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ABSTRACT Nonintrusive identification of the energy consumption of individual loads from an aggregate
power stream typically relies on relatively well-defined transient signatures. However, some loads have
non-constant power demand that varies with loading conditions. These loads, such as computer-controlled
machine tools, remain stubbornly resistant to conventional nonintrusive electrical monitoring methods. The
power behavior of these loads can be modelled with stochastic processes. This paper presents statistical
feature extraction techniques for identification of this fluctuating power behavior. An energy estimation
procedure is presented and evaluated for two case studies: load operation on a shipboard microgrid and
laboratory machine shop equipment.

INDEX TERMS Nonintrusive load monitoring, power monitoring, energy management.

I. INTRODUCTION
Monitoring the electrical behavior of electromechanical loads
is useful for energy management, condition-based mainte-
nance, and detecting faulty equipment. A nonintrusive load
monitor (NILM) is a convenient and inexpensive tool for
power monitoring. All loads connected downstream of the
utility point are monitored with a single set of current and
voltage sensors [1], [2]. The advantage of nonintrusive load
monitoring relies on the ability to disaggregate the energy
consumption of individual loads from the aggregate power
stream. Loads can generally be divided into those that have
approximately discrete steady-state levels during operation
and those with variable power demand [3]. The identification
of loads with discrete steady-state levels and the tracking
of resulting power changes has been well-documented in
literature [4], [5], [6], [7], [8], [9], [10]. These loads are
often identifiedwith either event-based or optimization-based
techniques. Event-based methods rely on detecting transient
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behavior, i.e., when the power usage of a system quickly
changes while transitioning between discrete states, then
applying a multi-class classifier. Many deep learning tech-
niques have been applied for event-based load identification,
such as convolutional neural networks (CNNs) [11], [12],
[13], long short-term memory (LSTM) [14], and gated recur-
rent units (GRUs) [15]. Optimizationmethods, such as hidden
Markov models (HMMs) [8], [9] and mixed-integer linear
programming [5], [10], attempt to find the set of energized
loads that best fit the aggregate measurement. By assuming a
constant power level at each load state, the energy consump-
tion of individual loads can be computed by tracking the oper-
ating duration. For optimization-based techniques, the power
consumption of each load state is assumed to be known from
prior knowledge, either using a representative steady-state
value from sufficient historical data [5], [6], [7] or using
the rated power value [16]. For event-based techniques, the
steady state can be calculated using a short window after the
detected load event [17].

Loads with variable power demand do not have unique
power consumption levels or a fixed number of discrete states
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FIGURE 1. Power stream of CNC router showing power fluctuations
corresponding to the cutting of areas highlighted in the wood board.

for the entirety of load operation. Accordingly, it is much
more difficult to identify and track the operation of variable
power loads with the same techniques used for loads that
can be fully characterized with distinct, relatively repeatable
power consumption transients. Devices can exhibit variable
power demand in response to dynamic loading conditions.
For example, machines like routers and mills have changing
power demand based on cutting conditions, such as work-
piece material and depth of cut [18]. Fig. 1 shows the real
power stream as a CNC router makes a cut through the shown
wooden board. The vertical position of the router cutting tool
is held constant. The contour of the workpiece changes the
axial depth of cut. When the cutting tool is freely rotating
and not engaged in the workpiece, there is an approximately
constant power consumption level. However, when the cut-
ting tool engages the wood, the power varies significantly,
and clearly resembles the workpiece contour. Power fluctu-
ations due to changing load demand occur in response to
understandable physical behavior; however, these fluctua-
tions appear as unpredictable events in the power stream. The
power behavior of these types of loads can be modelled with
stochastic processes. Fluctuating power demands, e.g., in a
CNC machine tool, can also correspond to loaded conditions
andmechanical processes that introducewear into the system.
Thus, tracking the duration of loaded operation can be useful
for load condition monitoring and use tracking.

Advances in pattern classification and deep learning have
enabled automated feature extraction and classification on
high-dimensional data. On the surface, identification of
stochastic power behavior would appear to be an ideal
problem domain for such deep classifiers. Classifiers such
as CNNs can extract features and ‘‘learn’’ the stochastic
behavior of the loads of interest. However, these approaches
require a relatively large amount of training data and effort
to obtain high generalization [19]. A practical NILM in
industrial sites will likely need to collect its own training
data, making training data a scarce resource. Rather than
use high-dimensional time-domain data for classification,
the proposed system extracts lower-dimensional features that
describe the observed distributions of the power values.

This makes it possible to avoid the burdens of requiring large
training datasets and long training times associated with deep
learning classifiers.

This paper presents a method for the disaggregation of
fluctuating power behavior frommorewell-defined transients
in an aggregate power stream. The fluctuations typically have
certain statistical properties characteristic of load operation.
The presented method is based on statistical features. The
method is specifically suited for loads which exhibit variable
power consumption due to changing load demand. Identifica-
tion of statistical events are incorporated in a new procedure
for estimating individual load energy consumption. Labora-
tory and field results are presented from two case studies: load
operation on a shipboard microgrid and laboratory machine
shop equipment.

