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ABSTRACT To improve the energy efficiencies of building cooling systems, manufacturers are increasingly
utilizing variable speed drive (VSD) motors in system components, e.g. compressors and condensers.
While these technologies can provide significant energy savings, these benefits are only realized if these
components operate as intended and under proper control. Undetected faults can foil efficiency gains.
As such, it’s imperative to monitor cooling system performance to both identify faulty conditions and to
properly inform building or multi-building models used for predictive control and energy management.
This paper presents nonintrusive load monitoring (NILM) based “mapping” techniques for tracking the
performance of a building’s central air conditioning from smart electrical meter or energy monitor data.
Using a multivariate linear model, a first mapping disaggregates the air conditioner’s power draw from that of
the total building by exploiting the correlations between the building’s line-current harmonics and the power
consumption of the air conditioner’s VSD motors. A second mapping then estimates the air conditioner’s
heat rejection performance using as inputs the estimated power draw of the first mapping, the building’s
zonal temperature, and the outside environmental temperature. The usefulness of these mapping techniques
are demonstrated using data collected from a research facility building on the Masdar City Campus of
Khalifa University. The mapping techniques combine to provide accurate estimates of the building’s air
conditioning performance when operating under normal conditions. These estimates could thus be used as
feedback in building energy management controllers and can provide a performance baseline for detection
of air conditioner underperformance.

INDEX TERMS Air conditioning, condition monitoring, cooling, HVAC, nonintrusive load monitoring,

smart meters, variable speed drives.

I. INTRODUCTION

In developed countries, energy expenditures in buildings rep-
resent 20-40% of the total primary energy use [1]-[3]. As this
energy typically derives from fossil fuels, buildings represent
major emitters of carbon dioxide and leading contributors
to climate change [3], [4]. On average, 19% of a building’s
energy expenditure goes to cooling and ventilation [5]. In hot
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and humid climates, e.g., the United Arab Emirates (UAE),
cooling loads can exceed 60% on peak summer days [6].

A variety of potential solutions have been explored to
improve cooling efficiencies in buildings including integrat-
ing variable speed/frequency drive (VSD/VFD) motors into
system components [7]-[9]. These VSDs allow the cool-
ing system, e.g., a centralized air conditioner or circulat-
ing chilled water system, to adjust its operational capacity
to match the building’s cooling needs [7], [10]. Further,
with sufficient thermal storage and the cooling system’s
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“performance map” relating its heat rejection capacity
(i.e. cooling capacity) to its operating conditions (for exam-
ples, power draw and environmental temperature), VSD cool-
ing systems enable savings of up to 50% [11] through optimal
predictive pre-cooling [12], [13].

These improvements, however, only deliver value if the
components operate as designed and under proper control.
Undetected faults and poor equipment maintenance can lead
to improper operation and reduced efficiencies [14]. More-
over, building cooling systems influence, and are influenced
by, their surrounding environments. In urban areas, the cool-
ing systems of multiple buildings can create surprising micro-
climates [15], [16], which can significantly reduce cooling
system performance leading to higher-than-expected energy
consumption. Thus, buildings and other power systems that
provide environmental conditioning cannot be operated as
“set it and forget it.”” It is imperative to know how their elec-
tromechanical components are operating, e.g., their power
draw, to both identify faulty conditions and to properly inform
building or multi-building models used for predictive control
and energy management [17]-[19].

Advances in embedded computing, signal processing, and
communication have enabled the integration of nonintrusive
load monitoring (NILM) capabilities into smart metering and
energy monitoring technologies [20], [21]. NILM is the pro-
cess of disaggregating the power consumption of individual
electric loads from the bulk electrical measurements taken
at a centralized location, such as the utility entry point to a
building. This sort of monitoring works by tracking character-
istic changes in the building’s electric power draw, e.g., step
transients and variations in harmonic content, and correlat-
ing them to changes in individual load operation [22]-[25].
As such, NILM provides the ability to widely monitor electri-
cal energy use in a facility, including that of its cooling system
components, without an extensive sensor network.

This paper presents techniques wusing data from
NILM-capable energy monitors to accurately estimate
the operation of cooling systems featuring VSD compo-
nents. These techniques exploit the correlations between
line-current harmonics and VSD motor power consumption.
Analogous to the performance maps relating building oper-
ating conditions to cooling system performance, these non-
intrusive disaggregation methods map electrical harmonic
content to the power draws of VSD motors and then to the
operation of the HVAC system.

Experimental results presented in this paper are based
on data collected using recently developed noncontact,
NILM-capable energy monitors [26]-[30] installed in the
general service subpanel of a facility on the Khalifa
University of Science and Technology campus in Abu
Dhabi, UAE. This building is cooled by a Toshiba
MMY-MAP1204T8 air conditioner with dual three-phase
VSD compressors, a single-phase VSD condenser fan, and
a chilled water indoor heat exchanger. Results from these
experiments exhibit accurate estimation of the heat rejected
by the cooling system to the outdoor environment, a critical
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input for urban climate modeling. These results also show the
potential for these mapping techniques to provide ‘‘contin-
uous commissioning” of the cooling system. For example,
the estimated heat rejection could be used as an input for
building heat transfer models to generate an expected indoor
temperature. If the true indoor temperature is not within an
acceptable range around this estimate, that could indicate a
cooling system fault, e.g. a refrigerant leak. This particular
fault was observed during testing, and the estimated heat
rejection during the fault is compared against the measured
heat rejection to illustrate this point.

