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Abstract—Fuel cells have attracted great interest as a means of
clean, efficient conversion of chemical to electrical energy. This
paper demonstrates the identification of both non-parametric and
lumped circuit models of our stack in response to a test signal
introduced by control of a power electronic circuit. This technique
could be implemented on-line for continuous condition assessment
of the stack, as it delivers power. The results show typical data from
the stack, comparison of model and measured data, and whole-
stack impedance spectroscopy results using a power electronic
system to provide excitation. Run-time excitation currents for the
spectroscopy measurement are generated by a hybrid power system
controlling the flow of power from the fuel cell and a secondary
power source to a fixed resistive load. The hybrid power system
generates small-signal currents at the fuel cell terminals while
the load current itself is largely unaffected by the impedance
spectroscopy measurement.

Index Terms—Fuel Cells, Impedance Spectroscopy, Prognostics,
Power Electronics

I. INTRODUCTION

There is an increasing realization that the commercial viabil-

ity of fuel cells depends on work to enhance reliability and

durability [1], [2]. Much of the effort to enhance fuel cell

robustness is appropriately focused on materials development

using traditional materials science methodologies, e.g. single

cell or even single component testing in controlled environments

thought to be similar to the conditions inside a stack. However,

there is also interest in understanding degradation phenomena

that can occur as fuel cells are integrated into real systems.

As an example, in [3], Ramschak et al provide a method to

detect the failure of a single cell within a stack by analyzing

the harmonic distortion on the stack voltage. Similarly, in [4]

Gemmen et al study the impact of inverter load dynamics on a

fuel cell, with the conclusion that stack / inverter interaction is

significant in the operating conditions and long term behavior

of the stack.

In our SOFC stack, and in many similar fuel cell applications,

it is neither feasible nor desirable to remove the stack from

service for the purpose of connecting impedance spectroscopy

instrumentation. However, in principle, it is not necessary to

remove the load provided that a sufficiently rich test signal can

be introduced in addition to the load, as in [5]. This paper

demonstrates the use of power electronics to impose a test

signal while delivering power to a load. This characterization

consists of calculations of whole stack impedance spectroscopy

and time-domain model parameters, using both the switching

waveform, or “ripple”, of the power electronics connected to

the stack and an exogenous excitation. This method requires

only instrumentation at the stack electrical terminals, and could

be integrated with the controls of existing power electronics to

provide non-invasive, low cost stack prognostics. The underly-

ing motivation of this work, not directly addressed in this paper,

is that we may ultimately be able to improve reliability and

mitigate materials challenges through controls at the electrical

terminals that are richly informed of the state of the stack.

The paper begins with an overview of electrochemical

impedance spectroscopy (EIS) and associated system identifica-

tion considerations in section II-B. In section II-C we suggest

a lumped parameter, time-domain model and identification pro-

cedure for the small signal response of the stack. In section III,

we discuss the design considerations and circuit modeling of the

hybrid power system used to generate the signals for impedance

spectroscopy. The experimental setup is described in section IV,

and results are provided in section V.

II. FUELCELL OPERATION AND MODELING

A. Fuel Cell Overview

Figure 1 is a conceptual illustration of the energy conversion

mechanism in a solid oxide fuel cell. The cell comprises three

layers. The cathode (right) is a porous, electrically conductive

material. Molecular oxygen is reduced to oxygen ions in the

cathode, with electrons supplied by the external circuit. These

oxygen ions move readily from the cathode through a dense

electrolyte, which is ion-conducting but is an electronic insu-

lator. At appropriate temperatures, typically in the vicinity of

750 C, the electrolyte becomes conductive to oxygen by means

of oxygen vacancies in the lattice structure of the material. The

anode layer is another porous, electrically conductive cermet

material. Oxygen ions arriving from the electrolyte serve to

oxidize fuel and release their electrons to the external circuit.

Typical materials for the cathode/electrolyte/anode structure

include lanthanum strontium maganate (LSM), ytria stabilized

zirconia (YSZ), and nickel/YSZ cermet, respectively. While the

overall reaction in Fig. 1 shows hydrogen as a fuel and water

as a product, a basic advantage of SOFC technology is that the

electrolyte is an oxygen ion conductor. This allows the use of

fuels containing carbon, as opposed hydrogen-conducting fuel

cell technologies.