II. RELATED WORK
Variations in power draw can occur at multiple time-scales
as a result of different mechanical processes [20], [21], [22].
As presented in [20], power consumption events can be dis-
tinguished into geometric, statistical, and continuous events.
Discrete transitions between states of a load are referred to
as geometric events, since the salient features are extracted
from the shape of the transient. There is always a steady-state
change after a geometric event. Typically, on/off loads and
multi-state loads consist of geometric events. Statistical
and continuous events both have variable power demand.
The fluctuating power variations that comprise statistical
events represent periods of variable loading. For example,
in Fig. 1, the spindle acceleration and deceleration are geo-
metric events, air-cutting is a discrete power consumption
state, and the cutting operations are comprised of statistical
events. Statistical events do not necessarily indicate that a
load has transitioned to a different steady-state level. The
identification of statistical events enables the disaggregation
of power during the event itself and the detection of any
change in steady state as a result of the event. A continuous
load can consume any amount of power in a given range. For
example, power electronic loads such as variable speed drives
(VSDs) and light dimmers may exhibit smoothly variable
power demand. That is, a continuously variable load does
not have any set steady-state power consumption level. The
power variations of interest in this work (statistical events)
occur on slower time-scales than the main load on- and off-
events (geometric events), but at faster time-scales than the
smoothly varying power demand of continuous events.

A. MULTI-STATE LOADS
Multi-state modeling techniques have been widely used to
address appliances that have various operational states [5],
[6], [7], [8], [9], [23]. Many multi-state modeling methods
assume a constant, or discrete power at a given state. That is,
these methods do not consider variations in power demand
during a load state. To address this, the work in [23] presents
an energy disaggregation technique that estimates the power
of devices at every sampling instant by formulating the
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problem as a constrained optimization problem. The method
first determines device states using a hidden Markov model
(HMM). Then, each load’s power is estimated bymaximizing
the total probability of the observations while constraining
their sums to equal to the total measured aggregate power.
This method assumes that the observations of a given load
state converge to a Gaussian distribution. The authors in [23]
state that this assumption, although reasonable for many
loads, does not hold for loads with continuously variable
power. As will be demonstrated in this paper, the assumption
also does not hold for loads with stochastic power behavior
(i.e., statistical events). The method in [23] also assumes
that the distributions are stationary and well characterized
from previously recorded observation data. However, inmany
practical scenarios, a load’s power characteristics will drift
over time [24].

B. CONTINUOUS LOADS
References [3] and [25] present methods for identifying
the smoothly varying power of power electronic loads
(i.e., continuously variable loads). These methods rely on
significant higher-order current harmonics to distinguish the
fundamental-component power consumption of power elec-
tronic loads from that of loads with constant steady-state
power demand. However, these higher harmonic signatures
are not always present for all loads. Furthermore, these meth-
ods assume that only a single power electronic load is present
in the aggregate stream. If there are multiple power elec-
tronic loads energized, only the summed fundamental power
demand of all the power electronic loads can be disaggregated
from that of loads with constant steady-state power demand.
Reference [26] presents an optimization-based method for
identifying the power consumption of power electronic loads.
The method relies on having an accurate characterization of
the magnitude and phase of the fundamental current compo-
nent of individual loads for all operating ranges. The disag-
gregation of continuously varying power is out of the scope of
our proposed work. However, our proposed work still applies
to a power electronic load if it is kept at a single speed
setting, but exhibits variable power demand due to dynamic
loading conditions. Higher-order current harmonics can serve
as additional features in this scenario.

C. STATISTICAL EVENTS
A new load identification method for stochastic power behav-
ior was presented in [20] based on statistical features. How-
ever, thismethod did not consider that the fluctuation variance
can change based on factors such as the steady-state power
consumption of the load or the type of material being cut by
a CNC machine. That is, the magnitude of fluctuating power
may not be a reliable feature. This paper addresses this issue
by presenting a method for evaluating stochastic behavior
independent of load and operating condition. Furthermore,
the work in [20] does not incorporate the identification of
stochastic power behavior into any energy estimation meth-
ods. This paper expands on [20] by using the identification

FIGURE 2. CNC router: (a) apparent power stream, (b) median stream,
(c) residual stream. Note that the y-axis scale in (c) is different
from (a) and (b).

of stochastic behavior for accurate energy estimation and
condition tracking.

III. METHODOLOGY
This section presents a method for the disaggregation of
statistical events of multiple loads from an aggregate power
stream. Just as the identification of geometric events relies on
an event detector and a feature extractor, there is an analogous
event detector and feature extractor for statistical events,
as described in this section. First, the event detector is used to
find events. Then, at each event, a set of features is extracted
and used for load classification. This section also presents
an energy estimation procedure using the classified statistical
events.

A. STATISTICAL EVENT DETECTION
For illustrative purposes, consider the fundamental real
power (P) and reactive power (Q) streams, which in this work
are sampled at a frequency of 60 Hz. From P and Q, the

apparent power (S) can be calculated as S =
√
P2 + Q2.

The apparent power stream is used in this work for event
detection. First, a seven-point rolling median filter is run on
the S stream to reduce noise. Then a longer rolling median
filter, typically on the order of seconds or minutes, is run.
The resulting stream is the median stream, Sm. Then, Sm is
subtracted from the original S stream, resulting in the resid-
ual stream, Sr . That is, the residual stream is calculated as,
Sr = S − Sm. An example apparent power stream, median
stream and residual stream are shown in Fig. 2 for a CNC
router, in which the median filter length is 20 seconds. The
median filter length should be set by the user based on the
expected time-scale of power fluctuations. The median filter
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FIGURE 3. Rolling window of CNC router residual stream for statistical
event detection. The shaded regions represent the middle 50% of each
window.

should preserve sharp edges due to geometric events, but
remove the statistical event power fluctuations [20]. As a
result, the residual stream should contain the statistical events
of interest.