Il. NONINTRUSIVE LOAD MONITORING REVIEW

The concept of nonintrusively detecting the operation of
individual loads in a building by analyzing the characteris-
tics of its utility power flow was first introduced by MIT
researchers George Hart, Ed Kern, and Fred Schweppe in
the 1980s [31]. In his seminal paper introducing nonin-
trusive load monitoring to the greater engineering commu-
nity [32], Hart effectively provided a research roadmap for
NILM development including outlining several overarching
strategies for load disaggregation depending on the types of
electric loads present and distinguishing between ‘“‘manual-
setup” and “‘automatic-setup” NILM systems. These setup
categories forecast the use of supervised and unsuper-
vised machine learning techniques, respectively, as Hart
describes manual-setups as those requiring observing and
labeling recorded data while turning loads on and off, and
automatic-setups as those using a priori information for
identifying loads.

Since [32], numerous teams have advanced the state of
the art in NILM research, and several review papers exist
to provide an overview of these advances, e.g. [22], [23],
[33]-[36]. In particular, Zoha et al. [22] provided a very
comprehensive review of NILM research at the time of its
authorship, covering the various NILM frameworks used
by researchers, the features extracted from current, voltage,
and/or power measurements for load identification, and the
supervised and unsupervised algorithms used to identify load
operations. More recently, Bonfligli ef al. [35] provided a
review focused exclusively on unsupervised learning based
NILM techniques and Pereira and Nunes [36] provided a
review of publicly available datasets and toolkits for testing
NILM techniques and the various metrics used to evaluating
load identification efficacy.

Building loads generally fall into one of four categories:
on/off loads, multi-state loads, constant base loads (always
on), and continuously variable loads [22], [32], [37]. His-
torically, on/off loads (e.g. non-dimmable lights), multi-state
loads (e.g. washing machines), and constant base loads
(e.g. unswitched emergency lighting) have been the dominant
categories. The first two types of loads produce characteristic
transients and steady-state step change events in electrical
measurements which can be used as “‘signatures’ for detect-
ing and identifying load operations [24].
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FIGURE 1. Conceptual diagram of heat pump cycle providing cooling to a facility by

rejecting heat to the environment.

Event-based techniques that utilize these signatures
generally feature supervised learning load identification
algorithms. These algorithms typically outperform unsuper-
vised approaches in terms of accuracy, but require labelled
data for training, which can be difficult or expensive
to obtain. Numerous supervised learning algorithms have
been applied for NILM, including support vector machines
(SVMs) [38], [39], and both shallow [40], [41] and deep
neural networks (NNs) [42], [43]. Researchers have also
used pre-filtering techniques to generate input features for
NN across vastly different time-scales [37] and combined
NN-based load identification with unsupervised learning
optimization techniques to improve results [44].

Non-event based, unsupervised learning methods have the
advantage of not requiring extensive labelled data and thus are
more broadly applicable. Further, unsupervised approaches
that analyze steady-state electrical measurements and use
optimization techniques to infer the best-fit combination
of loads to match the measurements can also account for
constant base loads, e.g. [45], which uses an evolutionary
optimization algorithm. Suzuki et al. used a different opti-
mization technique incorporating integer programming to
determine the active loads from the bulk current measure-
ments [46]. Bhotto et al. later improved upon this work by
incorporating state diagrams to correct integer programming
algorithm outputs [47]. Another widely used unsupervised
approach incorporates Factorial Hidden Markov Models
(FHMMs), e.g. [48]-[50], to model the state transitions of
various loads in a household or facility.

The final load category, continuously variable loads, are
increasing in prevalence particularly as VSD motor loads
become more cost effective. These types of loads do not
draw power at only discrete levels, and thus they are gen-
erally not identifiable by either event-based techniques or
non-event based techniques developed for identifying the
other three load types. However, it is well understood that
these sort of variable loads impart harmonic content into
building line currents due to their front-end rectifiers. Pre-
viously, Lee et al. reported a correlation between the power
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draw of VSD driven blower fans in a commercial building
and the 5th harmonic magnitude imparted on a single-phase
current [51]. The authors used a piecewise power function
model to estimate the fans’ power draw from this Sth har-
monic measurement. Wichakool et al. developed an analyti-
cal switching-function-based approach to estimate the power
draw of VSDs and other rectified loads from three-phase
current harmonics [52]. Wichakool later followed this with an
empirical approach exploiting structural features in rectified
current waveforms [53], however both of these techniques
were only tested in lab-based setups with limited total loads.

