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Abstract—This paper presents a case study applying 
nonintrusive load monitoring (NILM) for fault detection and 
isolation (FDI) of automated shipboard systems. A NILM system 
installed on an engine room subpanel of U.S. Coast Guard (USCG) 
Cutter SPENCER collected aggregated power consumption data 
for ten automated systems. A correlation-based transient 
identifier is used to disaggregate this data, identifying specific 
automated load events, including on/off events of the gray water 
disposal pump. A two-parameter model is calculated from these 
events and used for fault detection. Data collected during two 
operational periods of the SPENCER demonstrate the 
effectiveness of this model in identifying a pump sensor fault 
previously undetected by the crew. Early identification of such 
malfunctions prevents costly wear on the gray water disposal 
system pumps and avoids eventual catastrophic failure. 

Keywords—Nonintrusive load monitoring, fault detection and 
isolation, microgrid, machine diagnostics, condition-based 
maintenance. 

I. INTRODUCTION 
New designs for maritime assets, including naval, coast 

guard, and commercial vessels, are trending toward “optimally” 
manned crews that are significantly smaller than legacy crew 
sizes. These reductions in crew size decrease costs, but with 
increased autonomy, vessels require more robust and reliable 
sensing to ensure healthy operation of key mechanical and 
electrical systems [1]. 

Shipboard power systems are microgrids that present 
unique prospects for information gathering and control. 
Opportunities for demonstrating distributed power factor 
correction, critical load diagnostics, and energy scorekeeping 
are all immediate on these "islanded" power distribution 
systems. This trinity represents important avenues for real-time 
control, automation of ship operation, and informed prognostics 
and diagnostics for critical ship systems. With distributed 
power factor correction, it may be possible to incorporate many 
loads that are essentially transparent to the user, offering greater 
flexibility in load flow on the network. Critical load diagnostics 
can provide essential feedback for recognizing and 
ameliorating energy wasters. HVAC systems, for example, 
operating under closed-loop feedback control, will continue 
operating at poor efficiency, e.g., with low levels of refrigerant, 
with no obvious impact on occupant comfort. Electrical 
diagnostics can provide essential indications of waste before 
pathologies become severe. Finally, energy scorekeeping can 

provide feedback to operators for enabling cooperative load 
control. An inexpensive system for energy scorekeeping can 
provide a detailed breakdown of energy consumption by time 
and device.  

 To realize these opportunities, we seek to utilize modern 
computational tools to our best advantage to track and 
troubleshoot patterns of energy and utility consumption for 
critical shipboard loads. Computational power and data 
transmission capabilities for commercial monitoring and 
control systems have outpaced our ability to put the right 
sensors in the right places. Obtaining actionable information in 
this scenario often requires the proper installation, 
maintenance, and interpretation of a vast collection of 
devices—a daunting proposition even if the sensors are mass-
produced and individually inexpensive. Alternatively, our 
approach is to collect fine-grain information from a central 
point in the electrical system and then leverage increasingly 
inexpensive computational capabilities to monitor loads.  
 To accomplish this, we have developed the Nonintrusive 
Load Monitor (NILM), a comprehensive system for measuring, 
storing, and interpreting electrical data. The NILM serves as a 
unique platform for fault detection and isolation (FDI) that is 
low-cost and easy to install, making it especially suitable for 
automated vessels with lean crew sizes. This paper demonstrates 
the use of a NILM installed aboard USCG Famous-Class Cutter 
SPENCER, where our platform monitored ten mission-critical 
loads from an engine-room subpanel. The NILM successfully 
detected a sensor failure in the gray water disposal system. This 
fault was present during “at sea” operation and was undetected 
by existing monitoring devices or technicians.  

II. LOAD MONITORING AND ANALYSIS 

A. The Nonintrusive Load Monitor (NILM) 
The Nonintrusive Load Monitor (NILM) is a platform for 

monitoring electromechanical systems that is practical for 
widespread application [2], [3], [4]. Fig. 1 gives an overview of 
its operation. The NILM system monitors aggregate power 
demand from a central point in a power distribution network. 
The NILM Meter provides the electrical interface to the power 
system through a set of LEM LF 305-S current transducers and 
LEM LV25-P voltage transducers. It rapidly samples (8 kHz) 
these sensors via an onboard data acquisition (DAQ) device and 
streams these readings to the NILM software, where they are 
processed and stored. 
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Fig. 2. Overview of the Nonintrusive Load Monitor platform. The NILM 
Meter measures the 3-phase voltages and currents into a central electrical 
panel. The software suite processes these readings, and the results are stored 
alongside the raw data in the NilmDB database. NILM Manager provides a 
web-based graphical interface for data visualization and analysis from remote 
locations.  