Residual streams are extracted from a rolling window of
input data. The rolling window length and overlap are param-
eters that the user can set. For instance, Fig. 3 shows a CNC
router Sr stream for two instances of a 20-second rolling
window with 80% overlap. The standard deviation, denoted
here as σ , is calculated for the middle 50% of each Sr stream
window, as indicated by the shaded regions in Fig. 3. Using
the middle 50% of the window decreases the likelihood that
large fluctuations occur only on the edges of the window.
If σ is greater than a user-defined threshold, it indicates sig-
nificant activity of interest (i.e., a statistical event is detected).
For every detected statistical event, further statistical feature
extraction is performed, as will be described in Section III-B.
The value of σ should be chosen to be larger than the stan-
dard deviation of the aggregate power stream measurements
when loads are in steady state. The rolling window length
should be selected to be long enough to capture the statistical
characteristics of the stochastic power behavior. At the same
time, it should be short enough so that the stochastic power
behavior can be expected to occur for the entire window
duration. That is, for a region of stochastic power behavior,
it is desirable to have multiple rolling windows containing the
statistical behavior in the region. For instance, if the desired
number of rolling windows for each statistical region (R),
the overlap percentage of each window (v), and the expected
duration of the statistical region (Tstatistical) are known, the
rollingwindow duration (Trolling) can be computed as follows:

Trolling =
Tstatistical

R(1− v)+ v
. (1)

Since the rolling window length and median filter length
are both set based on the expected time-scale of power

fluctuations, they should be similar in length. In the case
studies in Section IV, the rolling window length was set equal
to the median filter length.

B. STATISTICAL FEATURE EXTRACTION AND
CLASSIFICATION
To provide greater load separation in the feature space, the
feature vector for classification uses features extracted from
the real and reactive power streams. The residual streams for
real and reactive power, Pr and Qr , respectively, are calcu-
lated using the same process as described for the apparent
power stream in Section III-A. This work uses four streams
for feature extraction: real power residual stream (Pr ), reac-
tive power residual stream (Qr ), first-order difference of the
real power residual stream (P′r ) and first-order difference
of the reactive power residual stream (Q′r ). These features
relate to the physics of load behavior. Other power streams
could be relevant in some scenarios, such as the higher-order
harmonic current spectral envelope streams when multiple
power-electronic loads are monitored. As mentioned, the
magnitude of power fluctuations may depend on load and
operational condition. However, if the data is normalized to a
constant range, the stochastic behavior can be evaluated inde-
pendent of the change in overall fluctuationmagnitudes.Min-
max normalization is performed on these four data streams
individually for each window. The range of the data is trans-
formed into [0, 1] for each stream window x through the
transformation,

xscaled =
x − xmin

xmax − xmin
. (2)

Fig. 4a shows two 30-second windows of the original P
stream of a shipboard controllable pitch propeller (CPP)
pump. Fig. 4b shows the resulting normalized residual
streams (Pr,n) using a 30-second median filter. For each win-
dow, an empirical cumulative distribution function (ECDF)
is computed on the normalized stream, xscaled , by creating a
histogram of the data values, and then applying a cumula-
tive sum. Just as a histogram is the empirical estimate of a
probability density function (PDF), an ECDF is the empirical
estimate of a cumulative distribution function (CDF). A his-
togram is created by grouping the data into bins. Each bin is a
unique interval such that the union of the bins covers the range
[0,1] and all bins have the same width. The number of bins
should be chosen by the user. The value of the ECDF for a
given bin b, denoted as F̂b, is given as the relative frequency
of all observed values of xscaled being less than or equal to
the value of xscaled represented by bin b (denoted as xb in Eq.
(3)). This is given by the following for each data window of
length N :

F̂b =
1
N

N∑
i=1

I (xi ≤ xb) (3)

where I is the indicator function, given by

I (xi ≤ xb) =

{
1, if xi ≤ xb
0, if xi > xb

. (4)
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FIGURE 4. Process for calculating ECDF curves for two example windows. (a) Real power streams. (b) Normalized real power residual streams (Pr ,n).
(c) Histograms of Pr ,n streams. (d) ECDFs of Pr ,n streams.

Fig. 4c and Fig. 4d show the histograms with 100 bins and
resulting ECDF curves, respectively, for the two windows in
Fig. 4b. The two windows have different steady-state load
levels. Due to themechanical process causing the fluctuations
in power for this load, generally as the steady state increases,
the magnitude of the fluctuations in power decreases. Even
though the overall magnitudes of the fluctuations are drasti-
cally different, the ECDF curves are similar using the normal-
ized data.

The ECDF is used as a feature vector representation of the
statistical properties of the window of interest. Computing
the Euclidean distance (l2 norm) between two ECDFs is
equivalent to the Cramer-von Mises test, a useful metric for
estimating distribution equality [27]. An alternate choice of
vector norm could be used if desired, e.g. the l∞ norm, which
would correspond to the Kolmogorov-Smirnov test [27]. This
work uses the k-nearest neighbors (k-NN) classifier, since
many distance metrics are applicable. The feature vector used
as input to the k-NN classifier in this work is a concatenation
of four ECDF curves, computed for Pr,n,Qr,n, P′r,n, andQ

′
r,n.

The classification process involves finding the k nearest train-
ing data points to the input feature vector, using the Euclidean
distance. The input is classified to the class whose points
makes up the plurality of these k nearest neighbors. Typically,
choosing a larger value of k makes the classifier less likely
to overfit, but ignores more local patterns in the data [28].
A larger value of k will also require more computation in
searching for the neighbors of an input point. For binary
classification (i.e., when there are only two classes), choosing
k to be odd results in there never being a tie between classes.
Neighbors can also be weighted based on the distance to the
input feature.

