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Abstract—This paper proposes a method to derive an estima-
tor that predicts the power consumption of variable power loads
from a subset of higher current harmonics without requiring
a full analysis of the internal circuit of the load. The method
exploits structural features of the current waveforms consumed
by the load to develop the estimator. The computation in-
volves Gaussian elimination of a cyclotomic field representation
to compute the estimator coefficients, avoiding floating-point
computational error. Experimental results have shown that the
proposed algorithm can derive estimators that can extract the
power consumption of variable speed drives, computers, or light
dimmers from fixed power loads in aggregate measurements.

I. INTRODUCTION

This paper introduces a new method for estimating the
real and reactive power consumed by a continuously variable
load such as a variable speed drive (VSD) operating in
a collection of electrical loads. This method estimates the
power consumption of the variable load given only aggregate
measurements of current. The algorithm exploits structural
features of the non-sinusoidal current waveform consumed
by many variable power loads. The proposed method is
distinct in requiring no internal circuit model or description
of the variable load to derive the estimator.

A nonintrusive load monitoring (NILM) system is a
“smart” metering device designed to disaggregate the power
consumption of each load from aggregate electrical measure-
ments. Each load is identified by real and reactive power con-
sumption and its current harmonics during a start-up transient
and steady-state operation [1]-[5]. The pattern recognition
algorithm used in the NILM exploits the fact that many
loads such as lights and motors consume approximately
discrete power levels. A NILM with a transient event detector
can recognize turn-on and turn-off events and track energy
consumption.

The application of power electronics enables many loads
to operate over a wide variable power range. Examples
of variable power loads are variable speed drives (VSDs),
computers, and light dimmers. These continuously variable
power loads do not have a unique power consumption
pattern. Therefore, these loads cannot necessarily be tracked
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for energy consumption strictly by examining turn-on and
turn-off transients. These loads, e.g. a VSD, may consume
harmonic currents such as the fifth and seventh harmonics. At
a particular site, these harmonics may be uniquely associated
with the VSD and can be used to estimate the fundamental
current harmonic and the power consumption of the VSD
accurately using a data-driven model [6]. The estimating
function based on empirical data is sensitive to changes
in the environment such as input voltage harmonics [7].
An alternative estimator was developed by modeling and
analyzing the behavior of the internal circuit of the VSD,
specifically the uncontrolled three-phase rectifier [7]. The
model-based estimator solves the issue of the input voltage
distortions, enhancing the robustness of the estimator. How-
ever, other loads may be too complex to model and analyze.
Therefore, the application of the model-based estimator for
other variable power loads may not be possible.

Although these variable power loads consume different
harmonic currents, there are common characteristics in the
current among these loads. These variable power loads are
not linear time invariant (LTT) because their currents are mod-
ulated by operations of power electronics. As a result, their
currents are non-sinusoidal. However, the current waveforms
of these variable power loads consist of structural features
that can be identified in both the time and frequency domains.
For example, the current waveforms of VSDs and computers
have known regions of zero current. Furthermore, the sam-
pled current signal is also band-limited and periodic. These
observable characteristics of the current waveforms can be
used to write linear constraints according to the Fourier
analysis and synthesis equations. These constraints can be
manipulated using a standard Gaussian elimination method
to achieve a functional relationship between the fundamental
current harmonic and higher harmonics uniquely associated
with the load. The estimator can be computed without fully
analyzing the underlying circuit of the load. In addition, the
actual computation can be done using a cyclotomic field
representation to minimize numerical error [8]-[11].

This paper describes a systematic process to derive a
waveform-based estimator. The first section describes the
waveform features and their connections to the Fourier
analysis and synthesis equations. The next section explains
a four-step process to compute the estimator for a particular

1942



load. Finally, the paper includes experimental results demon-
strating the capability of the waveform-based estimator to
disaggregate the power consumption of continuously variable
power loads such as VSDs, computers, and light dimmers
from fixed power loads.