 

The NILM software suite runs on inexpensive x86 computer 
hardware. As the capturing utility consumes readings from the 
NILM Meter, it continuously calculates spectral power 
envelopes, executes custom user algorithms, and stores the 
results in the NilmDB database. The spectral power envelopes 
are computed using the sinefit spectral envelope preprocessor 
described in [5], effectively converting the high-frequency 
current and voltage data into fundamental and harmonic 
components of real and reactive power at 60 Hz intervals. Data 
is stored locally by the NILM using a custom, network-enabled 
database, NilmDB [6]. This high-speed time-series database 
enables efficient storage, retrieval, and processing of the 
electrical measurements and other information that can be 
collected from virtually any sensor with a digital interface. 
Finally, NILM Manager provides a web-based graphical 
interface for data visualization and analysis from remote 
locations [7]. NILM Manager includes a transient identification 
tool, Trainola, which uses a correlation metric to match 
transients in the power streams to user-identified example 
transients [2], [6].  

This NILM system architecture provides an efficient way to 
manage large amounts of electrical data. NilmDB can provide 
a view of load operation over hours, weeks, or months, all 
dynamically resampled to provide a constant small internet 
packet for any given request, minimizing bandwidth 
requirements. The capabilities of the local monitor can be 
altered or enhanced with short uploads of flexible text-based 
Python code, enabling on-the-fly modifications of analysis 
methods and capabilities. This approach is used to 
inexpensively and quickly develop new load models based on 
harmonic content, load transient shape, operating schedule, and 
many other sophisticated parameters not normally considered 
for load modeling and stability assessment. 

Automated computer processing of collected data allows for 
disaggregation and characterization of system-level transient 
events created by each load as they change state, e.g. a pump 
turn-on event. This disaggregated load information is used for 
tracking equipment operation, energy management and 
scorekeeping, and fault detection and isolation (FDI). 

 

B. Fault Detection from Operating Statistics 
NILM Manager can remotely export files containing 

timestamps of identified turn-on and turn-off events. It can also 
accept custom Python scripts to execute over stored electrical 
data. This is particularly relevant for FDI analysis of systems 
operating under closed-loop control. These systems are 
ubiquitous on the SPENCER and typically used to regulate some 
environmental or operating set point, such as the temperature of 
the diesel engine lube oil or the water level of the gray water 
storage tank. 

Despite its benefits, closed-loop control can mask 
underlying electromechanical failures [8]. Without perceivable 
changes to the environmental or operating set point, subtle 
problems that do not result in complete system failure often 
remain undetected. These problems increase energy 
consumption and impose excessive wear on electromechanical 
systems as the closed loop control operates a system harder and 
harder to compensate for system pathologies.   

Disaggregated load data obtained by the NILM can be used 
to hunt down these difficult-to-detect faults, without the 
installation of expensive sensors or frequent maintenance 
checks. For the case presented in this paper, two statistical 
metrics are particularly useful in detecting and identifying a 
fault: (a) the duration of a particular load event and (b) the period 
(or equivalently, the frequency) of that load event. While more 
sophisticated statistical analyses could be performed, these two 
metrics in combination with an understanding of system 
operation provide a robust reference frame for diagnosing 
common system failures.   

III. THE SPENCER GRAY WATER SYSTEM 
USCG Cutter SPENCER is a 270 ft. (82 m) vessel that hosts 

a crew of 100 personnel and has an operational tempo of 180 
days at sea per annum. This vessel is a prime example of a 
microgrid, featuring the power generation and distribution 
equipment required to support missions and sustain crew for 
months at sea. Multiple NILM systems have been installed at 
various hierarchal levels of this electrical system. Combined, 
NILMs are actively monitoring the vessel’s 77 induction motors 
as well as other auxiliary and hospitality loads [2]. 