C. ENERGY ESTIMATION
Large fluctuations in power draw need to be attributed to
the correct load for accurate energy estimates. These large
fluctuations are not accounted for when using event-based
algorithms that assume approximately discrete steady-state
levels [17], [29]. Using the proposed statistical features,
once the stochastic behavior has been classified, the orig-
inal power stream in the windows of interest can be
numerically integrated to estimate the energy of each load.
In addition, loads can exhibit stochastic behavior in the tran-
sition between steady states. By identifying the difference
in steady-state power consumption for the load exhibiting
stochastic behavior, its steady-state power can be updated
in real time. As an example, consider the shipboard bilge
and ballast pump shown in Fig. 5, with identified stochastic
behavior labeled. The steady-state real power levels before
and after the stochastic behavior are wildly different. This
new steady-state value can be tracked and assigned to this
load so that an incorrect steady-state value is not used in
energy estimation.

The proposed algorithm to process the power stream into
windowed events is given inAlgorithm 1. This algorithm calls
the function described in Algorithm 2 in order to disaggregate
the energy for each load in the stream. A rolling window of
user-defined length (window_length in Algorithm 1) is run
through the power stream, and geometric and statistical event
detectors are run. Note that window_length is equivalent to
N from Eq. (3). The geometric event detector is responsible
for identifying load turn-on and turn-off events, as well as
transitions between discrete states. Here, it is assumed a
geometric event classifier has already been trained. Although
not in the scope of this paper, many geometric event detectors
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FIGURE 5. Power stream of a shipboard bilge and ballast pump with
stochastic behavior in the transition between steady states.

are applicable [20]. The statistical event detector, described
in Section III-A, is responsible for identifying regions with
large load power fluctuations. The time index of the end of
the rolling window is designated as n in Algorithm 1 and
is incremented by a number of time indices as determined
by the output of the geometric and statistical event detec-
tors. For the first window, n is the same as the window
length, as designated in Line 1 of Algorithm 1. If a geo-
metric event is detected in the window, the rolling window
(and n) is incremented by the length of the geometric window
(geometric_length in Algorithm 1). If a statistical event is
detected in the window, the rolling window is incremented
by statistical_increment times window_length. Here, statisti-
cal_increment is one minus the amount of statistical window
overlap. If no events are detected in the window, the window
is incremented by a single time index. Line 15 in Algorithm 1
shows the incrementation of the time index n.
The algorithm keeps track of the current steady-state real

power of each load (denoted as load.ss in Algorithms 1 and 2).
This value is updated for a given load whenever a geometric
or statistical event from that load is detected. For geometric
events, the steady state after an on-event is calculated as
the change in mean value of a user-defined length window
(e.g., 0.2 seconds) at the end and start of the geometric win-
dow. Turn-off events detected by the geometric event detector
are assumed to change the load’s steady-state power to zero,
rather than using the difference computed across the window.
An assumption is made that the stochastic behavior occurs in
superposition with the steady-state power consumption of all
other energized loads and that the steady-state power of the
other loads has remained constant. That is, the steady state
after a statistical event is the aggregate power at the end of
the window (i.e., the mean of last 0.2 seconds of the window)
minus the stored steady-state values of the other energized
loads. The statistical event detector will only classify and
update the steady state if the classified load does not currently
have a steady-state power of zero.

The energy estimation algorithm uses a combination of
rectangular and trapezoidal integration [30], denoted in
Algorithms 1 and 2 as Rect() and Trap(), respectively.
In this work, only real power is integrated, so that the result
has physical meaning as useful work done by the system.

Algorithm 1 Algorithm for Processing Power Stream Into
Windowed Events
Input: power_stream
Input: load_list
Input: window_length
Input: geometric_length
Input: statistical_increment
1: n← window_length
2: while n ≤ length(power_stream) do
3: window← power_stream[n - window_length:n]
4: if CheckForGeometricEvent(window) then
5: event_load← GeometricClassifier(window)
6: Update event_load.ss
7: j← geometric_length
8: else if CheckForStatisticalEvent(window) then
9: event_load← StatisticalClassifier(window)

10: Update event_load.ss
11: j← statistical_increment · window_length
12: end if
13: j← 1
14: EnergyEstimation(event_load, i) F Run Algorithm 2
15: n += j
16: end while

Algorithm 2 EnergyEstimation() Algorithm
Input: event_load (can be None)
Input: j, amount to increment window
1: if event_load is None then
2: for load in loads do
3: if only load is operating then
4: load.energy += Trap(power_stream, j)
5: else
6: load.energy += Rect(load.ss, j)
7: end if
8: end for
9: else
10: for load in loads except event_load do
11: load.energy += Rect(load.ss, j)
12: event_load.energy −= Rect(event_load.ss, j)
13: end for
14: event_load.energy += Trap(power_stream, j)
15: end if

However, reactive and apparent power can also be integrated
with the same process.When there is only one load operating,
trapezoidal integration is performed, and the resulting energy
is added to the operating load’s total energy. When a statis-
tical window is identified as a specific load, all other loads’
energies are calculated with rectangular integration of their
steady-state real power (i.e., load.ss). Trapezoidal integration
is performed and the result is added to the load’s total energy.
The sum of the energy calculated for the other loads with
rectangular integration is subtracted from the identified load’s
energy total, to remove the contribution of the other loads

117990 VOLUME 10, 2022



D. H. Green et al.: Energy Disaggregation of Stochastic Power Behavior

FIGURE 6. Demonstration of the energy estimation algorithm tracking a
load’s new steady state after identifying statistical event regions.

added in the trapezoidal step. In all other cases, rectangular
integration uses each load’s stored steady-state real power.
An instantaneous estimate of disaggregated power can be
computed similarly. For each window, each load’s power is
assumed to be its current steady-state power, unless it was
responsible for a geometric or statistical event in the window.
In this case, its power over the window is assumed to be the
power stream over the window minus the sum of the current
steady-state powers of the other loads. The total duration of
statistical event operation for each load can be tracked using
the identified statistical event windows.