II. BACKGROUND

Instead of fully analyzing the circuit diagram for each
new load to compute the estimator, the current waveforms of
variable power loads contain information that can be used to
distinguish the load from other loads. Current waveforms and
discrete Fourier transform (DFT) coefficients of a VSD are
shown in Fig. 1. Current waveforms of a computer and a light
dimmer are shown in Figs. 2, and 3 respectively. Although
the internal circuits of these three loads are different, their
current waveforms share a few common properties that
can be observed. Those properties include five waveform
features:

o periodicity,

o presence of zero-current regions,

« waveform symmetry,

o approximately band-limited signal, and

« real-valued signal.

These five descriptive constraints can be translated to math-
ematical forms using the Fourier analysis and synthesis
equations.

Given a band-limited and periodic signal, the sampled
waveform can be described by a weighted sum of discrete
Fourier transform (DFT) coefficients Iy, as

N-1 "
ifn) =) Iued ¥, (1)
k=0

where the variable n is the time index, ranging from 0 to
N — 1. The number N represents a number of samples per
signal period. The DFT coefficients [}, are calculated by the
Fourier analysis equation,

N-1
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where the subscript k represents the harmonic, ranging
1

from 0 to N — 1 [12]. The scaling factor & normalizes
the coefficients by the data length. The relationship in (1)
illustrates the form of the functional relationship among
different harmonics and the time-domain waveform.

If all N samples of the current waveform are known,
the Fourier synthesis equation (1) provides all constraints
between different harmonic currents I, and the time-domain
signal i[n]. However, only a limited number of equations
can be used to compute the estimator. The next section
explains the systematic procedure to translate the five wave-
form features into the mathematical constraints that can be

manipulated into the desired estimator.
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Fig. 1. Simulated voltage and current waveforms and current harmonics
associated with a VSD. Three-phase voltages are shown in (a). The VSD
line current for one cycle is shown in (b). The normalized harmonic currents
is shown in (c).
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III. ESTIMATOR DERIVATION

The goal of the proposed method is to compute a func-
tional relationship between the fundamental harmonic, Iy
and higher harmonics that are uniquely or largely associated
with a variable power load at a target site. Specifically, this
proposed method is looking for an estimating function in a

linear form,
2K

L= (emln), 3)

m=1

where fl is the estimated fundamental harmonic, and the
coefficient c¢,, represents a complex coefficient. The variable
I,,, represents selected higher harmonics or input harmonics
uniquely associated with the variable power load. The num-
ber 2K represents the number of input harmonics used in
the estimator.

The estimator can be developed iteratively with a four-step
process:

1) identify signal constraints,

2) setup a Fourier matrix equation,

3) solve for the estimator, and

4) evaluate estimation error.
The first step describes how to translate the five waveform
features to linear constraints described in the Fourier syn-
thesis equation (1). This step also includes the selection
of the input harmonics used in the estimator. The second
step establishes a matrix equation from the constraints. The
third step demonstrates how to reduce the matrix equation
into the estimator equation. Lastly, the derived estimator
is evaluated and tested against accuracy requirements in
the fourth step. The procedure can be iterated to further
improve the estimation error or to reduce the number of input
harmonics.

A. Signal Constraints

First, the current signal in the ac system is assumed to
be periodic with a period of 7', which is a reciprocal of
line voltage frequency. The periodic signal is sampled and
analyzed using the discrete Fourier transform to obtain the
DFT coefficients or current harmonics I, according to the

Fourier analysis equation (2). The signal is assumed to be
sampled at the rate F such that the sampled signal consists
of N points per period. Given N samples per period, there
are N DFT coefficients from the Fourier analysis equation
2).

Second, the current waveform consists of known regions of
zero-current because of the circuit operation. In the case of a
VSD, the consumed current has known zero-current regions
shown in Fig. 1, which can be expressed mathematically
based on an electrical angle specified in radians,

2mn m o I 117
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For a periodic signal i[n] sampled with the rate of N points
per period, the first region of zero-current specified in (4)
0< %T" < & can be expressed mathematically using the
Fourier synthesis equation (1) as

Iy + I + o+ Ina = i[0]
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Ip + [16.7'2%(1\71) 4+ IN,lej%((Nfl)(Nl) = i[Vq],
%)
where % = %. Similarly, other zero-current regions can

also be translated and added to the list of constraints similar
to (5) as well.

