
is that start-up and shut-down power may well differ, making 
it difficult to associate these transitions with the same device 
unless there is information about control signals or device 
output (pressure, flow, light level). More subtly, variable 
hydraulic loads make it difficult to pin down the start-up 
power ofpumps and fans; as will be seen, the start-up transient 
is prolonged and may be masked by other changes in electrical 
power. 

3.3. Load identijication 

In the residential NILM, loads are identified by character- 
istic values of real and reactive power. In commercial build- 
ings, substantial efforts are made to reduce reactive power 
and make loads appear to be primarily resistive. Fluorescent 
lamp fixtures driven by power-factor corrected electronic bal- 
lasts will have essentially no reactive power in steady state 
and cannot be distinguished from a heater or coffee pot of the 
same magnitude. In this case, load identification is prone to 
failure if based solely on steady-state load characteristics. 

If the NILM is attached to a building automation system, 
its task changes from identification based on power, as is 
done in the current implementation of the residential NILM, 
to an analysis of power based on identification. With the 
equipment identity known, abnormal power readings are no 
longer unidentified because they do not fall within a cluster 
of typical power levels but instead can be evaluated as being 
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caused by equipment faults. So, the steady-state detection 
algorithm would appear in principle to be viable for com- 
mercial-building HVAC equipment controlled by an auto- 
mation system. Equipment not controlled by an automation 
system includes tenant office electronics, lights, heaters and 
distributed ventilation fans. Power-factor correction is 
increasingly prevalent on office electronics and fluorescent 
lamp ballasts and identification based on steady-state power 
may fail. 

4. Detection of on-off transitions, measurement of 
power levels, and fault detection in commercial HVAC 
equipment, using steady-state load detection 

A NILM attached to the electrical system serving HVAC 
equipment cannot only provide data for utilities and owners 
interested in load management but can also inform the HVAC 
control system that equipment has indeed responded to on- 
off control signals. Such would not be the case if the device 
were inadvertently placed under manual control or if there 
were an electrical fault. Traditionally, a control system rely- 
ing on electrical confirmation of response to on or off signals 
has made use of a single current transducer per device. We 
have assessed whether a NILM could perform the same task, 
without need for individual current transducers, and whether 
the steady-state load detection scheme embodied in the resi- 
dential NILM is appropriate for a different environment. 
More information about our tests is found in Ref. [ 61. Here 
we update and summarize the analysis in Ref. [ 61; in partic- 
ular, we provide information about application of the resi- 
dential NILM’s step-change algorithm for 3 and 5 kW 
tolerances, 

We installed a watt transducer (and not a fully developed, 
stand-alone NILM) on the 480 V 3-phase electrical service 
that provides power for HVAC equipment in two campus 
buildings. The transducer’s output was limited to real elec- 
trical power. Workin theresidential sector has shown reactive 
power to be very useful and indeed reactive power is com- 
puted in the transient-event detector to be described later in 
this paper. However, real power was sufficient to assess many 
of the major aspects of the functionality of a NILM in a 
commercial building. The equipment in the test building 
included two identical 500 ton centrifugal chillers and asso- 
ciated chilled water (50 hp) and condenser water (40 hp) 
pumps; two large supply fans with adjustable-speed drives 
( 125 and 100 hp); and a number of smaller pumps and fans; 
maximum total power for the system was about 1000 kW. 
One-second average samples of the watt transducer’s output 
were stored on a portable computer. Fig. 1 and Fig. 2 show 
typical data, including large-amplitude oscillations that 
will be discussed later and on-off transitions of HVAC 
equipment. 

These data can be used to answer an important question 
about the statistical validity of power measurements made 
via non-intrusive monitoring. If the magnitude of the unex- 
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Fig. 1. Electric power at the building HVAC service entrance. A poorly 
tuned chiller controller operating under low-load conditions caused the large 
power oscillations. 
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Fig. 2. Electric power at the building HVAC service entrance. A chiller and 
associated pumps were turned on at 7 a.m. 

plained electrical power variations measured at the HVAC 
electrical service distribution panel or other central location 
is large, then only larger changes in power levels are statis- 
tically significant. Standard deviations during periods of 
nearly steady power were about 5 kW. This remarkably small 
number, less than 1% of the total, indicates that pumps and 
fans of moderate or large size should be detected readily, 
while small return and exhaust fans would not be found easily. 
For a signal with a 5 kW standard deviation, the minimum 
difference in mean power before and after an event that will 
reject the hypothesis that there is no change at the 95% con- 
fidence level drops from 9.8 kW when the mean is calculated 
from five power measurements to 5.3 kW for a sample size 
of 10 and 2.7 kW when the sample size is increased to 30. Of 
course, more samples require longer steady periods before 
and after a piece of equipment turns on or off. 