An example of this process is illustrated in Fig. 6, in which
there are two loads operating, a controllable pitch propeller
(CPP) pump and a bilge and ballast pump (BP). In the fig-
ure, the CPP is the base load with a steady state indicated
as ‘‘CPP.ss.’’ Since there are multiple loads energized and no
CPP geometric or statistical events in this window, the CPP
steady state is assumed constant and its energy is calculated
using rectangular integration. For the BP, the area indicted
by the shaded region has been identified as statistical event
windows. The steady state of the BP prior to the statistical
event region is indicated by ‘‘Previous BP.ss.’’ The steady
state of the BP after the statistical event region is indicated
by ‘‘New BP.ss’’ and was calculated by taking the mean of
the last 0.2 seconds of the statistical region, as highlighted
with the zoomed-in inset, and subtracting CPP.ss. Energy
estimation of the BP statistical region is calculated using
trapezoidal integration.

The most computationally challenging aspect of the pro-
posed method is the long median filter for calculating the
residual stream. For instance, for a 30-second median filter of
three streams (P, Q, and S) sampled at 60 Hz, 5400 samples
must be stored at a given time. This will also introduce a
delay of half the length of the median filter to the output
residual streams and thus to the entire energy estimation
process. However, we claim that this delay is not prohibitive
for almost real-time energy usage information. Our previ-
ous work has shown that a NILM with modern computing
power is capable of running such a filtering system in real
time [20].

FIGURE 7. Experimental setups: (a) USCGC SPENCER electrical panel
interior with installed current sensors. (b) Non-contact meters in
laboratory machine shop.

IV. EVALUATION AND RESULTS
To evaluate the proposed statistical event detection and
energy estimation methods, results from two case studies
are presented in this section: shipboard loads and machining
equipment. In both cases, rolling statistical windows were set
with 80% overlap.

A. EXPERIMENTAL SETUP
The presented case studies use two different data acquisition
setups: ‘‘contact’’ and ‘‘non-contact’’ NILMs. The first case
study uses a contact NILM installed on the starboard electri-
cal subpanel of the engine room of United States Coast Guard
Cutter (USCGC) SPENCER. This panel supplies power to
auxiliary equipment necessary for maintaining operational
readiness of the ship’s starboard main diesel engine and
ship-service diesel generator, as well as several other loads
critical for ship operation [20]. This contact NILM setup
uses the LEM LF-305 transducer for current measurement,
as shown in Fig. 7a, and wires into a spare breaker for
voltage measurement. This setup does not allow for subme-
tering of individual loads, so load events, both geometric
and statistical, were hand-labeled by a domain expert. For
the second case study, both a contact NILM and non-contact
NILMs were used in a laboratory machine shop. First, a con-
tact NILM was used and loads were individually energized
for use as training data. This contact NILM setup used
the LEM LA-55 transducer for current measurement. Then,
to simultaneously monitor the aggregate power stream and to
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FIGURE 8. Power draw of an example run of the CPP pump with a
zoom-in on power ‘‘surging’’ [21], [22].

individually submeter each piece of equipment, non-contact
meters (as described in [31]) were installed. The sensing
device for a non-contact NILM can be placed around the
electric cable, permitting current and voltage sensing with-
out service interruption. This enables ground-truth verifica-
tion while multiple loads are energized. Fig. 7b shows the
non-contact NILM setup in the laboratory machine shop. The
contact and non-contact NILMs sample current and voltage
streams at 8 kHz and 3 kHz, respectively. The current and
voltage streams are processed into real power (P), reactive
power (Q), and higher-order current harmonics at sampling
rate equal to utility frequency of 60 Hz [32].

B. SHIPBOARD LOADS
On themonitored shipboard subpanel, there are two loads that
have stochastic behavior: the bilge and ballast pump (BP)
and the controllable pitch propeller (CPP) pump. The BP,
which is rated at 5.6 kW, is used for emptying machinery
space bilges of excess water in an emergency and for taking
on ballast water for stability purposes [33]. When pumping
bilges and ballast tanks, operators try to get the tanks and
bilges to the lowest level possible, and as a result, the pump
takes in a mixture of air and water. After the pump is turned
off and suction is shifted to a new tank, the air remains in the
system, resulting in a prolonged start sequence in which the
pump draws a variable amount of power. It has been observed
that the initial steady state can be as small as one-fifth of
the expected steady-state level. As shown in Fig. 5, the
pump typically reaches the expected steady state, but it may
take time on the order of minutes. This large discrepancy
complicates energy disaggregation using purely geometric
methods. The monitored CPP pump is rated at 7.5 kW. The
pump is part of the CPP system, which is operated under-
way to provide the vessel greater maneuverability [33]. The
monitored CPP ‘C’ pump is an electric hydraulic pump that
supplements a separate gear driven pump in order to provide
pressurized hydraulic oil to the CPP system and maintain
hydraulic control pressure at the propeller. Hydraulic control
valves maintain system operating pressure based on demand.
Fig. 8 shows the real power of one example run of amonitored

CPP pump. There are ‘‘surges’’ in power, as highlighted in
the zoomed-in window. These surges are a result of the CPP
pump compensating for the extra pressure required during
ship maneuvering. Comparing the windows in Fig. 4, if the
system is already at the required pressure and the CPP pump
is at the required power, the CPP pump does not need to surge
as much to compensate.