The gray water disposal system is a water management 
network of storage tanks, piping, and pumps. This system is 
designed to transfer, retain, process, and dispose of the relatively 
clean water from showers, sinks, washing machines, and other 
appliances. As depicted in Fig. 3, gravity drains transfer the 
water from individual receptacles to a 138-gallon (522-liter) 
storage tank. When the tank is full, water is discharged from the 
tank and either pumped overboard or transferred to a larger 
reservoir depending on the vessel’s location and applicable 
pollution regulations. 

Two identical pumps (for redundancy) alternate each cycle 
to discharge the tank. Conductivity sensors detect water levels 
and provide feedback for pump control. That is, a pump turns on 
and begins discharging when water reaches the high sensor set 
point (92-gallon mark), and the pump turns off when water 
reaches the low sensor set point (13-gallon mark). There is an 
~8-second time delay between control signal and pump 
activation. 

 



 
(a) Gray Water System Diagram 

 

 
(b) Photo of Gray Water System 

 

Fig. 3. Diagram (a) and photo (b) of the gray water system aboard USCG 
Cutter SPENCER. When water reaches the high set point in the tank, a pump 
begins discharging until the low set point is reached. The two pumps are 
identical and alternate each cycle. After discharging, the gray water is either 
pumped overboard or transferred to a larger reservoir on the vessel.  

 

 A statistical analysis of the duration and frequency of these 
discharge pump runs is useful for detecting faults in the gray 
water system when compared against expected healthy system 
behavior. The duration of a typical pump run, Δݐ, depends on 
the volume of water to discharge, ܸ , and the flow rate of 
discharge, ܳ̇௣௨௠௣, i.e. 

Δݐ = ܸ ܳ̇௣௨௠௣൘

From the sensor set points, a pump discharges 79 gallons of 
gray water each cycle. From estimates of the head pressure in 
the system and manufacturer-provided pressure-flow rate 
curves, the flow rate should be approximately 60 gallons per 
minute. This yields a typical pump duration of ~80 seconds (Δݐ).   

Similarly, we can produce a coarse estimation of the time 
between consecutive pump runs (period) using (2). Here, ܰ is 
the number of gray water receptacles serviced by the tank 
(showers, sinks, etc.); ߝ and ̇ݍ are the average load factor and 
average flow rate for the receptacles, respectively. Despite the 
inherent variations in these parameters based on several usage 
factors, perhaps most significantly the time of day, a reasonable 
expected pump-run operation period is ~40 minutes (Δܶ).   

Δܶ = ܸ ൗݍ̇ߝܰ
IV. NILM FDI RESULTS 

NILM power data was collected aboard USCG Cutter 
SPENCER during two operational sessions at sea. The gray 
water pump runs were isolated from the aggregated load data 
using the Trainola transient identification process [2], [6]. Fig. 4 
shows screen captures of the NILM Manager interface. The top 
plot shows a section of aggregate load data over the course of 
approximately 4 hours and featuring 6 gray water pump runs. 
The bottom plot shows an isolated gray water pump run just over 
60 seconds in length.  

During the first session at sea, both the duration of pump 
runs and time between pump runs were drastically lower than 
expected. Following notification of this anomaly, technicians 
aboard the SPENCER discovered and repaired a failed high set 
point sensor. During the second session at sea and following this 
replacement, the gray water system behaved as expected, with 
the majority of pump run durations lasting 60-90 seconds and 
the majority of pump run periods (time between pump runs) 
lasting ~1 hour.  

Fig. 5(a) overlays two histograms for pump run duration, one 
for the healthy system (second operational session) and one for 
the unhealthy system with sensor failure (first operational 
session). Similarly, Fig. 5(b) shows the two histograms for pump 
run period. For both pairs of histograms, there is a significant 
shift in the histogram distribution. This is most prominent in the 
histogram comparison of pump run durations.  

Further investigation revealed that a sensor failure was 
present due to a clogged interface between the water and 
conductivity pads of the sensor. The faulty high sensor thus 
prematurely sent signals to the pumps to discharge; shortly after, 
the healthy low sensor sent signals indicating that the tank was 
empty. This resulted in many short-duration, short-period pump 
runs.  