4.1. Pumps 

Fig. 3 illustrates four on and off transitions for a 50 hp 
condenser-water pump, which was tested at a time when the 
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Fig. 3. Changes in electric Dower at the HVAC service entrance due to switching a condenser-water pump on and off. Noise in the raw data, shown as a dashed 
line, is removed by the median filter. 

other condenser pump was in constant operation. The increase 
in system power when the pump is running is large relative 
to the 5 kW standard deviation and periods of pump operation 
can be visually discerned. However, the figure shows that the 
pump motor is more complicated than a simple two-state 
device with a motor start-up power surge and therefore more 
complicated to analyze. 

(i) After start-up, there is, typically, a long period of 
slowly decreasing power, during which fluid pressures in the 
water loop are approaching equilibrium. The pump just 
started must reach a balance with the pump already running, 
at which time each pump is drawing less power than either 
would if running alone. This pattern is not consistent and is 
masked by small increases in system power. 

(ii) After the test pump is turned off, the remaining pump, 
still in operation, is subjected to a larger load and its power 
increases. There is only a narrow window in time - about 5 
s - during which to establish the power change of the test 
pump at shut-down; a longer averaging period will be affected 
by the increased power of the second pump. We have 
observed similar behavior with the two chillers. 

(iii) There are periodic spikes as large as 20 kW magni- 
tude, in many cases lasting just a single one-second sampling 
interval. Similar surges in power were observed with a sub- 
meter attached to a variable-speed drive fan and may be due 
to variable-speed-drive controllers responding to set-point 
changes. 

How a NILM should respond to electrical impulses 
depends on an assessment of the cause of the impulses and 
the value of computing the energy associated with them. In 
our case, we ascribed the impulses to the operation of the 
variable-speed-drive controllers and sought to either ignore 
them or screen them out. In other cases, the impulses could 
be due to electrical heaters and would be of interest. Impulses 
trigger the edge detector used in the residential NILM, which 
then waits for a new period of near steady power. If they are 
not of interest they create a computational burden because 

they are treated as significant events; a NILM operating at 
one-second intervals would compute a near-zero change in 
power before and after the impulse. If they are considered of 
interest, the NILM sampling interval would need to be short- 
ened to establish a steady power level at the peak of the 
impulse. The sampling speed must be chosen with care, as a 
faster speed makes the steady-state detection algorithm more 
likely to find spurious steady-state powers induced by other 
devices during a prolonged start-up transient. 

A median filter is one technique that has worked well in 
practice to eliminate narrow spikes. Well known in the signal 
and image processing fields for several decades (see sum- 
mary in Ref. [7] ), the median filter operates by sliding a 
symmetrically placed window over a vector of input data. At 
any time, the output of the filter is the median value of the 
data in the window, which advances one point at a time along 
the stream of input data. A median filter can eliminate the 
spikes in the data we have recorded, which are very narrow, 
without sacrificing significant features of the data, which are 
of longer duration. We applied a window of 11 points. It is 
important to note that this filter differs from linear filters, 
which pass signals of specified frequency and are therefore 
poorly suited to distinguish impulses and edges, both of 
which have similar frequency content. 

Fig. 3 shows the remarkable results of the median filter as 
well as the raw data. With the spikes removed from the raw 
data, it is now possible to consider algorithms for determining 
the magnitude of the changes in power. Fig. 4 shows step 
changes pulled out of the data by the residential NILM’s 
algorithm, with steady state defined by 3 and 5 kW tolerances, 
for the first portion of the data. The performance of this 
algorithm merits several comments. 

(i) The algorithm found the four pump tests, the first of 
which is shown in Fig. 4, but also reacted to numerous non- 
events, even after the spikes were removed. There is no appar- 
ent benefit from decreasing the tolerance, which will only 
produce more spurious events and make it more difficult to 
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Fig. 4. Condenser pump operation, as shown by the median filter alone and by successive application of the median filter and the residential NILM step-change 
detection algorithm with 3 and 5 kW triggers. 

establish a steady state immediately after the pump is turned 
on. The spurious events can be blocked by employing the 
algorithm only when the control signal is sent to a piece of 
equipment. In the absence of a control signal, the algorithm 
can be augmented by a transient-detection scheme, described 
later in this paper, that seeks to match the electrical data with 
templates of known devices and therefore blocks unknown 
and presumably uninteresting transients, 

(ii) The determination of the increase in power when the 
pump was started is influenced by the tolerance parameter. 
With a 3 kW tolerance, the step changes closely track the data 
produced by the median filter. The average power for the four 
start-ups was 2 1.5 kW with a tight standard deviation of 1.1 
kW. The power readings are sufficiently reproducible to be 
useful for confirmation of pump operation and for fault detec- 
tion (where statistically significant changes in power over 
time constitute a fault). A wider tolerance is unsatisfactory; 
Fig. 4 shows that the 5 kW tolerance causes the pump start- 
up power to be substantially underestimated. by 5.8 kW. 