In this paper, we build upon [51]-[53] by taking an empir-
ical, machine learning-based approach to disaggregating the
power consumption of multiple VSD cooling system loads
in a commercial building. In this approach, the in-phase,
quadrature, and apparent, odd-order current harmonics up to
the 7th harmonic on all three building phases are measured
and used as feature inputs to a multivariate linear estimator
of total power draw for the VSD loads.

Ill. BUILDING COOLING SYSTEMS

Fig. 1 illustrates the basic operation of a typical
vapor-compression cooling system like the one at the experi-
mental site. In this system, refrigerant in a mixed liquid/vapor
state passing through coils in an evaporator absorbs heat from
within a facility (g.) as warm indoor air (or water in the case
of a chilled water heat exchanger) passes over the coils. This
exchange of heat causes the refrigerant to change phases from
a liquid to a gas (saturated vapor). The gaseous refrigerant
then flows to a compressor unit outside the facility where
it’s compressed and coincidentally increases in temperature.
The hot high-pressure vapor then enters a condenser which
removes heat from the refrigerant vapor by blowing ambient
air (or circulating water in the case of a water-cooled con-
denser) across the coils or tubes containing the refrigerant
vapor. This causes the refrigerant to condense into a saturated
liquid as heat (g) transfers from the refrigerant to the air
or water. Finally, the liquid refrigerant passes through an
expansion valve where it experiences an abrupt decrease in
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pressure and evaporates to a cool refrigerant liquid/vapor
mixture, thus completing the cycle. The result is facility
cooling by the evaporator with the absorbed heat transported
via the refrigerant to the condenser where it’s rejected to
the environment along with the total work (W) done on the
system, i.e.,

qn=4qc+W. (D

Taking the time-derivative of this equation restates the rela-

tionship in terms of the rates of heat transfer and the

electric power delivered to the cooling system components
Lo dW N

(Pin = 7), 1.e.,

(:]h =(:]c+Pin- (2)

VARIABLE SPEED DRIVE COOLING SYSTEMS

The compressor and both the evaporator and condenser fans
(or pumps in the case of water systems) are driven by elec-
tric motors. In conventional air conditioning systems, these
motors are typically induction machines connected directly to
the electrical supply. While simple and robust, these systems
suffer from inefficiencies particularly during times of light
cooling [10]. Inverter-driven, variable speed drive (VSD)
motors can significantly improve cooling efficiencies [10],
[12], [54], [55], particularly if integrated into the compressor
as it draws the bulk of the system’s electrical power. VSDs
allow the motors to vary their speed, and therefore the sys-
tem’s cooling capacity. This enables low-lift operation, where
the ratio of refrigerant condensing pressure to evaporating
pressure is kept low, greatly reducing the required work while
still providing a similar cooling effect [54], [55].

Inverter-driven VSD components typically employ
DC-rectification of the utility line voltages as depicted
in Fig. 2(a). An inverter then converts this DC voltage
back to AC with the frequency of the voltage waveforms
controlled via modulation of the inverter’s power electronic
switches [56]. As the motor draws current from the DC-link,
nonlinear currents containing harmonic components are
drawn from the AC lines [57] if active power factor correction
is not deployed. This is the case at our experiment site.
However, even systems that employ active wave-shaping
create smaller but typically detectable harmonic signatures
that can be used for tracking. Single-phase rectifiers impart
a single positive peak and single negative peak onto the line
currents during each line cycle (Fig. 2(b)). Line currents from
three-phase rectifiers typically contain two positive peaks and
two negative peaks (Fig. 2(c)).

Fig. 2(d) and Fig. 2(e) depict the in-phase and quadra-
ture harmonic components contained in the single-phase
and three-phase rectified line currents, respectively, as cal-
culated using the Fourier Transform and scaled to main-
tain the time-domain unit (A). Both contain significant
odd-harmonic components, though the three-phase rectified
load does not impart 3rd-harmonic components (nor any other
zero-sequence harmonic) into the line currents so long as the
motor is well balanced. As the speed of the motor varies with
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FIGURE 2. Variable speed drive (VSD) loads such as those in advanced
cooling systems feature (a) power electronic rectifiers and inverters
which (b,c) distort line currents and impart (d,e) significant amounts of
harmonic content.

the inverted waveform frequency, the current drawn by the
motor varies as well. In turn, this causes variations in the
harmonic content of the AC line currents, which can thus be
used to track the motor’s power draw.

IV. THE NILM-CAPABLE ENERGY MONITOR

The NILM-capable energy monitor used to collect data in this
study measures the 3-phase voltages and currents supplied to
the electrical panel, and a data acquisition system samples
the sensor outputs (3 kHz per channel with 16-bit resolution).
This high sample rate and resolution allows the precise mea-
surement of both transients useful for identifying individual
loads changing states (e.g. turn-on and turn-off) and harmonic
content useful in tracking variable loads.