For these loads, themedian filter length and rollingwindow
length were both set to 30 seconds. This window length
and median filter length were chosen to generally match
the time-scale of observed power fluctuations. For training,
instances of individual operation of the CPP pump and BP
were used. Rolling windows were used with a standard devi-
ation of σ = 100 W as the threshold for identifying windows
with statistical activity. This threshold for σ was chosen to
be larger than the standard deviation in the aggregate power
stream when loads are at steady state. In total, the dataset
has 612 windows of the CPP and 788 windows of the BP.
The data was randomly split into 60% training data and 40%
testing data with data stratification to allocate samples evenly
based on sample class. A k-NN classifier was trained with
k = 3 without weighting. The dataset split and training was
run 10 times for verification, with the results for the testing
sets averaged and shown in Table 1. The results are presented
as the average F1, precision, and recall scores, with σF1 , σPr ,
and σRe showing the standard deviation of the runs. Precision,
recall, and F1 scores of 1 indicate perfect performance in
identifying a specific class. The high average scores and small
standard deviations indicate that the proposed method has
good consistency between runs.

For comparison, a deep neural network (DNN) was also
trained with the same windows of power data, using the raw
30-second P and Q signals as the input features (with the
mean value of each window subtracted). This DNN used four
layers with 500, 200, 100, and 1 neurons each, andwas trained
using Adam-optimized backpropagation with binary crossen-
tropy as the loss function. The results averaged across 10 runs
are shown in Table 1. The low average scores and large
standard deviations indicate inconsistency between runs. The
poor performance is likely due to the models overfitting to
the training data because of the high input dimensionality and
relatively small training dataset.

The uniqueness of stochastic behavior can be explained
by the physical mechanisms. For instance, Fig. 9 shows the
average ECDF curves for the CPP and BP P′r,n streams. The
lines represent the average of all ECDFs for each class in
the dataset and the shaded regions represent one standard
deviation of the ECDF values. The figure shows that the mean
value of the BP ECDF (represented by the orange dashed line)
corresponds to larger min-max magnitudes than the mean
value of the CPP ECDF (the blue solid line). Fig. 10 shows
example time-domain windows for both the CPP and BP.
Fig. 10a shows the normalized residual stream (Pr,n) and
Fig. 10b shows the normalized first-order difference of the
residual stream (P′r,n). The CPP surge events have a sud-
den large increase in power but a slower decrease back to
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TABLE 1. Shipboard loads statistical event classification.

FIGURE 9. ECDF curves of the normalized CPP and BP first-order
difference streams. The lines represent the average of all statistical
windows in the dataset and shaded regions represent one standard
deviation.

FIGURE 10. (a) Normalized residual streams. (b) Normalized first-order
difference of residual streams.

steady state. That is, most of the large first difference values
are positive. Due to these large positive ‘‘spikes,’’ the average
after min-max normalization will be less than 0.5. In contrast,
the rapid fluctuations of the BP generally results in larger
‘‘spikes’’ in the negative direction, indicating many large
magnitude negative first difference values. The average after
min-max normalization is generally greater than 0.5.

The statistical classifier and energy estimation algorithm
were run for a two-hour window of the starboard subpanel
aggregate NILM stream in which the CPP and BP were both
energized. The threshold for identifying statistical events was
set to σ = 100 W. The aggregate power stream is shown
in Fig. 11a. The estimated power of the CPP and BP using

FIGURE 11. (a) Measured aggregate power. (b) Estimated individual load
power.

the proposed method is shown in Fig. 11b. The estimated
power was also computed using the method in [23] and
using rectangular integration. All the methods used the same
geometric classifier. That is, it is assumed that all discrete
state transitions have been accurately detected. The method
from [23] (also described in Section II) estimates each load’s
power bymaximizing the total probability of the observations
while constraining the total power. This method relies on
knowing the mean and variance of the power measurements
for each load state. This assumes having a well-characterized
load, typically using sufficient historical data. Two different
state determinations were tested, where both the CPP and
BP have: 1) on and off states, and 2) on, loaded, and off
states. Note that the loaded ‘‘state’’ here corresponds to sta-
tistical event periods, as identified by the proposed statistical
event classifier. The mean and variance for the on state were
calculated from the steady-state behavior of load observa-
tions, and for the loaded state they were calculated from
fluctuating power observations. For the on state, the calcu-
lated mean values for the CPP and BP were 6.7 kW and
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TABLE 2. Shipboard loads energy estimation.

5.0 kW, respectively, with standard deviations of 0.09 kW and
0.07 kW. For the loaded state, the mean values for the CPP
and BP were 7.1 kW and 3.8 kW, with standard deviations of
0.7 kW and 1.2 kW. As described in Section II, there are var-
ious ways to calculate the steady-state value for rectangular
integration [5], [6], [7], [16], [17]. For comparison here, the
steady-state value used is the one calculated after the load
on-event. Table 2 shows the resulting energy estimates for
the entire two-hour window for the individual loads and the
total energy. This monitoring setup does not have individu-
ally submetered data, thus there is no measured ground-truth
of individual load energy consumption. However, from the
labeled geometric and statistical events, it can be determined
which estimates are significant underestimates or overesti-
mates. The method from [23] underestimates the CPP energy
consumption and overestimates the BP energy consumption.
The rectangular method underestimates the energy of the
BP. For the proposed method, the individual load energy
consumption of the BP and CPP are close to the actual values.