(iii) The step-change algorithm approximates the gradual 
changes in power after the initial peak as a series of steps, the 
number of which varies across the four tests and also varies 
with tolerance. Without a reproducible pattern, it is impos- 
sible to model pump power as a finite-state machine. The 
problem with forcing the shape of the pump power curve into 
a series of steps can be circumvented by considering the 
transient to be a shape to be compared with a template, but 
the lack of reproducibility across the four tests argues for 
considerable care with this approach, which is the subject of 
planned future work. 

(iv) The step-change algorithm with 3 kW tolerance yields 
an average shut-down power of 19.7 kW with a standard 
deviation of 2.5 kW. The power dropped, on average, I .8 kW 
from the initial peak to the shut-down value. The algorithm 
cannot track this gradual decrease in power as it occurs but 
the peak start-up power and the shut-down power can still be 
associated with the same piece of equipment due to the control 
signals. The shut-down power, assumed to represent steady 

state because the pumps run at fixed speed and there are no 
throttling devices to produce a variable pressure, can be mul- 
tiplied by runtime to estimate energy consumption. Use of 
the start-up power for energy consumption calculations will 
yield an overestimate and is not recommended. 

To return to the three characteristics of the pump signal 
that complicate load detection and measurement, we con- 
clude that shut-down power is more representative of system 
operation that start-up power, that small changes in power 
for one pump when another is switched on or off require a 
narrow time window to detect and may be insignificantly 
small, and that filtering can remove power spikes that are 
deemed to be uninteresting. 

4.2. Fans 

We recorded total HVAC electrical power at times when 
a 125 hp supply fan was turned off and on twice, followed 
by one off-on cycle for a 100 hp fan. Both fan motors are 
controlled by variable-speed drives (VSDs). The raw data 
are shown in Fig. 5, while Fig. 6 shows filtered electrical 
power. There were no in-rush power spikes at start-up, 
because the VSD electronics include a soft-start feature. The 
fans did not interact with other fans and, unlike the pump 
data, there was no evidence of increase in power shortly after 
shut-down. Power levels dropped after start-up, when the 
frequency established by the VSD was reduced from its initial 
value of 60 Hz to that required by the fan to maintain supply 
duct static pressure at set point. 

The ramping of power at start-up to its maximum value 
took place over about 30 s and was approximated by the step- 
change algorithm as a series of steps, the number of which 
depended on the tolerance parameter. It is not possible to treat 
the transition as a single step with any reasonable tolerance 
and the start-up must therefore be modeled as a pattern of 
increasing steps, ending when power drops, or as a continu- 
ously increasing shape terminated by a drop in power. The 
two choices are similar, blurring the distinction between the 
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steady-state, step-change algorithm and the transient pattern 
matching algorithm to be described later. 

Like the pump power, fan power drops after the initial 
peak. Unlike pump power, fan power at shut-down cannot be 
taken as a steady-state value, because pressure across the fans 
and flow through them both vary. Tracking fan power 
between start-up and shut-down is a difficult problem that 
will be briefly noted later. It is essential to follow the start- 
up transient to the short-term steady value, when the fan 
motor has slowed to the point dictated by the pressure con- 
troller, if there is any hope of accurately estimating fan energy 
use. Fig. 6 indicates that the steady-state power can be easily 
defined when the entire HVAC electrical service is steady 
over a time period of about 100 s. The speed-control signal 
provided to the VSDs would more precisely define steady 
state, but gaining access to this information complicates the 
load monitor. 

4.3. Fuult detection based on one-second power samples 

Optimal control strategies have been developed by Braun 
et al. [8] and detection of power deviations from optimal 
conditions has been explored by Pape et al. [ 9 J The amount 

of information required for optimization has deterred its 
acceptance by industry and building owners. A NILM offers 
a lower cost, somewhat less informative, but still powerful 
approach by providing a basis for identifying what is clearly 
not correct, even if it is not possible to establish how to 
achieve what is optimal. Our monitoring of the HVAC elec- 
trical service entrance revealed two types of equipment faults 
that exemplify the application of the NILM to fault detection 
and diagnosis. 

4.4. High controller gains 

Fig. 1 shows power oscillations with apeak-to-peakampli- 
tude, about 150 kW, that are so large as to be uniquely linked 
to the chillers. Oscillations started when the total power 
dropped and stopped when the power rose or, when one of 
the two chillers was turned off. A fast Fourier transform of 
the data showed a strong spike at the same frequency used 
by the chilled-water temperature controller. The data led us 
to conclude that oscillations occurred at times when the chill- 
ers were lightly loaded and were due to poorly tuned con- 
troller gains. With control gain too large, chiller power varies 
excessively with small changes in control input. 
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Fig. 7. Optimal switch points for a two-chiller, two-pump system, taken from 
Ref. [8]. Optimal switch points result in no change in power, while subop- 
timal switching shows power changes. A non-intrusive load monitor can 
reveal such changes. 