Fig. 2 shows a photograph of the actual stack used for

testing in this paper. The stack is a 5kW nominal, Fuel Cell

Technologies / Siemens Alpha-8 tubular solid oxide fuel cell

using city natural gas as a fuel. The vents at the top are for intake

and exhaust, and this particular unit was also configured with

a recuperator that could be used to heat water for a combined

heat and power application. This unit is designed for three-phase

grid-tie operation. However, for purposes of this study we were

able to access and connect power electronics to the terminals of
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Fig. 1: Conceptual diagram of SOFC energy conversion.

the stack and monitor the response of the stack to test signals

imposed by those power electronics.

Fig. 2: A 5 kW Siemens / Fuel Cell Technology stack used for

testing.

B. Fuel Cell Impedance Spectroscopy

Electrochemical impedance spectroscopy models the AC elec-

trical terminal response of a fuel cell (or other electrochem-

ical system) in the vicinity of an operating point as a linear

impedance Z(jω). In particular, for cell voltage and current

vc(t) = Vo + v(t) (1)

ic(t) = I0 + i(t), (2)

at a DC operating point V0, I0, the impedance captures the fre-

quency domain relationship between the small signal quantities

v(t), i(t). Use of this model presumes that the cell responds

linearly over the range of excitation in the vicinity of the

bias point, i.e. that excitation at a single frequency produces

a response at that frequency.

Impedance spectroscopy results are generally presented using

a Nyquist plot showing real and complex parts of the impedance

with frequency as an implicit argument. An electrochemist can

recognize the shapes characteristic of processes in the Nyquist

diagram [6]. Practitioners often extend this non-parametric anal-

ysis by fitting lumped-parameter circuit models, in the frequency

domain, and in some cases associate physical processes with

individual circuit elements. In [7], a parameterized impedance

spectroscopy model is used to synthesize an equivalent circuit

of an SOFC. Other examples include the analysis of a PEM cell

in [8] and the application to an SOFC cell in [7]. Frequencies of

0.01Hz to 1MHz are generally used for studying SOFC systems

[2]. For a survey of impedance spectroscopy in fuel cells, see

[9].

Under sufficiently rich excitation, an estimate Ẑ(jω) of the

impedance response can be extracted from the terminal voltage

and current of a cell. In particular, an impedance estimate is

Ẑ(jω) =
V̂c(jω)

Îc(jω)
, |ω| > 0, (3)

where V̂c(jω) and Îc(jω) are estimates of the spectral content

of the electrical terminal responses vc(t) and ic(t). The process

of estimating spectral content of signals using sampled data and

discrete-time Fourier transform techniques, including window-

ing and other considerations, is reviewed in [10] among others.

The excitation ic(t) imposed at the electrical terminals must

be broadly exciting, in the sense of having significant power

at frequencies where it is desired to have a good estimate of

Z(jω). If Îc(jω) at some frequency is small or dominated by

noise, the variance in Ẑ(jω) can be large. In practice, we avoid

this by not evaluating Z(jω) for frequencies where the signal

content in the Ic(jω) is small in comparison to a threshold.

C. Parametric Modeling and Identification

In addition to impedance spectroscopy, it is sometimes useful

to model fuel cell responses using a parameterized model, often

in the form of a differential equation that represents specific

physical processes. For example, Hall [11] develops a transient

model of a tubular SOFC including electrochemical, thermal,

and mass flow elements. Wang et al. [12] develop a dynamic

model for a proton exchange membrane fuel cell using electrical

circuit elements, and Pasricha et al. [13] provide a dynamic

electrical terminal model of a proton exchange membrane fuel

cell. A challenge in developing parametric, physically-baed

models of fuel cells is to restrict the phenomena in the model

to those which are well supported by the observations.

With preliminary, non-parametric observations in mind, we

propose a very simple three-parameter model of the stack, i.e.

v(t) = Voc − Ri(t) − Ls i(t), (4)

where v(t) is the stack voltage, i(t) is the stack current, Voc

is the open circuit stack voltage, R is a resistance, L is a

inductance, and s is the d
dt

operator.

The parameters of (4) are conveniantly estimated using the

operator substitution technique in [10]. The low-pass filter

operator

λ =
1

1 + sτ
. (5)
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can be manipulated to isolate s, i.e.

s =
1 − λ

λτ
. (6)

Substituting s into (4) and rearranging so λ appears in the

numerator provides

λτVoc − τλi(t)R + (λ − 1)i(t)L = τλv(t). (7)

This is appealing because λτ , λi(t), and λv(t) can be evaluated

using a discrete-time implementation of λ applied to the data.