A zoomed-in 35 minute window of the power stream
is presented in order to provide intuition for these results.
The measured aggregate power stream for this window with
hand-labeled geometric and statistical events is shown in
Fig. 12. The estimated power streams of the CPP and BP
are shown in Fig. 13 using the proposed method, the method
in [23], and rectangular integration. The method from [23],
both with two and three states, cannot predict the low
steady-state values that sometimes occur immediately after
the BP turns on or before it turns off. For instance, in Fig. 13d
between 46 and 51 minutes, there is an overestimation of
power of the BP. By design, the method from [23] always
has the correct total power at any time instant, and thus the
correct total energy. However, the underestimation of power
in one load leads to overestimation in power in another.
In Fig. 13c, there are underestimates in power of the CPP
in the periods that the BP power is overestimated. Using
rectangular integration with the steady-state power calculated
after the turn-on event means that the total energy may not be
correct. Since this method does not assume a fixed number of
devices, the BP underestimation (in Fig. 13f) does not affect
the CPP estimation (in Fig. 13e). In contrast, the proposed
method, as shown in Fig. 13a and Fig. 13b, is able to identify
the statistical events and allocate the energy consumption
to the correct load, as well as update the steady state after
a statistical event region. Both the individual load energy
consumption and the total energy consumption are close to
the actual values.

FIGURE 12. Zoomed-in aggregate power stream with geometric and
statistical events labeled.

The tracked durations of CPP and BP statistical events in
the two-hour window were 28.8 and 12.3 minutes, respec-
tively. The duration of the CPP pump statistical events rep-
resents the working time of the relief valves in the hydraulic
manifold. The relief valves regulate system pressure based
on demand. Throttle commands that alter propeller blade
pitch require greater system pressure and places a greater
demand on the system. During periods of low demand with
no changes in pitch, hydraulic oil interacts with and opens
the low pressure relief valve. During periods of high demand,
the hydraulic oil alternatively interacts with and opens the
higher pressure relief valve; corresponding to the observed
statistical events. Estimates of valve working time could aid
in maintenance decisions. Currently, CPP hydraulic system
relief values are tested on a fixed five-year cycle. BP statis-
tical event detection could provide insight into pump health.
With time, pump performance will inevitably deteriorate, for
example, due to impeller wear. Decreased pump performance
will cause changes in the time required to empty and fill
storage tanks, and prime and clear air from the pump and
associated piping. These changes will likely correspond to
longer BP statistical events.

C. MACHINING EQUIPMENT
Monitoring the energy consumption of machining equipment
is useful for efficiency, energy reduction, and condition-based
maintenance in the manufacturing industry [18], [34]. This
section uses a CNC router and an industrial bench grinder
to demonstrate the utility of the proposed statistical event
detector and energy disaggregation method. CNC machin-
ing is a manufacturing process where automated machines
remove raw material with cutting tools. The power draw
of CNC cutting machine operation varies based on cutting
conditions such as the workpiecematerial, cutting speed, feed
rate, and depth of cut [18]. Industrial grinders are used for
sharpening cutting tools and shaping objects. The power draw
of a grinder depends on the required load of the grinding
operation.
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FIGURE 13. Comparison of estimated power for the CPP and BP.

TheCNCmachine uses a Bosch 2.25 hp router motor, set to
a fixed speed of 21,500 rpm. A CNC router was used to make
a straight line cut through a piece of wood of various heights,
as shown in Fig. 1. The major factors contributing to the total
energy consumption are labeled on the power stream. There
is an inrush up to 1700W as the spindle accelerates (not fully
shown). It then reaches a steady state of approximately 300W
while air-cutting. In this example, as the router cutting tool
engages the wood, the power increases up to 500 W. A geo-
metric event detector would likely only identify the spindle
acceleration and deceleration as events and calculate the
steady-state power for a short window before and after the
event. However, this steady state would only correspond to
air cutting, and not actual wood-cutting. The wood-cutting
events and the large energy consumed during them would go
undetected.

The industrial bench grinder used for testing was a Day-
ton 0.5 hp grinder with a six-inch grinding wheel, set to
1,800 rpm. An example power stream of machine operation
is shown in Fig. 14. In this example, the startup and idle
(baseline) operation is shaded blue, while the extra power
required during grinding operation is shaded in gray. The base
load of the unloaded grinding wheel (analogous to air-cutting
of the CNC) is approximately 50 W. Grinding operations
imitated burr removal and edge beveling in preparation for
welding of mild steel flat stock. During grinding operation
the power increased up to 300 W in this example. Integration
of the shaded areas in Fig. 14 revealed that more than half
of the total energy consumed in the example grinder stream
is contained in the large fluctuations during loaded grinding
operation (i.e., the area shaded gray). However, only the
start and end of the base load operation would likely be
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TABLE 3. Machining equipment statistical event classification.

FIGURE 14. Power stream of industrial bench grinder.

identified as events by a geometric edge detector. A majority
of the energy consumed would be ‘‘invisible’’ using purely
geometric event-based disaggregation.

To demonstrate the statistical classifier, the CNC and
grinder were both run individually with several runs of nor-
mal cutting and grinding operation, respectively. Statistical
windows were detected from the data streams using a rolling
window and median filter both with length of 20 seconds.
This window length and median filter length were chosen
based on the duration of observed power fluctuations. The
standard deviation threshold was set to σ = 20 W. This
threshold was chosen to be larger than the standard deviation
in the aggregate power stream during steady-state operation.
In total, the dataset consisted of 21 and 68 windows of statis-
tical activity for the CNC machine and grinder, respectively.
These windows were randomly split into 60% training and
40% testing with data stratification. A k-NN classifier was
trained with k = 3 without weighting. The dataset split and
training was run 10 times for verification, with the results
for the testing sets averaged and shown in Table 3. The high
scores for the grinder and CNC can largely be explained
by the behavior of reactive power and first-order difference
of reactive power. The grinder appears capacitive and has
negative reactive power during grinding operation. The CNC
router appears inductive and has a positive reactive power
which increases during cutting. As a result, the histograms
of the normalized reactive power stream will skew right for
the grinder and skew left for the CNC. The same DNN and
training process as in Section IV-B was applied to this data,
and the results are shown in Table 3. Although the DNN
performed relatively well at identifying the grinder events,
it struggled to identify CNC events. Similar to the DNN in

FIGURE 15. Ground truth aggregate power with labeled geometric and
statistical events.

the previous section, this is likely explained by a high input
dimensionality and very small training dataset.