4.5. Switching multiple chillers 

Ref. [ 81 showed that optimal switch points can be defined 
as producing no discontinuity in system coefficient of per- 
formance (COP), as shown in Fig. 7. That is, if a second 
chiller is turned on at too low a cooling load, COP will drop 
and power will rise. Power will drop if it is turned on at too 
high a cooling load. Similarly, power will fall if the second 
chiller is turned off too late, that is, when the cooling load 
has dropped below the optimal switch point. 

Our data in Fig. I show that the second chiller was turned 
off after the optimal cooling load switch point had been 
passed. Mean power dropped by about 100 kW, indicating 
that the combined power for both chillers exceeded the opti- 
mum by that amount for some period of time leading up to 
shutting down the second chiller. This information, if 
detected by a NILM, can guide plant operators toward more 
efficient plant operation. 

A type of chiller staging not observed experimentally in 
this study concerns when to turn on the first chiller. At issue 
is how large a cooling load can be met by the ventilation 
system bringing in 100% outdoor air, and how much fan 
power is required. Traditional practice has maintained the 
supply air temperature at a fixed value, forcing the chiller on 
when the outside temperature approaches this set point (with 
a small decrement due to temperature rise across the fan). 
Fan power will therefore stay the same immediately after the 
chiller is turned on and the chiller will be running at relatively 
low load. Alternatively, the supply air temperature could be 
allowed to float upward, with the chiller turned on when the 
fan is running at maximum load or (less likely) the increase 
in fan power exceeds the power drawn by the chiller. The 
latter case is exactly the same as the problem of staging the 
second chiller. In either case, the NILM and the fan speed- 
control signal can be used to detect suboptimal performance. 

5. Approach to transient pattern recognition 

The transient electrical signal from motor-driven pumps 
and fans, when measured at one-second intervals, reflects the 
interaction of the equipment with piping systems and con- 
trols. It is clearly valuable in determining when equipment 
operation has reached a steady-power level and can also be 
used for fault detection. We have formalized the process of 
associating observed transients with particular pieces of 
equipment by developing a prototype transient-event detector 
which can operate on multiple time scales. At some time scale 
characteristic of a given piece or equipment, the transient 
behavior is intimately related to the physical task that the 
equipment performs. The turn-on transients associated with 
a fluorescent lamp and an induction motor, for example, are 
distinct because the physical tasks of igniting an illuminating 
arc and accelerating a rotor are fundamentally different. Fur- 
ther, the turn-on transients of induction motors have a char- 
acteristic shape which dilates or contracts in both magnitude 
and time as a function of the size of the motor. Transient 
profiles tend not to be eliminated even in loads which employ 
active waveshaping or power factor correction. These repeat- 
edly observable turn-on transient profiles are suitable for 
identifying specific load classes and screening out uninter- 
esting electrical information. We will now discuss the clas- 
sification of segments of patterns from start-up signals and, 
briefly, the operation of the classification scheme at multiple 
time scales needed to detect small and large motor transients. 

5.1. Pattern segments 

Transient patterns of real and reactive power and higher 
harmonic content are derived from current and voltage sam- 
ples averaged over at least one period of voltage variation at 
the fundamental frequency (60 Hz in the US). While work 
reported in this paper does not consider harmonic analysis, 
our second-generation NILM hardware is capable of detect- 
ing higher harmonics as an aid in load analysis. Attempting 
to identify complete transients is an undesirable approach 
because it severely cripples the ability of the NILM to sepa- 
rate overlapping events. Instead, a start-up signal is consid- 
ered to be a time series of segments, some with substantial 
variation and others essentially steady. The transient event 
detector only searches for the significantly varying segments, 
denoted as v-sections; during the relatively quiescent periods 
the detector can respond to v-sections from other pieces of 
equipment. These v-sections have characteristic shapes asso- 
ciated with them, as will be seen. 

During a training phase, either before installation or on- 
site, the event detector employs a change-of-mean detector 
[ IO] to segment a transient representative of a class of loads, 
which might be induction motors or lamps with rapid-start 
ballasts. This segmentation process delineates the set of v- 
sections that will represent a particular transient shape in the 
input data stream of any member of the class of equipment. 
The trace in Fig. 8, for example, shows the measured varia- 
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tion in real power during the turn-on transient of an instant- 
start fluorescent lamp bank. Fig. 9 shows measured real 
power on one phase during the turn-on transient of a three- 
phase induction motor. The locations of the v-sections in the 
two waveforms, as computed by a change-of-mean detector, 
are approximately indicated by the ellipse in Fig. 8 and the 
rectangles in Fig. 9. In practice, a more complicated set of v- 
sections, which would include such other data streams as 
reactive power or higher harmonics, would be used to rep- 
resent the transient profile of a load. 