These quantities can be arranged in a least-squares tableau to

obtain estimates for the parameters Voc, R, and L. Setting λτVoc

to the final value, we form the following equations










τ −τλi[1] (λ − 1)i[1]
τ −τλi[2] (λ − 1)i[2]
...

...
...

τ −τλi[n] (λ − 1)i[n]















Voc

R
L



 =











τλv[1]
τλv[2]

...

τλv[n]











(8)

to estimate the parameters of (4).

III. POWER ELECTRONICS

We can demonstrate the concept of run-time electrochemical

impedance spectroscopy (EIS) in a hybrid power system with

off-the-shelf power converters. A simplified connection diagram

for our EIS-capable hybrid power system is shown in Figure 3a.

In our system, the control signal drives the trim pin of the Buck

converter module in the fuel cell leg (the upper leg in Figure

3a).

A. Small-signal Behavior

Conceptually, the hybrid system enables run-time fuel cell

diagnostics by providing a means for exciting the fuel cell with

a small-signal current originating at the secondary source (the

battery in this case), while the load current itself is largely

unaffected by the EIS measurement. The small-signal current

paths corresponding to this behavior are depicted in Figure 3b.

We can analyze the small-signal behavior of such a system

starting from Middlebrook’s linearized canonical models of

CCM-operated power converters [14]. A parallel development

could be carried out if the converters operate in DCM by using

the corresponding models for DCM-operated converters [15].

1) Middlebrook’s Linearized Models of Power Converters:

In reference [14], Middlebrook develops linearized circuit mod-

els that can be used to represent the input, output and control

properties of many switching power converters.

To that end, Middlebrook demonstrates how CCM-operated

converters can be manipulated into one fixed topology and

DCM-operated converters into another fixed topology in ref-

erences [14], [15], [18]. For example, the basic elements of a

typical power converter are shown in Figure 4a. In Figure 4b, the

buck converter has been replaced with the linearized canonical

circuit model developed by Middlebrook in [14]. 1

The canonical circuit model consists of three pieces (in

boxes): an ideal transformer that represents the converter’s ideal

voltage and current transformation2, an effective low-pass filter

1According typical conventions, the hats (̂ ) denote small-signal quantities.
2the straight line and the wavy line drawn on the transformer element in

Figure 4b are intended to indicate DC and AC respectively.
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Fig. 3: A hybrid power system with EIS functionality built from

off-the-shelf components.

at the output that includes the effects of the energy storage

elements involved in the switching action of the converter, and

dependent current and voltage sources that capture the effect

of the control signal, d̂. Reducing a converter to this “fixed

topology” means that a linearized input-output and control

description of any converter reduces to looking up the, perhaps

frequency-dependent, values for each of the model parameters as

in Table I [14], [17]. In [19], the author shows how the values

in Table I for a generalized load can be taken from similar

canonical model parameters that were previously calculated for

a converter driving a fixed load R.

TABLE I: Canonical Model Parameters for the Buck, Boost and

Buck-Boost with a general load [17], [19]

Converter M(D) Le e(s) j(s)

Buck D L V
D2 I

Boost 1
D′

L
D′2 V

(

1 − sLI
D′2V

)

I
D′2

Buck-Boost − D
D′

L
D′2 − V

D2

(

1 − sDLI
D′2V

)

− I
D′2
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ties.

Fig. 4: Canonical circuit modeling developed in references [14],

[16] and [17].

2) A Linearized Model of the Hybrid Power System:

Having configured the system in Figure 3 so that its small-

signal behavior is similar to that of two parallel converters under

voltage-mode feedback control, we can build the corresponding

linearized model of the hybrid power system shown in Figure

5.

In reference [19], the author uses a linear superposition and

replacement of dependent sources approach to derive the closed-

loop transfer functions describing the small-signal behavior of a

hybrid power system like that in Figure 5. For instance, taking

the input v̂ref1 as the control signal, assuming two identical

converters, and neglecting the effects of the input filters on the

system dynamics, the author shows that the transfer functions

of interest here are:

v̂

v̂ref1
=

1

H

λT

1 + 2Tλ
(9)

îo2

îo1

= −
λT

HZe

(

T (2λ− 1)

1 + 2Tλ
− 1

)

(10)

îo1

v̂ref1
=

T

HZe

(

λT (2λ − 1)

1 + 2Tλ + 1 − λ

)