A local computer processes these current and voltage data
into their spectral envelopes using the Sinefit algorithm [58],
which extracts the spectral envelopes for each phase current
over each line cycle. When multiplied by the nominal phase
voltage, Vpy, (e.g. 230 V), these in-phase and quadrature
components are,

2 Nl ) 2nn

Pk = ]V ph r; l[}’l] S (kT> (3)
2y = 2

Ok = Vi ,; i[n] cos (k%) )

respectively. Here, N represents the number of data points
collected over a single line cycle (N is nominally 60 when
sampling 50 Hz line-frequency data at a 3kHz sample rate),
and k is the line-frequency harmonic (as examples, k = 1
corresponds to 50 Hz, and £ = 3 to the 150 Hz component).
Of note, P; and Q; represent the real and reactive power
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streams under the assumption of constant voltage amplitude
and phase. The computer stores these data streams in a
NILM-optimized database (NilmDB [59]), from which they
can be accessed and manipulated using the NILM Manager
and Dashboard software packages [60], [61]. These platforms
allow users to create and operate custom load identification
algorithms, run equipment and system-level diagnostics, and
visualize data, e.g., [41].

As indicated in Figs. 2, the majority of the signal informa-
tion for variable speed drives is captured in the odd harmonic
components below and including the 7th harmonic. As such,
we configured the monitor to calculate the real and reactive
components for each phase at the fundamental (k = 1), 3rd,
5th, and 7th harmonics (k = 3, 5, 7). From these components,
we also configured the monitor to calculate the harmonic
components of apparent power,

Sk = /P + Q3. (5)

V. KHALIFA UNIVERSITY RESEARCH FACILITY

The building selected for monitoring is an outlying research
facility on the Masdar City Campus of Khalifa University.
The cooling system supplies a total climate controlled area
of 228.67 m? and features a Toshiba MM Y-MAP1204T8 out-
door unit with a rated heat-rejection capacity (gn,rared)
of 33.5 kW. The outdoor unit contains dual rolling-piston
compressors and a single condenser fan. Each compressor is
electrically powered from a three-phase rectifier/three-phase
inverter circuit. The condenser fan is powered from a
single-phase rectifier/three-phase inverter circuit. Inside the
facility, the refrigeration loop feeds three thermostatically
controlled fan-coil evaporator units for direct cooling of zone
air and a chilled water heat exchanger for radiant floor cool-
ing. During all tests described in this paper, the refrigerant
loop was connected to the chilled water/radiant-floor system.

DIRECT COOLING SYSTEM MONITORING

As part of a previous research project, the cooling system
was instrumented to measure, among other things, its rate
of heat rejection. Specifically, a thermopile measuring the
temperature difference between the condenser inlet and outlet
air (ATcond), and a tachometer measuring the condenser fan
speed which was empirically correlated to the volumetric
air flow rate across the condenser coils (v,), provide the
measurements required to estimate the outdoor unit’s rate of
heat rejection,

gn = Cp,apa‘.’aATcand‘ (6)

Here, Cp , is the heat capacity of air and p, is the air density,
which we estimate as a function of outdoor temperature (7,)
via the ideal gas law,

_ Pa
R, T,

where p,, is the absolute air pressure and R, is the specific gas
constant for dry air (287.06 J/kg-K).

Pa )
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The instrumentation system also includes temperature sen-
sors on the chilled water system providing chilled water sup-
ply and return temperatures (7, s and T, ,, respectively) and
chilled water volumetric flow rate (v,,). These measurements
provide estimates of the heat absorbed by the indoor chilled
water system as,

‘.Ic = Cp,wpw“’wATW7 ®)

where C,,, is the heat capacity of water, p,, is the water
density, and AT, = Ty — Ty 5.

Finally, current and voltage sensors local to the compres-
sors, condenser fan, and circulating water pump, provide
signals from which active power drawn by each of these
components, Pcomps, Peona, and Ppymp, may be computed.
Thus, the installed instrumentation provides two methods for
measuring the total heat rejected by the outdoor unit, directly
via (6) or indirectly by calculating the total power demand as,

Piy = Pcomps + Peond + Ppumpv 9

and using g, from (8) to evaluate g by (2).
In general, we estimate the rejected heat as the average of
these two calculations.

VI. HEAT REJECTION MAPPING
The heat rejection performance of a properly function-
ing cooling system can generally be modeled as a nonlin-
ear function of a select few operating variables, e.g., its
power draw, the outdoor environmental temperature, and the
indoor zonal temperature (7;) of the air or water at the
evaporator [12], [54]. Toshiba provides data relating the heat
rejected gy, to the outdoor unit’s (compressors plus condenser)
power draw, Pj; o = Pcomps + Peona and the outdoor temper-
ature, but only for a single nominal indoor air temperature
of 27°C. Fig. 3 shows these provided data points. The data
reveals two characteristics of the cooling system’s perfor-
mance. First, the amount of heat rejected increases approx-
imately logarithmically with input power due to the limited
surface area of the heat exchanger. Second, as the outdoor
temperature increases, the air conditioner requires more input
power to increase the cooling fluid temperature so as to reject
a given amount of heat.

This relationship can be empirically modeled as a
bi-quadratic function,

f(x,y) = kaox®+ kopy* + k11xy + kiox + ko1y + koo,  (10)

where, x = In(Pj,,) and y = T,. The k-terms are con-
stants relating the contribution of the bi-quadratic variables
to the heat rejection rate. Fitting this relationship in the
least-squares sense to the manufacturer-provided data results
in the dashed curves of Fig. 3 and the k-coefficients shown
in Table 1.