A complete transient identification is made by searching 
for a precise time pattern of v-sections. As long as each of 
the v-section shapes does not overlap the v-section of another 
device, the event detector will be able to identify the patterns 
of v-sections and therefore the transients. For example, the 
overlap of the two transients from the induction motor and 
the instant-start lamp bank shown in Fig. 10 is tractable 
because all of the v-sections for both transients are separated 
in time and therefore distinguishable. The overlap condition 
in Fig. 11 would not generally be tractable, since the instant- 
start v-section and the first induction motor v-section overlap 
severely. Since some degree of overlap is tolerable, the v- 
section set recognition technique will generally operate suc- 
cessfully in an environment with a higher rate of event 
generation than would a detector searching for whole, undis- 
turbed transient shapes. 

a00 - 
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Fig. IO .Acceptable overlap of v-sections between lamps and a motor. 
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Fig. I I Intractable overlap of v-sections. 

Classification of individual v-sections in the input data 
streams is determined by a set of pattern discriminator func- 
tions. These functions are used to compute a distance metric 
that locates a particular input vector in a region of a space of 
known transient templates. Because a v-section may appear 
on top of a variably large static or quasi-static level created 
by the operation of other loads, the discrimination process 
focuses on only the ‘a.c.’ or varying component of the V- 

section. 
The prototype event detector employs a transversal or 

matched filter as a pattern discriminator, although other pos- 

sibilities could be used and are discussed in Ref. [ 111. Each 
v-section is positively identified by checking the outputs of 
two different transversal filters [ 121. The first transversal 
filter scans an input data stream for a particular shape. The 
output of the shape transversal filter is the inner product of 

the a.c.-coupled and amplitude normalized template vector 
t,, and the data vector x,,. An output of unity indicates a 
perfect match between the template vector and the input data. 
Noise and slight variation in the repeatability of the v-sections 
will make aperfectmatch unlikely. In a practical system some 
degree of imperfection will be tolerated and any inner product 
within a certain tolerance of unity will constitute a match. 
The second filter checks the magnitude of a data segment that 
matches the shape of a template v-section, to ensure that a 
small wiggle or noise pattern that is fortuitously close in shape 
to a v-section template is not mistaken for an actual v-section. 



L.K. Norfi~rd. S.B. Leeh / Energy und Buildings 24 (1996) 51-64 

Planned field tests will guide the selection of filter para- 
meters. These tests will assess repeatability of start-up 
transients and their detectability. It can be argued that noisy 
field environments may require relaxed pattern matching tol- 
erances or make tuning a very difficult exercise. The logical 
limit of this situation would be to approximate the v-sections 
as a composite of steps and lose the detail associated with 
their shape. In this case, the algorithms we have developed 
still have two powerful features: first, the separation of a start- 
up event into a series of components, necessary to sort out 
overlapping events, and second the ability to work over mul- 
tiple time scales, to be discussed next. 

5.2. Multiple time scales 

Loads in a particular class which span a wide power range 
often exhibit transient profiles that are identical in shape but 
scaled in amplitude and duration. The transversal filter is 
suitable for identifying transient shapes over a narrowly 
defined time scale. The prototype event detector employs a 
tree-structureddecomposition to search efficiently over many 
time scales with the transversal filters [ 111. The use of the 
tree-structured decomposition is inspired by recent signal- 
processing applications of sub-band coding [ 131 and the 
discrete-time wavelet transform [ 14,151. The ability of the 
prototype to work at multiple time scales is a significant 
advance, making it possible not only to detect large and small 
motors but also, in principle, the combined electrical- 
mechanical-hydraulic dynamics that characterized the 
lengthy pump and fan transients. 

6. Prototype test equipment 

The prototype event detector consists of three components: 
an analog preprocessor, a digital-signal processing card, and 
a personal computer. The event detector monitors the voltage 
and current waveforms on a three-phase electrical service that 
powers a collection of loads representative of important load 
classes in typical, medium to large size commercial and 
industrial buildings. It is used to identify the turn-on time and 
type of the various loads, as would be required of an NILM 
not connected to a building automation system, and it has no 
a priori knowledge of the operating schedule for the loads. 