(11)

îin1

v̂ref1
= j(s)FmGc(s)

(

1 − H
v̂

v̂ref1

)

+ M(D)
îo1

v̂ref1
, (12)
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Fig. 5: A small-signal hybrid system modeled using the canon-

ical circuit model of CCM-operated power converters.

where

Ze = sLe (13)

λ′ = Ze + Ze||R (14)

λ =
Ze||R

λ′
(15)

and the loop transfer function is defined as

T = HGcFMe(s)M(D). (16)

Such a model can be validated by comparing the calculated

expressions in (9)-(12) to simulations (LTSPICE) of the system

in Figure 5 as shown in Figures 7, 8, and 9. The magnitude and

phase plots of îo2/îo1 in Figure 7, confirm our intuition that, at

low frequency, the currents out of the two converters are equal

and opposite (small-signal currents flow out of one and into

the other). This behavior corresponds to the time-domain data

shown in the scope shot of Figure 6, taken from the experimental

system of Figure 3.

Figures 8 and 9 show that the transconductance from the

control voltage, v̂ref1, to input current, îin1, is large and

the corresponding load voltage perturbation, v̂, is small. This

amounts to the desired characteristic of an EIS-capable hybrid

power system that the load voltage will be largely unaffected

by the run-time EIS behavior.

B. Input Filters and System Stability

The design of the input filters in Figure 5 presents some

interesting power electronics design challenges. The classic

results concerning the effect of a “post-facto” input filter on

converter performance are derived by Middlebrook from an

application of the extra element theorem in [16], [17], [20].

The resulting design constraints are typically quoted as a set of

impedance inequalities that, if met, ensure negligible degrada-

tion of converter performance. However, in our hybrid power

system, designed to enable EIS of the fuel cell, we have a
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Fig. 6: An oscilloscope screen shot showing the battery and fuel

cell currents during run-time EIS (≈100 Hz). Top to bottom:

load voltage (ch2), fuel cell current (ch3), battery current (ch4),

control signal (ch1). The excitation current flows out of the

battery terminals and into the fuel cell terminals while the load

voltage is largely unaffected by the run-time EIS measurement.

more complicated set of design constraints that must be met.

Specifically, the input filters must not only be designed for

system stability but must also pass excitation currents from

the converter inputs to the fuel cell terminals. Meanwhile, the

analytical results presented by Middlebrook in [16], [20], must

be extended so that they may be applied to the hybrid power

system (paralleled converter) case.

1) Middlebrook’s Application of the EET for Input Filter

Design: The treatment of an input filter as a “post-facto” ele-

ment in a power converter design is a likely outcome of natural

design processes. However, this treatment is also analytically

advantageous. The converter can be designed without the input

filter and then the extra element theorem (EET) applied to

determine the perturbation on the converter dynamics without

ever analyzing the full system. The extra element theorem, best

summarized by Middlebrook in [21], allows us to replace one

cumbersome and uninsightful calculation, with a few simple and

elegant calculations.

The extra element theorem follows from an application of

the principle of “null double injection” to a linear circuit [21].

Upon addition of an extra element to the circuit, the transfer

function of interest, completely defined by an input and output

variable in the circuit, can be modified by using the calculated

impedance seen at the “extra element port” under two special

cases. The first special case corresponds to null-double injection

and is the impedance seen at the extra element port when the

transfer function input variable is directed in such a way that the

transfer function output variable is nulled (equal to zero). The

result is the “null-condition” impedance, Zn−c(s). The second

special case corresponds to the open-loop behavior and is the

impedance at the extra element port when the transfer function

input signal is deactivated (set to zero), leading to Zo−l(s).
Fundamentally, the extra element theorem uses the unique

information obtained about the circuit by calculating those two

special-case impedances to derive the circuit’s interaction with

the extra element itself. The primary result of the ensuing

mathematical manipulations is a statement of the correction
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Fig. 7: io2/io1.

factor that multiplies the original transfer function. For a series

extra element (one that replaces a short-circuit in the original

circuit), the correction factor is

CF =





1 + Zo(s)
Zn−c(s)

1 + Zo(s)
Zo−l(s)



 , (17)

in which Zn−c(s) is the special-case impedance calculated for

the null condition, Zo−l(s) is the special-case impedance cal-

culated for the open-loop condition and Zo(s) is the impedance

of the extra element itself.