Third, the load current waveform exhibits a specific
symmetry. Load currents shown in Figs. 1, 2, and 3 are
approximately odd-symmetric. There are two ways to express
this constraint. One method is to express in the time domain
as

N N
in]=—i|n+—|, for0<n< —. (6)
2 2
The number % indicates the midpoint of the waveform. Al-
ternatively, the constraint can be formulated in the frequency
domain as zero even harmonics, specifically

Tpeven =0, (7

even

where the subscript keyen represents an even number, includ-
ing zero. This constraint (7) eliminates all even harmonics
from the calculation.

Moreover, a VSD does not consume any triplen harmonic
under a balanced three-phase voltage. This constraint can be
represented as
=0. 8)

Ktriplen

Fourth, the current signal is processed through the anti-
aliasing filter and the analog-to-digital converter in order to
be converted into a digital form properly. The anti-aliasing
filter confines the bandwidth of the signal, making the
signal approximately band-limited. The histogram of DFT
coefficients of a VSD in Fig. 1 shows that most energy of
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the current waveform is contained in a low frequency region.
The amplitude of higher harmonics are small and can be
neglected. The band-limited constraint can be expressed as

Ikhighfmq =0 )

for some Kpjghfreq > Ko, Where the parameter K is a user-
specified boundary.

Fifth, the real input signal dictates the characteristics of
the DFT coefficients, Ij;. Given a real signal, the magnitude
of the DFT coefficients I}, is even, and the phase the DFT
coefficients [, is odd. In other words, most DFT coefficients
are complex conjugate pairs, Iy_5 = I, for example. The
complex conjugate can be used in the selection of the input
harmonics.

The estimating function in (3) specifies a subset of DFT
coefficients as input harmonics. In this paper, the estimator
is derived iteratively as a function of input harmonics, the
algorithm must be initialized to a reasonable number of
harmonics, i.e. ten, with the goal to reduce this number as
low as possible. The iterative process will reduce the number
of input harmonics when possible.

The selection of the input harmonics depends on two
factors: the availability of the harmonics in the measured
signals and the estimation error. In the field, the NILM
must observe a collection of harmonics that are uniquely
associated with the variable load. With the exception of
the fundamental harmonic, other harmonics can be selected
as input harmonics in the proposed method. The “input”
harmonics should at least correlate with the fundamental
harmonic and have non-zero values.

Among the available harmonics, harmonics with larger
magnitude should be selected to improve the signal-to-noise
ratio (SNR). One selection scheme is to select the input
harmonics according to their magnitudes in a descending
order. For example, according to the histogram of the current
harmonics shown in Fig. 1, the fifth and seventh harmonics
are the two largest harmonics among higher harmonics.
Therefore, these two harmonics can be selected as the
candidates.

The real input signal implies the complex conjugate prop-
erty of the DFT coefficients. The magnitude of the complex
conjugate pair is the same as the harmonic itself. In the
actual implementation, not all DFT coefficients have to
be computed in real time. Only the input harmonics are
necessary in the estimation. The complex conjugate pair
requires no additional computation. As a result, the complex
conjugate pairs of the candidate input harmonics can be used
as the input harmonics with a negligible computational cost.
The number of input harmonic pairs used in the estimator is
denoted by the symbol K. In the case of VSD, a possible
input harmonic vector for the first iteration can be

Linput = [I5vI§vI7a[;vlllvlf1]T' (10)

In this case, the estimator uses three input harmonic pairs,
K = 3. The input vector is arranged according to the
magnitude size in descending order. After the evaluation
process, which is described in the next sub-sections, the
smallest harmonic and its complex conjugate can be removed
in the next iteration, leaving only two input harmonic pairs,
K = 2. The iteration process keeps reducing the number of
input harmonic pairs until the estimation error just satisfies
the accuracy requirement.

B. Matrix Equation

Once all linearly independent constraints have been iden-
tified, the matrix equation can be expressed as

Alprr =b=0, (11

where the matrix A contains complex exponential coeffi-
cients. The Fourier series coefficients vector, IpgpT contains
harmonics ;. The vector b represents a constant zero vector.