The NILM can be effectively tested in a controlled envi- 
ronment if that environment accurately represents the equip- 
ment found in a commercial building. In a laboratory, it is 
not reasonable to install equipment of the same power requi- 
rements as are found in an entire building, but it is possible 
to maintain the relative magnitudes of key types of equip- 
ment. The laboratory setting includes several motors and 
lamps. Were it possible to fully load the motors, this list of 
equipment would support motor:fluorescent light ratios of 
0.2-10, making the laboratory mock-up match buildings with 
floor areas of 100-1000 m*. With the motors normally 
unloaded, the ratios drop, although the start-up transients 

remain large due to motor in-rush current. Four loads were 
selected for inclusion in the initial tests of the NILM: two 
twin-tube instant-start fluorescent lamps with electronic bal- 
lasts, four twin-tube rapid-start fluorescent lamp fixtures with 
electronic ballasts, a 3-phase l/4 horsepower induction 
motor, and a 3-phase l/3 horsepower induction motor. The 
electrical hookup to the loads is routed through an electron- 
ically switched circuit breaker panel that activates loads with 
flexibility in relative timing. The pattern templates for the 
loads were captured during a one-time ‘walk through’ of the 
test stand. However, no data at all were collected from the 
large motor. Because the large and small induction motors 
are members of the same load class, a single transient tem- 
plate, appropriately scaled in amplitude and duration, was 
expected to prove satisfactory for identifying both motors. 

7. Prototype performance 

Figs. 12-16 show screen prints from the PC running the 
NILMscope user interface software during five of the exper- 
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Fig. 12. Star-up transient of instant-start fluorescent lamps, as identified by 
the NILM. 

Fig, 13. Start-up transient of rapid-start fluorescent lamps, as identified by 
the NILM. 
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Fig. 14. Start-up transient of small induction motor, as identified by the 
NILM. 
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Fig. 15. Overlapping start-up transients of instant- and rapld-start fluorescent 
lamps and small induction motor. as identified by the NILM. 

Fig. 16. Overlapping star-up transients of small and large induction motors 
and instant-start fluorescent lamps, as identified by the NILM. 

iments conducted with the test stand. The graph windows in 
each figure show estimates of the envelopes of real and reac- 
tive power on one phase of the three-phase service. The lower 

left-hand corner of each screen identifies transient events by 
name, time of occurrence, and fine, medium or coarse time 
scale. Any event that was identified at the initial, highest 
sampling rate, i.e. at the first stage in the tree-structured 
decomposition, will be listed directly under the heading ‘fine 
scale’ in the contact window. By design, it is anticipated that 
events associated with the small motor and both lamp banks 
will be listed as fine scale events when they appear, assuming 
that the event detector functions properly. Events found at 
the next two coder stages in the tree-structureddecomposition 
will be listed under the headings ‘mid scale’ or ‘coarse scale’. 
For example, any events recognized by the properly working 
detector which are caused by the turn-on of the large induction 
motor should appear under the coarse heading. 

The three tests shown in Figs. 12-14 record the perform- 
ance of the prototype when challenged individually with the 
turn-on events of the instant- and rapid-start lamp banks and 
the small induction motor, respectively. In each case, the 
observed event has been properly identified in the contact 
window. Fig. 15 shows an example where both lamp banks 
and the small motor turn on so that all three transient events 
overlap. No key v-sections overlap with each other. All three 
events are correctly recorded at the finest time scale in the 
contact window. 

In the final experiment, shown in Fig. 16, the small induc- 
tion motor turns on and completes its transient, followed by 
the turn-on transient of the large induction motor and the 
instant-start lamp bank. Again, no key v-sections overlap with 
each other and all of the events are correctly identified at the 
appropriate time scales. Recall that the template for the turn- 
on transients of motors was generated from a single example 
of the small motor only. Nevertheless, the event detector 
correctly classified both the small and large motors. 

8. Comparison of steady-state and transient load 
detection 

Transient load detection takes more advantage of infor- 
mation available at equipment start-up than steady-state load 
detection, at the cost of more signal processing. We have 
shown that it is capable of resolving overlapping start-up 
events, a major advantage in separating loads when there is 
no additional identifying information. While building auto- 
mation systems provide such information they are by no 
means in universal use and typically do not control most 
lighting circuits and tenant equipment. 

The multiple time scale feature of the transient load 
detection algorithm, which could be applied as well within a 
steady-state approach, is an important weapon in discrimi- 
nating significant events from those considered to be unim- 
portant. We have shown that the steady-state approach was 
triggered by electrical impulses that we associated with var- 
iable-speed motor drives. We were focusing on motor start- 
up events and in effect had made an a priori judgment that 



62 L.K. Norfhd. S.B. Leeb / Energy and Buildmgs 24 (1996) 51-64 

these electrical impulses were not of interest. However, these 
impulses have a small but non-zero energy associated with 
them, which might in some cases be considered important. 
Also, similar impulses could be due to thermostated heaters 
operating in a variety of types of equipment, including oil- 
sump heaters in chillers, residential electrical ranges, and 
heaters in copiers and printers. A steady-state NILM with a 
sufficiently fast sampling rate could analyze the energy con- 
sumption associated with the impulse. However, the faster 
sampling rate would also make the NILM more likely to react 
to disturbances that appear as near-steady conditions during 
a prolonged motor start-up transient; in these cases, the start- 
up transient would be split by the steady-state NILM into 
more than one component. The transient detector, by design, 
operates at multiple time scales, avoiding the dilemma of 
choosing a single scale. It should be noted that the multiple- 
time-scale feature of the transient detector could be applied 
as well to a steady-state algorithm. 