While the converter transfer function can be defined by

any arbitrarily defined input variable and any corresponding

output variable, some notable converter transfer functions are

represented within the dashed box in Figure 10 adapted from

[17]. The converter transfer function, Gvd(s), is usually of

particular interest because it is “in the loop,” i.e. the dynamics

of Gvd(s) directly impact the stability of the regulator. Upon

addition of an input filter, Gvd(s) is modified by multiplication

with the correction factor in (17), in which Zn−c(s) and Zo−l(s)
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can be calculated from the circuit in Figure 11.

The null-condition does not generally allow us to simplify

the circuit topologically, or even to easily write down a closed-

form expression of the control signal that leads to the nulled

output signal.3 But, the null-condition often allows us to make

observations about the circuit that simplify the calculation, not

of the control signal itself, but of the impedance at the extra

element port as a result of the conditions that the control signal

must impose on that circuit to null the output.

For example, to calculate Zn−c(s) for correcting Gvd(s), the

transfer function from d̂ to v̂, in the circuit of Figure 11, we

deactivate the other independent inputs, v̂g and îload, and null

the output v̂ → 0. The analysis is simplified by realizing that

for a nulled output, the small-signal voltage across the load

impedance is zero so no small-signal current flows through

the load. Therefore, no current flows through Le or through

the secondary winding of the ideal transformer. The primary

winding current is therefore also zero. Because the current

3Note that it would (generally) be a misinterpretation of the null-condition to
simply short-circuit the output of the converter in Figure 11 and, in most cases,
would lead to different and incorrect results.

Compensator Pulse-width

Sensor gain

+
-

modulator

+

+ -

Converter switching stage

v̂g(s)

H(s)

ΣΣ Gc(s) 1/VM

v̂(s)
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Fig. 11: The linearized converter model with three indepen-

dent inputs, v̂g , d̂, and îload. for calculating the special-case

impedances in the extra element correction factors.

through Le is zero, the voltage across it is also zero and the

zero-valued (nulled) output voltage appears at the secondary

winding of the ideal transformer. Therefore, the input voltage

and current are simply −e(s)d̂(s) and j(s)d̂(s), respectively and

the input impedance in this case is Zn−c(s) = −e(s)/j(s).

In [19], the author shows that the three converter transfer

functions represented in the dashed box of Figure 10, can

be corrected using the generalized results in Table II. Those

results hold for CCM-operated converters, and the special-case

impedances can be found by looking up the canonical model

parameters in a table such as Table I.

TABLE II: Generalized Input Filter Design Constraints adapted

from [19]

Special- Impedance Generalized Transfer

case Value Function

open-

loop ZD(s) sLe+R||Zsh(s)
M(D)2 All

null- ZN(s) −e(s)
j(s) Gvd(s)

condition Ze(s)
sLe

M(D)2 Zeo(s)

Zg(s) ∞ Gvg(s)

The correction factor can be used to directly evaluate the

degradation of converter transfer functions. However, it is im-

mediately obvious from the expression of the correction factor

in (17), that if the following inequalities are met, the input filter

will have a negligible impact on the converter dynamics [16],

[20]:

|Zo| << |Zn−c| (18)

|Zo| << |Zo−l|. (19)
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Meeting the first inequality will ensure that the filter output

impedance is always less than the negative incremental resis-

tance presented by the inputs of a regulated converter. For

instance, from Tables I and II, Zn−c(s) for the Buck converter is

−V/ID2. The same result can be derived for a lossless (Pout =
Pin), perfectly-regulated converter (Vout = V = const.) with a

fixed load (Iout = I = const.) as follows:

Zn−c(s) =
∂Vin

∂Iin

=
∂

∂Iin

(

Pout

Iin

)

= −
Pout

I2
in

= −
V

ID2
. (20)

A typical plot of the three impedances of interest in Figure 12

illustrates the design choices required to meet the inequalities

in (18)-(19). In practice, meeting the inequality in (18) is often

achieved for LC filter designs by using a damping leg (a series

RC) shunting the input terminals to decrease the magnitude

peaking in the LC filter output impedance. Meeting the second

inequality (19) is usually achieved by setting the frequency of

the 2nd-order peak in the input filter output impedance below

that of the 2nd-order dip in the output filter input impedance

(represented by Zo−l(s)).
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Fig. 12: A typical frequency plot of the special case impedances,

Zn−c(s), Zo−l(s), and the input filter output impedance, Zo(s),
for a single converter system.