In this case, early identification of the problem prevented 
costly wear and tear on the frequently short-cycling pumps and 
catastrophic failure was avoided due to the NILM. Moreover, 
the clogged sensors were cleaned in place without a significant 
interruption to service.  



 
(a) Aggregate Power Data 

 
(b) Gray Water Pump Run 

 

Fig. 4. Screen capture of the NILM Manager interface showing NILM 
aggregate load data (a) and an isolated gray water pump run (b). A built-in 
transient identification routine allows easy extraction of pump turn-on and 
turn-off events required for statistical analysis.  

 

Fig. 6(a) visualizes each pump run in a 2-D reference frame, 
where the duration of each pump run is plotted directly against 
the pump run period. Again, the healthy pump data is shown 
alongside the unhealthy data with sensor failure. As expected 
from the histograms, the healthy data is clustered in the top right 
of the plot (long duration, long period), while the unhealthy data 
is clustered in the bottom left of the plot (short duration, short 
period).  

Fig. 6(b) indicates expected operation regions in this 
reference frame corresponding to additional sensor and 
machinery faults pertaining to the gray water system. For 
instance, a clogged sensor at the low set point (13-gallon mark) 
would result in the pump not receiving the “turn-off” signal. In 
this scenario, the pump would continue draining the tank until it 
was completely empty, after which dry-running protection 
would eventually stop the pump and reset the system. This 
process would likely result in both longer pump durations and 
longer periods. Other types of failures may primarily affect only 
duration or period alone. A worn seal or damaged impeller in the 
pump would decrease the effectiveness of the pump, resulting in 
longer run durations before the low set point is reached. In 
contrast, a leaking receptacle (or continuously running 
appliance) would cause the tank to fill more rapidly, decreasing 
the pump run period.  

 

 
(a) Pump Run Duration Histogram 

 
(b) Pump Run Period Histogram 

 

Fig. 5. Histograms of gray water pump run duration (a) and period (b) for 
both the healthy and unhealthy system data. The healthy and unhealthy data 
sets were collected during two separate operational sessions at sea. For both 
the pump run duration and period, the healthy system data aligns with values 
predicted using basic operational information about the gray water system. In 
contrast, a drastic shift in both duration and period is evident in the unhealthy 
data, indicative of a fault (failed sensor).  



 
(a) Pump Run Duration vs. Period  

 
(b) Pump Run Metrics Translations 

 

Fig. 6. In (a), the pump run duration is plotted directly against the period. 
For the healthy system, we notice very reasonable values for both, with some 
variation due to natural usage patterns. By contrast, for the unhealthy system 
with sensor failure, we see a tight clustering of points at both low duration 
and low period (though difficult to discern, there are actually >600 data 
points represented in the unhealthy case). In (b), a graphic is presented that 
illustrates how various potential faults in the gray water system could 
manifest on the duration-period plot. This contextualization offers a 
framework for considering future monitored data and provides a basis for 
further investigation. 
 

V.  CONCLUSION 
 Closed-loop cycling systems often obscure 
electromechanical failures and make fault detection difficult. 

While operating set points remain constant, system performance 
gradually degrades and can even eventually result in 
catastrophic failure. In the best-case scenario, system 
inefficiency incurs additional cost and wastes resources. 
 In this paper, we presented a case study demonstrating the 
effectiveness of nonintrusive load monitoring (NILM) for fault 
detection and isolation (FDI). Our low-cost, rugged, and easily 
installed monitoring system collected aggregate power data 
from a central location aboard USCG Cutter SPENCER. 
Specific pump load events pertaining to the gray water disposal 
system were isolated using transient identification. A statistical 
analysis of two parameters, pump run duration and period, was 
performed on the load data, and the presence of a fault was 
immediately detected. 
 We also considered how our particular sensor failure fits into 
the context of other potential faults by visualizing these failures 
on a plot of load duration versus period. Contextualizing 
potential failures in this way provides a framework for 
considering future data. As we continue monitoring data aboard 
SPENCER and on other platforms, we hope to further explore 
and validate the statistical trends that we have presented here. 
The ability to not only identify the presence of a failure, but to 
predict the specific fault, will provide even more benefit to end 
users. 
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