To solve for the estimator, the matrix A is constructed to
have the dimension of R rows by R 4 2K columns. The
number of rows R reflects all usable constraints describing
the waveform, while the number of columns R+ 2K reflects
R constraints and the number of input harmonics 2K,
described in the last section. The IppT can be partitioned
into sub-blocks

IDFT = [Igoal | Iothcrs | Iinput }Ty (12)

where the variable I, is the estimated harmonic, specifi-
cally the fundamental harmonic, I;. The vector Ij,,,; con-
sists of the input harmonic pairs as shown in (10). The
vector others 18 comprised of other non-zero harmonics. The
columns of matrix A have to be rearranged in the similar
order

A= [Agoal ‘ Aothers | Ainput ]7 (13)

where the matrix Agq, iS a column vector of size R-by-
1, containing coefficients associated with the goal harmonic,
specifically the fundamental harmonic /; in this case. The
matrix Ajnpye contains all coefficients corresponding to the
input harmonics in i,y and has a dimension of R-by-2K.

After the matrix A and the DFT coefficient vector IppT
have been rearranged in a desired format, the next section
shows the manipulation of the matrix A to obtain the esti-
mator. Specifically, the manipulation will modify the matrix
A such that it contains a row relating Ioa1, i.€. 1, to a small
subset of input harmonics Iinpy¢ With all other harmonics in
this row having zero coefficients.

C. Reduced Row Echelon Form

Once the system of equations has been set up in the
matrix format, the next step is to compute the functional
relationship between different harmonics. The algorithm uses
a Gaussian elimination method to reduce the matrix A into
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a reduced row echelon form (RREF), Agrrgr. After the
Gaussian elimination process has been performed, the matrix
equation in (11) can be expressed in block matrices as

L.
1 Ogoal goal
ARrerIDFT = Lothers | = 0.
0|1 Cothers I
input

(14)

By rearranging the terms in (14), the estimator can be
described by a linear equation with complex coefficients,

_Cgoaljinput- (15)

This estimator computes Igo,1 from a input harmonics fiypys.
This candidate estimator must be verified that it can compute
the fundamental harmonic with a reasonable error.

Igoal =

D. Estimator Evaluation

After the estimator has been computed, the estimator is
evaluated by performing the estimation of the fundamental
harmonic using the actual test current. The performance is
measured by the estimation error, which is defined as

estimation error (%) = |I; — f1|/|11| x 100, (16)

where the variableAI 1 is the measured fundamental harmonic,
and the variable I; is the estimated fundamental harmonic
computed by the estimator.

Because the estimator in (15) is computed for a specific
number of samples N and a specific set of input harmonics,
Iinput, the estimator may not work well for other sampling
rates. The band-limited signal sampled at the sampling fre-
quency above the Nyquist rate should contain all information
within the data. If the estimator predicts the fundamental
harmonic accurately for a given sampling rate, the estimators
derived for higher sampling rates should predict accurately
as well because more constraints can be listed in the system
of linear equations. The band-limited property should be
more accurate as the sampling frequency becomes higher.
The zero harmonics approximation in (9) should also be
more accurate. The estimator should accurately predict the
fundamental current harmonic over a range of Ngamp, samples
per cycle. Fig. 4 shows examples of the estimator evaluation
for the VSD.

In this example, the test current is shown in Fig. 1. In
the first iteration, the estimators were derived using three
harmonic pairs K = 3 as listed in (10) and different sample
numbers Ngamp. The estimation errors for K = 3 cases are
shown in Fig. 4c. The errors are below 0.4 percent, indicating
that the fundamental harmonic of the VSD can be estimated
accurately using three harmonic pairs K = 3 indicated in
(10).

In the next iteration, the input harmonics are reduced to
two harmonic pairs the fifth, seventh, and their complex
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Fig. 4. Example of estimation errors as a function of sample points Nsamp
and input harmonic pairs K. Simulated VSD current waveform was used
in these three cases.

conjugates, K = 2. The procedures are reiterated to obtain
the estimator for i = 2 and different sample points Ngamp.
The estimation errors are shown in Fig. 4b. The errors are
below 2.5 percent across a wide range of sample points
Ngamp- As a result, the VSD estimator can use only two
harmonic pairs K = 2 to estimate the fundamental harmonic
with a reasonable error.