While the concepts above were reviewed and developed for a

single-converter system, the same concepts will be extended, in

Section III-B2, to the two-converter case corresponding to the

hybrid power system in Figure 5.

2) The 2EET Applied to the Hybrid Power System: In the

hybrid power system of Figure 5, each converter is furnished by

an input filter. Ignoring, for now, the particular feedback loops

in that system, we can consider the circuit as a whole rather

than as two separate converters. That system, like the single-

converter system in Section III-B1 can be characterized by its

open-loop transfer functions from any independent input to any

output variable. Of particular interest, are the converter transfer

functions that will be “in the loop” upon addition of feedback

control. In Figure 5, those are the transfer functions from each

duty ratio, d̂1 and d̂2, to the output voltage, v̂, because of the

voltage-mode feedback control depicted there.

Now, we must consider the effect on the converter transfer

functions upon the simultaneous addition of two input filters to

the overall system. To that end, the author in [19] applies the

two extra element theorem to the system in Figure 5. In [22],

Middlebrook presents the two extra element theorem (2EET),

the principle result of which is the correction factor:

CF (i) =

1 + Z1

ZN1|
(i)
Z2=0

+ Z2

ZN2|
(i)
Z1=0

+ K
(i)
N

Z1Z2

ZN1|
(i)
Z2=0 ZN2|

(i)
Z1=0

1 + Z1

ZD1|
(i)
Z2=0

+ Z2

ZD2|
(i)
Z1=0

+ K
(i)
D

Z1Z2

ZD1|
(i)
Z2=0 ZD2|

(i)
Z1=0

,

(21)

where Z1 and Z2 are the output impedances of the first and

second input filters respectively.4 The interaction parameters can

be written (they each have two possible forms) [22]:

K
(i)
N =

ZN1|
(i)
Z2=0

ZN1|
(i)
Z2=∞

=
ZN2|

(i)
Z1=0

ZN2|
(i)
Z1=∞

(22)

K
(i)
D =

ZD1|
(i)
Z2=0

ZD1|
(i)
Z2=∞

=
ZD2|

(i)
Z1=0

ZD2|
(i)
Z1=∞

, (23)

In [19], the author shows that analysis of the circuit in Figure

5 leads to the following special-case impedances for calculating

the correction factor of the open-loop transfer function v̂/d̂1:

ZN1|
(1)
Z2=0 =

−e1(s)

j1(s)
(24)

ZN2|
(1)
Z1=0 =

sLe2

M2
2 (D2)

(25)

ZD1|
(1)
Z2=0 =

sLe1 + sLe2ZL

ZL+sLe2

M2
1 (D1)

(26)

ZD2|
(1)
Z1=0 =

sLe2 + sLe1ZL

ZL+sLe1

M2
2 (D2)

, (27)

where ZL is the total impedance shunting the converter outputs,

i.e. ZL = R||1/(s(C1 + C2)), in Figure 5. The additional

special-case impedances required to calculate the interaction

parameters, K
(1)
N and K

(1)
D , are

ZN1|
(1)
Z2=∞ =

−e1(s)

j1(s)
(28)

ZD1|
(1)
Z2=∞ =

ZL + sLe1

M2
1 (D1)

. (29)

The correction factor of the second open-loop transfer function

of interest, v̂/d̂2, can be similarly derived or inferred from the

correction factor for the first by symmetry arguments. This leads

4N and D historically represent “numerator” and “denominator” [17]
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to:

ZN1|
(2)
Z2=0 =

sLe1

M2
1 (D1)

(30)

ZN2|
(2)
Z1=0 =

−e2(s)

j2(s)
(31)

ZD1|
(2)
Z2=0 =

sLe1 + sLe2ZL

ZL+sLe2

M2
1 (D1)

(32)

ZD2|
(2)
Z1=0 =

sLe2 + sLe1ZL

ZL+sLe1

M2
2 (D2)

(33)

and the additional special-case impedances required to calculate

the interaction parameters, K
(2)
N and K

(2)
D , are

ZN2|
(2)
Z1=∞ =

−e2(s)

j2(s)
(34)

ZD2|
(2)
Z1=∞ =

ZL + sLe2

M2
2 (D2)

. (35)

Note that from the results above, the “numerator interaction

parameter” equals one (K
(i)
N = 1) for each of the two transfer

functions. This fact, which is characteristic of the hybrid power

system in Figure 5, simplifies the numerical computation of the

correction factors, CF (i), because, in that case, the numerator

is exactly factorable as follows:

CF (i) =

(

1 + Z1

ZN1|
(i)
Z2=0

) (

1 + Z2

ZN2|
(i)
Z1=0

)

1 + Z1

ZD1|
(i)
Z2=0

+ Z2

ZD2|
(i)
Z1=0

+ K
(i)
D

Z1Z2

ZD1|
(i)
Z2=0 ZD2|

(i)
Z1=0

.