Prior to the installation of the NILM-capable energy mon-
itor, the performance of the cooling system was extensively
tested over a wide range of operating points by varying the
speed of the compressors and condenser fan, thus varying the
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FIGURE 3. Toshiba MMY MAP1204T8 air conditioner heat rejection map.

TABLE 1. Heat Rejection Map Coefficients.

Coefficient Value

Manufacturer Fit Coefficients
k20 -9.43x1073
ko2 -0.753
k11 -0.107
k1o 0.259
ko1 20.6
koo 1.32
Empirical Adjustments

« -0.578

T-0 9.41

total power demand of the outdoor unit, and doing so on days
and nights spanning a wide range of outdoor temperature.
Fig. 4 shows the estimated heat rejection evaluated from data
collected during these tests. The dashed lines in these plots
are the best-fit curves of Fig. 3.
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FIGURE 4. Measured heat rejection of the outdoor unit.

Comparing these color-coded dashed curves with corre-
sponding color-coded data points shows that particularly for
times of lower environmental temperatures (the darker and
lighter blue data points), the measured heat rejection at a
given input power is lower than expected from (10). This
is primarily due to low chilled water supply temperatures
(T,) at the evaporator, which decreases the heat rejection
performance of the cooling system.
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Nominally, the rate of heat transfer in the evaporator is
proportional to the difference in temperature between the
refrigerant and chilled water. Thus, to account for temperature
variations in the chilled water, we first calculate the error in
the estimated heat rejection produced by (10) for the data
points in Fig. 4,

€ =qn —f (In(Pino), Te) - (11)

Then, we fit, in the least-squares sense, a linear function of
water supply temperature,

g(T) = a(T; = Ty), (12)

to €, and combine this relationship with the manufacturer
defined relationship of (10) to create a heat rejection map
that also incorporates the chilled water temperature as an
input, i.e.,

éh,map (Pin,m Te, Tz) =f (ln(Pin,o)» Te) +38 (Tz) . (13)

Table 1 also provides the values for the coefficients of (12).
Concretely, (13) offsets the manufacturer predicted heat
rejection based on the chilled water temperature. Fig. 5
depicts the adjusted data accounting for this offset, showing
better matching of the adjusted measured data to the original
manufacturer mapping.

[ ]
20°C 25°Cy
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w
(=4
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Rejection Rate (kW)

— [ ) [~}

(S = [

—
(=]

ot
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FIGURE 5. Adjusted heat rejection when accounting for heat exchange
water temperatures.

VII. ELECTRICAL POWER MAPPING

We installed the NILM-capable energy monitor in the facil-
ity’s general service subpanel, which distributes electricity to
the outdoor unit along with standard building loads including
lighting, air handling, and plug loads. Electrical data was
collected as described in Sect. IV at the site over a two week
period.

Fig. 6 shows the outdoor unit’s active power (P;, ,) against
the total three-phase power measured at the panel by the
installed energy monitor. This scatter-plot gives an indication
of the outdoor unit’s load requirements in relation to the rest
of the building. With the unit off, the building load varies
between approximately 4 kW and 14 kW. Thus, simply track-
ing the panel’s fundamental power draw does not provide
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FIGURE 7. Outdoor unit total power plotted against a multivariate fit
using panel harmonics as features (see Tables 2 & 3 for multivariate
coefficients).

sufficient information for tracking this variable load. For
example, a total panel power draw of 12 kW could correspond
to an outdoor unit power draw anywhere between 0 kW
and 6 kW.

However, tracking the harmonic content at the panel
increases the resolution of the cooling system informa-
tion by effectively eliminating dominantly linear loads
(e.g. fixed-speed motors) and constant power non-linear loads
(e.g. lighting ballasts) from the data stream. The bottom
figure plots the outdoor unit power against a multilinear
regression of select power and harmonic streams measured
at the panel. This relationship is far better defined with vari-
ability in outdoor unit power for a given fit power now less
than 1 kW. Thus, the harmonic streams can be treated as
“features” from which the cooling system’s power draw can
be estimated.

Previous studies investigating the relationship between
VSD motor loads and harmonic line currents [51], [52]
focused on individual harmonic streams as predictors. In this
study, we broaden the feature space to include the funda-
mental real, reactive, apparent, and harmonic streams as
defined in (3)—(5) and assess their ability to collectively
predict performance in a real-world building environment.
To do this, we define a predictor function class, p (H, x),
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relating a matrix of metered fundamental and harmonic power
streams, H, to any directly measured air conditioner power
stream, p, through parameter vector, x. These functions can
take many forms, e.g. a neural network [62]. In the particular
case of the Khalifa University facility’s air conditioner sys-
tem, a multivariate linear model performs remarkably well (in
passing, we note that a multivariate linear model is equivalent
to a neural network containing nodes with linear activation
functions). Thus,

p (H, x) = Hx, (14)

and the parameter vector can be solved in the least-squares
sense as,

&= (HTH)_l H p. (15)

With three phases, four harmonics (¢ = 1,3,5,7)
per phase, and three streams (P, Q,S) per harmonic,
a matrix H containing all 36 of these features could show
multi-collinearity between its columns [63], [64]. Even with
large data sets (the analysis of this study utilized approxi-
mately 8,000 data points interpolated from the NILM-power
streams at 1 min. intervals to match the data collected by the
instrumentation system), this multi-collinearity can result in
overfitting the data leading to inaccurate coefficient estimates
and large prediction errors.