To examine if the number of input harmonics [inpy; can
be further reduced, the final iteration was done with X =1,
using only the fifth harmonic and its complex conjugate. The
estimation errors are shown as a function of sample points
Ngamp in Fig. 4a. The result demonstrates the estimation
error above 10 percent for many sample points. This result
implies that the estimators will not perform consistently
across different sample rates. Therefore, the VSD estimator
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Fig. 5. The experimental setup for extracting the VSD and three-phase
rectifier power from the incandescent light bulb

derived using the proposed procedures should use at least two
harmonic pairs K = 2 to accurately predict the fundamental
harmonic.

This section has demonstrated the iterative procedures to
derive the estimators based on the five waveform features
by using the VSD load as an example. The input harmonics
Iinput are chosen according to their availability and mag-
nitude. The estimator is computed using a simple Gaussian
elimination algorithm. Then the performance of the estima-
tor is tested for consistency by measuring the estimation
error against the test current. The procedures are repeated
with the reduced number of input harmonics by removing
the harmonic with the smallest magnitude. The iteration is
finished when the estimation error exceeds the requirement.
The proposed method provides a guideline to compute the
estimator in a linear form. A user has the freedom to select
the input harmonics for Iij,p,:. The evaluation process will
verify whether an accurate estimator can be derived using
the selected harmonics.

Because the estimator is computed for different sample
points Ngamp, the computational error from the floating point
arithmetic can mask the potential of the algorithm as the
number of sample points Ng,m, increases. To avoid the
floating-point error problem, the proposed method uses a
cyclotomic field to represent the complex coefficients in the
matrix A as described in [13]. The computation is done using
the GP mathematical language [14].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section demonstrates the ability of the estimator to
extract variable power loads such as VSDs, computers, and
light dimmers from a fixed linear load.

The first test involves extracting a VSD and three-phase
rectifier power from a 50-W incandescent light bulb. The
experimental setup is shown in Fig. 5. The VSD estimator
is given by

1% = (1.358 — 0.102)I5 + (—0.903 — 0.1025) I (17)
+(0.731 — 0.0825) I + (—0.547 — 0.082) I+

The fundamental real power of the three-phase load can
be computed by

1
P3—Ph = iRe(VanIia + %Iib + chnlf,c)v (18)
and the fundamental reactive power can be computed by
1
Q3—Ph = izm(VanIia + vanlf,b + Vcnlik,c)' (19)

The real and reactive powers of the single phase load are
defined as

1 1
P = 5Re(ViI{) and Q = JTm(Vi[{),  (20)

respectively.

Fig. 6 depicts the extraction of real power of the VSD and
a three-phase rectifier load from a 50-W incandescent light.
The extraction result resembles the operation of the VSD and
the three-phase rectifier. The residual power clearly shows a
constant power consumption of the incandescent light.

In the case of a computer, the estimator is derived using
the zero-current regions shown in Fig. 2. The computer is
connected in parallel with a 100-W light bulb. The computer
is expected to consume the current during the window
specified as a function of electrical angle specified in radians,

. 2mn T 2 4w 5T
iln] = 0 for = € [0, 5} U [3, 3} U {3,%) @)

The computer estimator is given by

TP = (—0.744 — 1.2145) I3 + (—0.324 — 0.6365) I (22)
+(0.458 — 0.898) I5 + (—0.673 — 0.5305) I3
+(0.326 — 0.0265) Iy + (—0.145 + 0.2005) I3 .

Experimental results in Fig.7 show that the power con-
sumption of the computer can be cleanly extracted from the
aggregate measurements. The residual power consumption
clearly shows the operations of the incandescent light bulb
with a constant power consumption.