(36)

In analogy to the impedance inequalities from (18) and (19),

the expression for the correction factor in (21) or (36) suggests

that the ith open-loop converter transfer function will not be

impacted significantly if the following impedance inequalities

are met. Recall that meeting these impedance qualities may be

sufficient but not necessary to preserve stability of an otherwise

stable regulated power system.

|Z1| << | ZN1|
(i)
Z2=0 | (37)

|Z2| << | ZN2|
(i)
Z1=0 | (38)

|Z1| << | ZD1|
(i)
Z2=0 | (39)

|Z2| << | ZD2|
(i)
Z1=0 | (40)

3) Input Filter Design Approach: The input filters in an

EIS-capable hybrid power system may be designed to achieve

several goals simultaneously:

1) Attenuate converter switching ripple

2) Avoid converter instability

3) Pass or even amplify excitation signals

Goals 1) and 2) are typical of design goals when adding an

input filter onto a regulator. Goal 3) is unique to the EIS-

capable hybrid system, because the filter must be designed to

allow excitation currents to flow from the converter input to the

terminals of the fuel cell up to a specified frequency.

For this example, we consider the input filter shown in Figure

13, which includes both the internal input filter components

provided on the off-the-shelf Buck converter from Figure 3a as

well as the external input filter components that we added, Lf1

and Cf1. The internal input filter components are:

Cf3 = 8.8 µF (41)

Lf3 = 2.2 µH (42)

Cf4 = 26.4 µF. (43)

Having set the pass band and rollover frequencies, largely by

Internal Input FilterExternal Input Filter

Converter

Input

Power Source

Output

Lf1 Lf3

Cf1
Cf3 Cf4

RD1

Fig. 13: The input filter for the fuel cell leg.

choosing Lf1, the filter transfer function is shown in Figure 14.

The damping leg formed by Cf1 and RD1 in Figure 13 is

intended to limit the magnitude peaking in the output impedance

of the filter. However, as the impedance of the damping leg

decreases it provides a shunt path that diminishes the transmis-

sion of excitation currents to the fuel cell terminals. Moreover,

due to natural bandlimiting in the system, the designer may

actually want to exploit the resonance at the edge of the pass

band in Figure 14 to achieve some current amplification at

that frequency. Both of these considerations qualitatively lower-

bound the damping resistor, RD, a constraint which directly

contends with the impedance inequalities in (37)-(40).

Figure 15 shows a magnitude plot of the special-case

impedances for correcting v̂/d̂1 as well as the output

impedances from the filters used in our system. Note that the two

resonances in Zo (solid line) correspond to the two resonances
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in the filter transfer function of Figure 14. Also note that the plot

of special-case impedances suggests that the hybrid system of

Figure 5 actually lower-bounds the bandwidth of the input filter

to ensure negligible impact on converter dynamics. Because the

impedance inequalities in (37)-(40) are not strictly met, as is

evidenced by the plot in Figure 15, we need to examine the

quantitative impact of the input filters on the converter open-

loop transfer functions. In this Section, we assume that the

feedback regulated system in Figure 5 is stable without the input

filters connected, and that we simply need to verify that adding

those input filters does not lead to instability.
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Fig. 15: A frequency plot of the special case impedances

for correcting v̂/d̂1 and the input filter output impedances

for checking the impedance inequalities in (37)-(40). System

parameters: VFC = 28V, Vbatt = 48V, Vout=12V, R = 2Ω,

Le = 1µH, Ce = 1µF

A plot of the correction factors, CF (i), for the ith converter

open-loop transfer function from (21) is the most direct way

of analyzing the effect of the input filter on system stability.

We are generally interested in the additional phase lag in the

loop transfer function upon addition of the input filter. More

specifically, we are interested in the phase margin, or the phase

relative to -180◦ at the unity gain (0db-crossover) frequency

of the entire loop transfer function (including the feedback

network) upon addition of the input filters. However, since we

assume that we are checking that the input filters do not cause

an already stable system to become unstable, we simply need

to check the additional phase lag which is explicitly shown in

the multiplicative correction factor.