Eliminating unnecessary features from H reduces this
problem. One method to do this is to perform the least squares
fit across all combinations of predictor variables and use a
model quality metric that penalizes the goodness of fit by
the number of features used, e.g., adjusted R2 or Mallow’s
Cp, to select the best model. However, the 36 harmonic
features recorded represent over 68 billion combinations of
potential predictor variables making this impractical. Instead,
we first structure H based on physical intuition, aggregating
some features and eliminating others. and then perform a
backwards stepwise regression, iteratively eliminate streams
based on confidence estimates in the associated coefficient
values. Specifically, we define the feature matrix for the
COmpressors as,

Dy 157 + Pc 157,
Dy 157 + Pp157 + P17, 11, (16)

Hcomps = [q)c, 157,

and that for the condenser fan as,
Dp157 + D157, 11 (A7)

In (16) and (17), the ®y, 1357 term is a matrix with columns
containing the panel streams for phase y, i.e.,

cI>y,1357=[Py,17 Qy,l, Sy,ly Py,37 Qy,37 Sy,?n
Pys, Oys, Sys, Py7, Oy7, Sy7]. (18)

®, 157 is the same matrix but with the 3rd harmonic streams
removed, and 1 is a column vector with each element equal
to one.

These compressor and condenser fan feature matrices
are defined based on the loads’ electrical configurations.

Heond = [Py, 1357, Py, 157,
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The compressor is a three-phase load and so should not
draw significant three-phase harmonic content as shown
in Fig. 2(e). Thus, Heomp does not contain any three-phase
harmonic features. The condenser fan is a single-phase load
powered from phase a. Single-phase non-linear loads do draw
third-harmonic currents (Fig. 2(d)) and so H¢gpg contains the
third-harmonic content from phase a. The fundamental, 5th,
and 7th, harmonic content from phases b and ¢ are included
to allow a fit to offset the contributions of three-phase loads
(e.g. the compressors) on their corresponding counterparts of
phase a.

‘Both matrices contain columns aggregating like-harmonic
features in a way that maintains the full column space of
a matrix of individual features. This is done in preparation
for the dimensionality reduction algorithm described below,
which we perform to further protect against overfitting the
data. Aggregating the like-harmonics effectively averages the
individual features and can reduce “‘noise” from extraneous
building loads. If however, one harmonic feature correlates
better to the power draw of the component of interest, aggre-
gating corrupts the more correlated feature. Constructing
these aggregate features while maintaining the column space
allows the dimensionality reduction algorithm to select the
aggregate or individual columns with parameter coefficients
(elements of X) with the highest relative confidence metric.
The individual feature coefficients can then be calculated
from the resulting parameter vector estimate, X.

DIMENSIONALITY REDUCTION
The dimensionality reduction algorithm is an iterative
approach that eliminates features (columns of H) based on
confidence estimates in the associated coefficient values.
In this approach, we first set p as Peomps Or Peopg and H to
Hecomps or Heond, respectively. Then, we solve for x as defined
in (15), and estimate the residual variance for the fit as,
52— L e (19)
N-M

Here, N and M correspond to the dimensions of H (an N x M
matrix) and indicate the number of data points observed and
feature streams considered, respectively. e = p — p is the fit’s
residual and so e’ e is its sum of squared errors.

With 62, we then generate a variance vector for the esti-
mated coefficients from the diagonal of the coefficient covari-
ance matrix, i.e.,

62 = diag [&2 (HTH>_1} . (20)

Taking the element-wise square root of &i gives a standard
deviation estimate vector ¢y, whose elements are inversely
related to our confidence in their corresponding coefficients
of X. Thus, normalizing this vector by the absolute values of
the corresponding coefficients,

6'x,norm =6'x® |§| (21)

where @ indicates element-wise division, provides a confi-
dence metric for each coefficient (this metric is equivalent to

211458

the inverse of the 7-statistic). The maximum-valued element
of & x norm corresponds to the coefficient in which we have
the least confidence. We then eliminate the corresponding
column in H, effectively eliminating that stream as a feature
for determining p, and repeat the process.