The steady-state algorithm triggers on all departures from 
steady power, clusters changes in power, and later identifies 
known changes. The transient detector puts the discrimina- 
tion step first: only known transients are retained for cluster- 
ing by power level or other analysis technique, while others 
are ignored. The potential risk of up-front discrimination is 
that noise could corrupt the start-up transient of a piece of 
equipment that should be monitored, to the point where a 
match is not made. In addition, up-front discrimination means 
the NILM may not discover unanticipated but potentially 
interesting events. Field tests, planned but yet to be per- 
formed, will help determine the effectiveness of the transient 
detector. 

Transient start-up signals provide information not only 
about equipment identity but also about equipment health. 
Fault detection on the basis of equipment mechanical and 
electrical dynamics has been investigated for specific appli- 
cations, including a centrifugal pump driven by a direct- 
current motor [ 161. The structure of the model of the physical 
system, the number of model parameters and the amount of 
electrical noise affect the accuracy to which the parameters 
can be determined and their sensitivity to faults. Frequency 
analysis of motor electrical current is also a route to detecting 
motor bearing and rotor problems [ 171. Transient detection, 
potentially, can provide a basis for identifying the same prob- 
lems now found via frequency analysis. If further research 
shows this to be true, the transient detector offers significant 
added value. 

But transient load detection itself is not a complete load 
monitoring system. The transient detection algorithm is 
intended to serve as the front end for an overall package that 
would keep track of device operation and energy consump- 
tion. To that end, both start-up and shut-down electrical 
events must be considered. At start-up, depending on the 
electrical environment and the goals of the analysis, the 
NILM could use a steady-state detector, the transient pattern 
matching algorithm, or a hybrid. The hybrid approach, which 
we are considering, would use a change-of-mean detector as 

a front-end for the transient pattern matching algorithm; the 
change-of-mean detector, somewhat similar in function to 
that used in the steady-state NILM, would reduce the com- 
putational burden on the transient pattern matching algorithm 
in situations where there were few events by triggering it only 
when there was a significant change in electrical power. At 
shut-down, transient signals are typically not available 
because a meter on the power side of an on-off switch sees 
only an abrupt decrease in real and reactive power. That is, 
the shut-down signal is a change in level, with no dynamics, 
and such signals must be reasonably combined with transient 
start-up information. 

Consider the job of sorting out two devices. There are four 
cases of interest, based on the device type and magnitude of 
steady-state real and reactive power. The first and second 
cases concern devices of dissimilar electrical power which 
may or may not be of the same type. In these two cases the 
devices can be distinguished on the basis of magnitude alone. 
Start-up and shut-down cause step changes equal in magni- 
tude but opposite in sign. No transient start-up information 
is needed if the start-up signals are well separated in time. 
Third, if the power magnitudes are the same and the device 
types are also the same (as would be revealed by the transient 
detector), it is possible to accurately tally the total energy for 
the device type. For example, if both are lights, start-ups and 
shut-downs may be assigned to either device without com- 
promising the calculation of lighting energy. Last, if the 
devices have similar power magnitudes but are of different 
type, the start-up transients, which distinguish the devices, 
cannot be uniquely associated with shut-down level changes 
and energy calculations cannot be made. 

Finally, a problem not completely solved within the frame- 
work of either steady-state or transient load detection con- 
cerns non-intrusive measurement of electrical power at times 
between start-up and shut-down for equipment that draws a 
varying amount of power. In these cases, it is necessary to 
correlate power with one or more variables that can be meas- 
ured for each piece of equipment. For example, the power 
drawn by the motor powering a centrifugal fan or pump 
depends on the pressure rise across the fan or pump and the 
flow rate, along with the efficiencies of the device, the motor 
and the adjustable-speed drive, if present. If values were 
available for all variables, power could be predicted with 
precision. Power can also be correlated with a reduced set of 
variables during a test cycle performed when other loads are 
steady. We have correlated the power drawn by a centrifugal 
fan that was driven by a VSD with a single variable, either 
airflow or the VSD control signal [ 181. There was no measure 
of pressure across the fan or of the more readily obtained 
pressure read by the set point controller downstream of the 
fan. We improved the correlation by including the pressure 
at the set point controller [ 191. The first correlation has 
proved capable of accurately separating the power of two sets 
of fans but neither has been tested in an environment that 
includes more equipment. 