For instance, the correction factors, CF (1) and CF (2), for

the converter open-loop transfer functions, v̂/d̂1 and v̂/d̂2

respectively, are bode plotted in Figure 16. 5 From the plots,

we see that CF (2) introduces a significant additional phase lag

near 105 rps. However, the phase lag will not degrade the phase

margin unless that phase lag occurs at the cross-over frequency

of the entire regulator loop transfer function. In some cases,

i.e. when the impedance inequalities in (37)-(40) are grossly

5The simulated data overlayed in the plots of Figure 16 was extracted from
LTSPICE by comparing simulations of the open-loop transfer functions with
and without the input filters in place.
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Fig. 16: Bode plots of correction factors CF (1) and CF (2)

for open-loop transfer functions v̂/d̂1 and v̂/d̂2, respectively.

System parameters: VFC = 28V, Vbatt = 48V, Vout=12V,

R = 2Ω, Le = 1µH, Ce = 1µF

violated, the correction factor will contribute phase lag for a

wide band of frequencies likely causing instability. Because the

phase lag in this example is contributed for only a narrow range

of frequencies we would not expect the voltage-mode feedback

loop to become unstable.

The values for the external input filter components were:

Cf1 = 100 µF (44)

RD1 = 10 Ω (45)

Lf1 = 6 µH. (46)

These were also the values for the filters used in the system of

Figure 3 represented by Lf and Cf . Stability of the real system

was verified experimentally.

IV. EXPERIMENTAL SETUP

Figure 17 shows an overall schematic of the Siemens 5kW

stack, connections to the built-in power electronics and storage,
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Fig. 17: Schematic illustration of stack, power electronics, and

measurements. Components within the dashed line are within

the physical envelope of the Siemens Alpha 8 unit.
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Fig. 18: Measured and predicted stack current as a function of

time.

and the locations of our measurements. Under steady-state

operation, the unit is remotely configured to regulate current

from the stack. This power is then put on the grid through

a three-phase inverter. The stack current is measured using a

Tektronix A6303 current probe, while the voltage is measured

using an isolated, differential Tektronix 5205 probe. Signals

from both probes are recorded using a National Instruments

data acquisition system with a PXI-5122 14-bit analog to digital

converter. Sampling was conducted at a minimum of 2MS/s to

avoid under-sampling issues. Figures 19a and 19b show typical

data collected from this test setup under steady state operating

conditions. The current and voltage levels in Figures 19a and

19b, nominally 100A and 28V, were typical of the stack load

during testing.

V. RESULTS

Figure 19 shows typical data collected from the test setup in

Figure 17 with a 1kHz exogenous excitation imposed by control

of the test power electronics. The triangular ripple current in

Fig. 19 at roughly 12 kHz is due to the operation of the front-

end boost converter in the Siemens power management system.

The current and voltage levels in Fig. 19, nominally 90A and

28V, were typical of the stack load during testing.

Figure 20 shows Nyquist plots of the impedance Ẑ(jω)
obtained from the response of the stack to the built-in power

electronics ripple and the power electronic test signal. The plots

were prepared according to the convention for electrochemical

impedance spectroscopy results. Fig. 20a shows a overall plot

representing impedances for all frequencies with significant

content. The discete clusters correspond to harmonics of the

triangular boost-converter switching waveform, while the more

continuous low-frequency data shows the response to the test

signal. As the frequency of the harmonics increases, the am-

plitude decreases, and the variance in the impedance estimate

increases. Fig. 20b is an expanded view of the low frequency

portion corresponding to the exogenous excitation. The arc

shape of the curve in Fig. 20b is consistent with the series

connection of parallel RC elements often used in equivalent

circuit models of fuel cells.

Data corresponding to a 1kHz power electronic excitation

were used to identify the parametric model in II-C. The pa-

rameter estimates were Voc = 34.1V , R = 0.0690Ω, and

L = 0.43µH . These results compare favorably to those in

[5], where the values for these parameters based on data taken

months earlier were found to be Voc = 34.7V , R = 0.0677Ω,

and L = 0.471µH . The decrease in voltage and increase in

resistance are likely due to the gradual degradation of stack

performance observed over this time period. The latest parame-

ters were used for an output-error prediction of the time-domain

current waveform in response a 5.4 kHz excitation. This cross-

validation result is shown in Fig. 18.
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