A variety of criteria can be used to determine when to
end this iterative process, e.g., performing a ¢-test using the
inverse of (21). The ¢-test however assumes normality in the
residual distribution, which is not guaranteed here due to
the operating schedules of extraneous loads and unmodeled
nonlinearities in (14). This can lead to overconfidence in the
t-test results. To err on the side of caution, we instead take a
graphical, heuristic approach based on the root means square
of the error at each iteration,

ele
RMSE =,/ —. (22)
N
3200 T
‘ Compressors Power Mapping
1600 -
z
‘,5’ 800
&
2 4007 RMSE
& o0k 127 W
100 L Il Il Il Il Il Il 1
25 20 15 10 5 0

Number of Heomps,» Features

FIGURE 8. RMSE trend during the iterative dimension reduction process.
The labeled data point represents the model selection point.
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FIGURE 9. RMSE trend during the iterative dimension reduction process.
The labeled data point represents the model selection point.

We perform the iterative process in full, removing columns
of H until only the 1 column remains. At each iteration,
we evaluate the RMSE, and consider its trend. Fig. 8 and
Fig. 9 depict these trends for the fits to the total compressor
power draw, Pcoups, and condenser fan power draw, Pconq,
respectively. During the beginning of the iterative process,
the RMSE does not increase very much indicating that little
information is lost by eliminating the initial features. As the
number of features decreases towards zero, the RMSE begins
to increase more rapidly between iterations, producing a
“knee” region in the curve where a good tradeoff between
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fit accuracy and model complexity is often found. We select
the illustrated points at the bottom of these knee regions,
four features and seven features in the dimension-reduced
matrices, Heomps,r and Heong, v, respectively.

The corresponding compressor and condenser fan power
estimates are defined as,

(23)
(24)

P comps — Hcomps,rﬁcomps,r
Peona = Hcond,rxcond,rv
where Xcomps,r and Xcond,r» are the reduced-dimension coef-
ficient vectors. These estimates can also be defined in terms
of only individual harmonic features as,
(25)
(26)

Peomps = Hcomps,ixcomps,i
Peond = Hcond,ixcond,i,

In these equations, the Hj matrices contain all of the indi-
vidual features of the corresponding H, matrices in (23)
and (24). That is, H, = H;T, where T is a transformation
matrix relating the individual feature columns of Hj to the
individual and aggregate feature columns of Hy. This same
transformation matrix, T, relates the individual coefficient
vectors of (25) and (26) to the reduced-dimension coefficient
vectors of (23) and (24), as, X; = TX,.

TABLE 2. Compressors Power Map Features and Coefficients.

Features Coefficients

of Hcomps,i of Xcomps,i Std (%)

Py s -1.38 0.92

Py 5 -3.59 0.17

Py -4.38 0.072

P.s -3.59 0.17

Qc,5 -1.28 0.60

P 7 -4.38 0.072

1 1481 0.12
RMSE 127 W 4.64 W

TABLE 3. Condenser Fan Power Map Features and Coefficients.

Features Coefficients
of Heona i of Xcond,i Std (%)
Qa,1 -0.142 0.88
Py3 -0.987 0.33
Qa,3 -0.890 0.42
P.s -1.94 0.60
Sp,1 -0.0455 091
Py 5 0.769 0.61
Py, 7 0.216 1.5
P.5 0.769 0.61
P.7 0.216 1.5
1 215 2.0
RMSE 60.06 W 212 W

Table 2 shows the reduced-dimension individual features

of Heomps,i along with the corresponding coefficients of
Xcomps,i> While Table 3 shows those for Heond,i and Xcond.i-
These coefficient values correspond to the average values
obtained during a 10-fold cross validation procedure, where
the dimensionality reduction method was performed during
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each fold. Both Heomps,i and Heond,i contained consistent
features across all folds. The final columns of these tables
give the standard deviations in the estimated coefficient val-
ues across the 10 folds. The bottom rows reveal the average
RMSE and the standard deviation in RMSE calculated from
the model performance. These results show good stability in
the estimated coefficient values and stable predictive perfor-
mance in the both model outputs.

10 T
—— Measured

Outdoor Unit Total Power (kW)

0

7 8 (00:00)
(15:00)

10(00:00) 10
(15:00)

9 (00:00)
December 7th-10th, 2016

FIGURE 10. Comparisons of the reduced-order model fits of (27) - (24).
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0 4

10(00:00) 10
(15:00)

7 8 (00:00) 9 (00:00)

(15:00)
December 7th-10th, 2016

FIGURE 11. Comparisons of the reduced-order model fits of (27) - (24).
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9 (00:00)

7 8 (00:00)
(15:00)

December 7th-10th, 2016

FIGURE 12. Comparisons of the reduced-order model fits of (27) - (24).

Fig. 10 — Fig. 12 compare the measured power streams of
the entire outdoor unit, only the compressor, and only the con-
denser fan with their corresponding model estimates during
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arepresentative three-day testing window. Here, we calculate
the model estimate of the outdoor unit power as,

i)in,o = i)comps + i)mnd- (27)

The extent to which the estimated power matches the
measured power in each plot indicates the ability of the
reduced-order harmonic mapping to track the cooling sys-
tem’s component operations. These plots also confirm the
dominance of the compressors’ power draw (Peopps, middle
plot) in the outdoor unit’s total power demand (Pj, ,, top
plot). However, because the condenser fan is a single-phase
load and draws 3rd harmonic components, its smaller power
draw (about one-tenth that of the compressors) can still be
disaggregated to a reasonable degree from the total power
draw at the panel. Of note, during testing the cooling system’s
operation was controlled manually and not dictated by a
thermostat or by any predefined building schedule.