To demonstrate the statistical classifier incorporated with
the energy estimation algorithm, the CNC and grinder were
run in an aggregately monitored environment, which also
included a 1.1 kW shop vacuum. The shop vacuum only has
geometric events, and is therefore not included in Table 3. The
standard deviation threshold was set to σ = 20W. The aggre-
gate power stream is shown in Fig. 15, with labels indicating
main geometric and statistical events. Fig. 16 shows the esti-
mated disaggregated power streams of the CNC, grinder, and
vacuum, compared to the ground-truth submetered data and
the estimates from themethod in [23] and rectangular integra-
tion. For the CNC and grinder, the method in [23] was tested
for the two-state (i.e, on, off) and three-state (i.e, on, loaded,
off) scenarios. The vacuum was modelled as a two-state load
in both scenarios. For the on state, the calculated mean values
for the CNC, grinder, and vacuum were 289.0W, 50.4W, and
1280.6 W respectively, with standard deviations of 9.2 W,
1.0 W, and 5.7 W. For the loaded state, the mean values
for the CNC and grinder were 372.8 W and 122.2 W, with
standard deviations of 60.8 W and 66.8 W. Table 4 presents
the resulting root-mean-square error (RMSE) for the power
stream estimates compared to the ground truth submetered
streams. The proposed method has the lowest RMSE for both
the CNC and grinder. The proposed method and rectangular
integration have the same RMSE for the vacuum, since the
vacuum does not have any statistical event regions. Rectan-
gular integration overestimated the energy of the CNC. Since
the cutting operations started during the geometric window,
the calculated steady state was high, as shown in Fig. 16j.
At the same time, the missed energy during loaded grinder
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FIGURE 16. Comparison of submetered and estimated power for the CNC, grinder, and vacuum (note that the y-axes for different loads are not the same).

operation led to underestimation of the energy of the grinder,
as shown in Fig. 16k. For the method from [23], with only
on and off states, the statistical events for a single load are
divided between all the loads. The amount allocated to each
load is based on the designated mean and variance of the
steady-state power measurements and assuming a Gaussian
distribution. That is, some of the grinding operation and
some of the cutting operation were allocated to the incorrect
load, leading to large RMSE values. When provided with the
additional loaded state, this method can better allocate the
energy during loaded operation to the correct load, as shown
in Fig. 16g to 16i. However, there is still estimation error,
since these regions are generally not Gaussian. The proposed
method had accurate estimates for both steady-state and
loaded operation, as shown in Fig. 16d to 16f.

The tracked durations of CNC and grinder statistical
events were 23.9 and 49.6 seconds, respectively. This cor-
responds to the amounts of time that the CNC router bit
was cutting and the grinding wheel was loaded. The meth-
ods described in this paper enable NILM systems to per-
form cumulative cutting time-based tool condition monitor-
ing (TCM) of various machines from an aggregate point.
Cumulative time TCM methods are commonly used to esti-
mate cutting tool health and remaining useful life [35].
Non-uniform tool-life and loading conditions present chal-
lenges for cumulative time TCM. However, with the tech-
niques presented, a NILM could ‘‘weight’’ cutting time by
equipment power consumption and account for non-uniform
wear or use power consumption as a proxy for tool
condition.

VOLUME 10, 2022 117997



D. H. Green et al.: Energy Disaggregation of Stochastic Power Behavior

TABLE 4. Machining loads power estimation RMSE.

FIGURE 17. Ground truth aggregate power with labeled geometric and
statistical events for CNC cutting and loaded grinder operation overlap
case.

This work so far has assumed that statistical regions of
multiple loads do not overlap. Although a rare scenario, the
overlap condition could potentially be handled by adding
classes representing each overlap condition. An overlap case
was run in the submetered experiment in which the CNC is
cutting and the grinder is loaded at the same time, shown
in Fig. 17. As a preliminary attempt to identify overlapping
statistical windows, a set of artificial overlapping windows
was created by, for every pair of CNC and grinder training
windows, taking the sum of the two windows. ECDFs were
then generated for this overlap class. A testing set of ECDFs
for the overlap case was generated by running the statistical
event detector on the data in Fig. 17 as well as a subsequent
overlapping run. A k-NN classifier was trained with k = 3
with a randomly split training set of CNC and grinder ECDFs
and the artificial overlap ECDFs. It was then tested on
the randomly split testing set of CNC and grinder ECDFs
(4 and 14 testing examples, respectively) and the actual over-
lap ECDFs (with 10 testing examples). This was run 10 times,
with average F1 scores of 0.943, 0.989, and 0.968 for the
CNC, grinder, and overlap case, respectively. Further work is
required to investigate this and other overlap disaggregation
techniques.

V. CONCLUSION
The results presented in this paper demonstrate the ability
to disaggregate stochastic power behavior using statistical
features in real time. Statistical events are distinct from
the main load on- and off-events and provide indication
of changing load demand. Tracking statistical events can
create an ‘‘automatic logbook’’ of power system behavior

that was previously invisible using conventional nonintrusive
monitoring techniques. Statistical events generally relate to
greater demand placed on the system. Thus, tracking these
periods can aid in maintenance decisions. The presented case
studies showcase the applicability of the proposed method
in different industrial sectors. Future work includes devel-
oping techniques to further explore the disaggregation of
individual energy present in overlapping statistical event
regions. Extending the optimization technique in [23] to
include non-Gaussian load power, particularly during regions
of detected statistical region overlap, can be investigated.
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