In the last experiment, the estimator is derived to extract
the power consumption of the TRIAC-based light dimmer
from a fixed 250-W light bulb. The dimmer adjusts the
brightness and power consumption by varying the firing
angle of the TRIAC to chop off the sinusoidal input voltage
feeding the incandescent light bulb as shown in Fig. 3 for
example. The estimator for the light dimmer has been de-
veloped similar to (22). The estimator uses an approximated
current waveform without the initial current at the beginning
of the cycle. This approximation allows the five waveform
features to be recognized more easily. In the case of a
light dimmer, four harmonic pairs are used to estimate the
fundamental harmonic currents. Specifically, the estimator
uses the third, fifth, seventh, and ninth harmonics. The detail
of the estimator for the light dimmer are described in [13].
Experimental results are shown in Figs. 8.
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Fig. 6. Demonstration the waveform-based estimator extracting the VSD
and three-phase rectifier power consumption from an incandescent light. The
light bulb turns on at the time ¢ = 4 seconds and never turns off. The VSD
starts up at the time ¢ = 8 seconds and reaches the steady state at the time
t = 18 seconds. The fixed-load, three-phase rectifier then turns on at the
time ¢ = 27 seconds and turned off at the time ¢ = 39 seconds. The VSD
starts to ramp down the power at the time ¢ = 43 seconds and completely
stops at the time ¢t = 53 seconds. The total real power of the VSD, three-
phase rectifier, and the incandescent light is shown in (a). The estimated
real power consumed by the VSD and three-phase rectifier is shown in (b).
The estimated real power consumed by the incandescent light is shown in

(©).
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Fig. 7.  Demonstration the waveform-based estimator extracting a com-
puter’s power consumption from an incandescent light. The light turns on
at t = 2 seconds and turns off at ¢ = 32 seconds. The computer was turned
on at t = 12 seconds and turned off at ¢ = 15 seconds. The computer
was turned on again at ¢ = 22 seconds and turned off at ¢ = 31 seconds.
Finally, the computer was turned on at ¢ = 42 seconds and turned off at
t = 53 seconds. During the last computer activity, the light was turned on
at t = 46 seconds and turned off at ¢ = 50 seconds. The aggregate real
power consumption of the computer and the incandescent light is shown in
(a). The estimated real power consumed by the computer is shown in (b).
The estimated real power consumed by the incandescent light is shown in

(©).
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Fig. 8. Demonstration the waveform-based estimator extracting a light
dimmer’s power consumption from an incandescent light. The real power
consumption of both the incandescent light and the light dimmer is shown
in (a). The 250-W light was turned on at ¢ = 2 seconds. Next, the light
dimmer was turned on at ¢ = 7 seconds. The power consumption of the
dimmer was varied continuously. Finally, both the incandescent light and
the light dimmer were turned off at ¢ = 25 seconds. The estimated real
power consumed by the light dimmer is shown in (b). The estimated real
power consumed by the incandescent light bulb is shown in (c).

The experimental results demonstrate that the estimator
can track the real and reactive power consumption of the light
dimmer reasonably well. The incandescent light consumes
mostly the real power as expected. The reactive power is
mostly consumed by the light dimmer. The result shows that
the estimator can track the reactive power of the light dimmer
accurately.

Three experimental results have demonstrated the ability
of the waveform-based estimator to resolve and track the

real and reactive power of the variable power loads. The
four-step procedure is described in detail how to derive the
estimator from the five-waveform features. The iterative pro-
cess systematically reduces the number of input harmonics
used for estimation to the smallest number when possible.
The estimator is computed off-line and the results are the
coefficients for different input harmonics. The actual esti-
mation only involves only few multiplications and additions.
The actual computation can be performed in real time.

V. CONCLUSION

This paper has shown the capability of the waveform-based
estimator to extract the power consumption of variable power
loads from fixed power loads. The proposed method provides
a systematic process to derive an estimator for any variable
power load with structural features in the current waveforms
without a full analysis of internal circuits. The method
can possibly be applied for other variable power loads
with unique waveform features. The ability to disaggregate
the power consumption of each load could supplement the
“smart” metering device in the area of diagnostic monitoring,
where potential health issues of electrical loads can be
monitored and detected in an early stage. The early warning
can potentially save a major repair cost and minimize the
operational downtime.
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