40 — Measured 1
=== Manufacturer Estimate
-+ Adjusted Estimate

-
Zaas

Heat Rejection Rate (kW)

— |
18:00 00:00 6:00 12:00 18:00 00:00
December 5th-7th, 2016

FIGURE 13. Comparison of measured and estimated heat rejection rates.

VIIi. COMBINED MAPPING PERFORMANCE

Combining the mapping procedures of the previous two sec-
tions allows us to estimate the performance of the build-
ing’s cooling system from the NILM-capable energy monitor.
Fig. 13 compares the measured heat rejection with esti-
mates from two combined mappings over a representative
36-hour period. The first estimate, ‘Manufacturer Estimate’,
combines the harmonic map with the heat rejection map
of (10) derived solely from manufacturer data, and the sec-
ond, ‘Adjusted Estimate’, combines the harmonic map with
the adjusted heat rejection map of (13).

At the beginning of this time interval, both estimates
match very well with the measured heat rejection, but over
time the estimate using only the manufacturer-derived map
increasingly overestimates the heat rejection rate. This is due
to progressively lower zone and mass temperatures as we
tested under the full range of system operating conditions.
In turn, the chilled water temperature (Fig. 14), which is
not represented in the manufacturer-derived map, decreased
significantly over the 36-hour time period. This test repre-
sents a “worst-case’” scenario as the cooling system pro-
vides more cooling than normally demanded by the facility.

211460

25

20 ,

10} ]

Water Temperature (°C)
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FIGURE 14. Measured temperature of the indoor chilled water.

Even so, given measurements of chilled water temperature,
the adjusted estimate continues to perform well throughout
the test. Thus, supplementing the energy monitor data with
outdoor temperature (7,) and zonal temperature (77), which
in this case is the chilled water temperature but in direct
expansion air conditioners is the indoor air temperature,
allows good estimation of a properly functioning cooling
system’s heat rejection performance over a wide operation
range.

While both the outdoor air temperature and the zonal water
(or air) temperature could be measured directly and sup-
plied to the NILM-capable energy monitor for the combined
performance mapping, this does require additional tempera-
ture sensors and thus violates the NILM ‘“philosophy”’. This
violation however can be avoided in many situations. First,
for most building locations, weather forecasting services can
provide accurate local temperature information eliminating
the need for direct outdoor temperature measurements. Fur-
ther, chilled water-based cooling systems like the one used
in this study already monitor water temperature, and for
direct expansion air conditioners, the zonal temperature is the
indoor air temperature, which the thermostat uses for control.
As such, a smart thermostat could be configured to make
the zonal temperature available to the NILM-capable energy
monitor without any further intrusion.

CONDITION MONITORING APPLICATIONS

We have used the combined mapping technique to describe
the performance of a properly functioning cooling system.
While the identified model won’t provide accurate heat rejec-
tion estimates during times of faulty operation, it does provide
information useful for detecting such faulty operation if com-
bined with direct measurements, or more reasonably, ther-
mally based estimates of the system’s heat rejection. As an
example, Fig. 15 compares the heat rejection estimates with
the directly measured heat rejection during a time when the
cooling system operated with low refrigerant levels caused by
a previously undetected leak in the refrigerant loop. During
this period, these estimates significantly exceeded the mea-
sured heat rejection. Thus, comparing gy, nqp With a thermal
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FIGURE 15. Comparison of measured and estimated heat rejection during
a time period when a leak resulted in low refrigerant levels.

model’s estimate ¢, herm, provides a mechanism for detecting
such faulty operation [65]. Here, ¢p herm is the output of
a thermal model for the facility relating its construction,
e.g., building architecture and materials, with environmental
conditions such as 7, and solar insolation, and the building’s
operating conditions, e.g., T; and total power use, to estimate
the facility’s heat rejection profile.

IX. DISCUSSION AND CONCLUSION

The mapping and monitoring techniques presented in this
paper exploit the correlation of line harmonics in a building’s
power demand with the operating performance of its cooling
system. By monitoring these line harmonics on each phase,
cooling system components with different front-end rectifi-
cation schemes, i.e. 3-phase rectifiers vs. 1-phase rectifiers,
can be disaggregated from each other. The analysis in this
paper assumes a linear mapping from these harmonics to the
active power draw of the cooling system components. This
approach is appropriate for moderately sized facilities where
the VSDs of the cooling system are often the dominant non-
linear variable loads. For facilities similar in size to the one
studied in this paper, the presence of other VSD loads with
a combined power demand of similar or greater magnitude
will obfuscate the harmonic-performance relationships of the
cooling system. However, it may be possible that with more
complex nonlinear mapping techniques, e.g. neural network
frameworks [62], multiple large VSD loads can be disag-
gregated. By enabling single-point monitoring of aggregate
variable cooling equipment load, a smart meter or energy
monitor that tracks harmonics can help detect equipment
faults and even local microclimate problems.
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