9. Conclusions 

The potential of reduced-cost data acquisition has moti- 
vated development of centralized or non-intrusive electrical 
load monitoring. For residential buildings, previous research 
based on steady-state detection algorithms [ 41 iias yielded a 
device that is now being commercially developed. Our work. 
distinct in its approach and application, has focused on com- 
mercial buildings. To date, we have shown that electrical 
loads from space-conditioning equipment in commercial 
buildings can be detected centrally on the basis of appropriate 
filtering and changes in steady-state power. This approach. 
tested with manual data analysis in a single large institutional 
building, has subsequently been upgraded and been fully 
automated [ 201. To distinguish equipment with near-simul- 
taneous start-ups or different types of devices with similar 
real power levels, we have developed prototype hardware and 
software that analyze start-up transients that reveal the essen- 
tial physics of the equipment. This prototype transient detec- 
tion NILM performed well in laboratory tests and an 
upgraded version will next be tested in the field. Further 
enhancements include a more efficient parallel processing 
architecture to permit the NILM to compare the measured 
electrical signal with a number of patterns for individual 
devices. 

The value of a NILM can be assessed by reviewing a 
sequence of tasks it will be asked to perform, including simple 
detection of a start-up event, analysis of that event, measure- 
ment of start-up power, detection of power oscillations while 
equipment is operating, detection of shut-down events, and 
estimation of energy consumption. 

Start-up detection. In commercial buildings, detection of 
start-up events can answer an important question: did a pump. 
fan or chiller turn on in response to a control signal? We have 
shown in a single commercial building that steady-state load 
detection algorithms are capable of performing this task with 
a resolution adequate for finding all major loads. A NILM 
would in principle eliminate the need for current transducers 
or mechanical sensors at individual devices to perform this 
function. 

Start-up analysis. If the NILM can accurately analyze the 
start-up transient (a subject of future research) it cannot only 
identify the type of equipment but also detect deterioration 
of the device. Such analysis would be enhanced by knowing 
a priori the identity of the device, as would be the case for 
major HVAC equipment controlled by an energy manage- 
ment system. Today, chillers are sufficiently expensive and 
electronics sufficiently powerful that on-line diagnostics are 
commonly provided; for example, temperature sensors are 
used to monitor motor bearings. For smaller fan and pump 
motors, periodic examination of motor health by portable 
instrumentation can in principle be performed but typically 
is not, given the expense. The NILM would be able to perform 
this task if motor diagnostics prove successful. 

Quantification of start-uppower. This step is more difficult 
than might be expected, particularly for devices that exhibit 

prolonged start-up transients. We have shown that steady- 
state algorithms appear adequate for relatively rapid start-up 
of a simple induction motor driving a pump but appear less 
successful for the slower start-up of devices controlled by 
variable-speed drives. In the latter case, the transient pattern 
matching algorithm may be of special advantage. Knowledge 
of start-up power provides a starting point for quantifying 
device energy consumption. The NILM can also provide an 
indication of device performance by comparing star-up 
power for a known piece of equipment against an expected 
range of powers. Device deterioration and unexpected equip- 
ment loads can in principle be detected in this way, depending 
on the resolution of the NILM and the magnitude of the fault. 
We have shown that analysis of start-up power can also be 
used to detect HVAC controller faults associated with switch- 
ing multiple chillers or pumps. 

Detection of power oscillations. One specific result of the 
work described in this paper was the unexpected detection of 
a poorly tuned chiller controller that created large power 
oscillations. While most of the power of the NILM comes 
from its ability to detect start-up or shut-down events, changes 
in operating power are also of interest. Another example of 
this is large changes in power when a fan with a variable- 
speed drive is boosted from a low-speed condition at night to 
a higher speed during occupied hours. This ramp transient 
can appear as a step over a sufficiently long sampling period 
[ 201 and can be analyzed as such. 

Shut-down detection. Shut-down events are characterized 
by an abrupt decrease in electrical power and can be detected 
with steady-state algorithms. This has been amply demon- 
strated in residential buildings and we have also demonstrated 
its efficacy in a single institutional building. Detection of 
shut-down events is of course a necessary step in estimating 
electrical consumption over an operating period. But it can 
also be used to detect abrupt electrical or mechanical faults 
that would cause a piece of equipment to shut down abnor- 
mally before an energy management system send out a sched- 
uled shut-down signal. 

Calculation of energy consumption. For a device that oper- 
ates at constant power, detection and matching of start-up 
and shut-down events, with an associated time for each, is 
adequate to compute energy use 141. However, in commer- 
cial buildings, many motor-driven pieces of equipment do 
not operate at constant power; the list includes induction 
motors subject to variable loads, with or without variable- 
speed drives. Not only is it more difficult to match start-up 
and shut-down events, but it is necessary to interpolate the 
power between these events. The matching is made easy for 
equipment controlled by an energy management system, for 
which control signals are available. Power interpolation can 
be down by simply making a linear fit between start-up and 
shut-down, by using shut-down power alone in cases where 
a significant and short-lived start-up load is expected, or by 
attempting to track the operation of a variable-speed drive 
via the speed control signal. 
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