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Abstract— Fault detection and diagnostics (FDD) and energy
scorekeeping for power systems can be performed nonintrusively
with current and voltage sensing at a utility panel. The key
problem remains that some important electromechanical behav-
ior, including vibration and acoustic signatures, cannot be easily
detected in the power stream, and a small set of additional sensors
may be necessary for automated analysis. A nonintrusive power
monitor can serve as a central point for collating or “fusing”
sensor data from remote sensors, providing a correlated picture of
remote sensor data with power consumption. A local, physically
secured intranet eases the cybersecurity challenge of a facility
by avoiding conventional Internet of Things (IoT) solutions. This
article demonstrates a Wi-Fi-based implementation of an FDD
intranet on the microgrids of several marine vessels. Connec-
tivity tests presented in this work show that Wi-Fi is a viable
link medium for an FDD intranet in shipboard environments.
In addition, this work demonstrates the ability to track pump
pressure, air conditioning (A/C) compressor loading state, and
fan imbalance using fused nonintrusive sensing. Cyclostationary
signal processing techniques identified a faulty relief valve in
a vacuum pump that evaded traditional analysis. Four sensor
network strategies are presented for these scenarios. This work
concludes that synchronized power and vibration data provide
complementary fault detection ability.

Index Terms— Fault detection, power monitoring, sensor
fusion, vibration analysis, wireless networks.

I. INTRODUCTION

INTERNET of things (IoT) solutions have pervaded
consumer and industrial markets, proliferating the applica-

tion of computing and sensing for measurement and main-
tenance [1], [2], [3]. Networking solutions that rely on an
external or third-party server expose communications to inter-
ception and security risks. These solutions also generally
fail to collate and correlate sensor data to provide action-
able information without resorting to additional networked
processing, further exposing potentially sensitive information
and conclusions. The Internet client–server model has created
an “arms race” of authentication and encryption in an attempt
to secure data and decisions. This arms race is frequently a
losing battle. There is another way.
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For many industrial facilities and transportation systems, a
self-contained client–server model can be physically secured
at the target site. That is, physical access to data and processed
information can be denied, even to trusted participants, who
are not physically and verifiably proximate to the system and
data. Computing power has reached a point where local sys-
tems are able to provide scientific computing without resorting
to external computing devices. Even machine learning algo-
rithms with computationally expensive training can produce
systems that can evaluate inputs quickly and efficiently [4].
When adaptation for machine learning systems can be pro-
vided over reasonable time periods, local computing may be
entirely satisfactory for fault detection and diagnostics (FDD)
in a mission-critical facility.

For instrumentation and measurement challenges, a client–
server model provides the convenience of a server that can
collate data from a set of sensor node “clients.” For FDD
applications for electromechanical systems, a nonintrusive
load monitor (NILM) is in many ways an ideal “server”
for coordinating data exchange and analysis. On its own, a
NILM uses a single or limited set of voltage and current
sensors to monitor the power consumption of electrical loads
downstream of the metered point [5]. State-of-the-art NILM
techniques enable individual load identification using machine
learning and signal processing techniques [6]. Nonintrusive
load monitoring has been demonstrated extensively for res-
idential energy disaggregation [7], [8]. In addition, NILMs
installed in industrial settings can perform automatic logging
and watchstanding with knowledge of load operation and tim-
ing [9]. Industrial NILMs have been demonstrated to identify
“soft” faults and presage impending “hard” faults that produce
equipment failure by recognizing evolving power signatures
for individual loads [10].

However, a challenge in industrial FDD with a NILM
is that electrical power data are not always sufficient to
diagnose certain faults. Additional measurements, such as
vibration, temperature, and acoustic signatures, are required
in these scenarios to reveal diagnostic indicators absent in
the electrical data. A NILM can then correlate these mea-
surements with the corresponding electrical events. Design
requirements and challenges for FDD in an industrial setting
through sensor fusion include the ability to securely collate
sensor data without collecting more high-bandwidth data
than necessary. An “FDD intranet” operated by the NILM
facilitates this exchange and fusion of sensor data for FDD
analysis. This triggered data collection alleviates unnecessary
data storage and also provides physical correlation between
data streams for FDD analysis. The NILM is an ideal device
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Fig. 1. CPP pump turn-on power transient acquired by a NILM.

for interacting with watchstanders or maintainers, as it can
provide analysis and reports for addressing impending FDD
problems before they become mission failures. Communi-
cation outside the facility is still possible, e.g., over the
Internet. However, these communications can involve only the
level of detail and analysis considered to be both useful and
secure. Perhaps most importantly, the FDD intranet can be
physically secured to provide detailed information and analysis
only to trusted operators physically present in a facility or
system.

This article demonstrates a new, wireless-enabled NILM
implementation that coordinates both power monitoring and
data retrieval from distributed vibration sensors. Wireless
networks are configured using the custom NILM hardware to
create shipboard diagnostic monitors that can only be accessed
from inside the facility. The utility of the wireless intranet and
multiple-sensor fault detection case studies are demonstrated
with shipboard measurements taken on several U.S. Coast
Guard Cutters (USCGCs).

II. SENSOR HARDWARE

A NILM senses the voltage and current signals at a single
point in a power system. The current and voltage waveforms
are sampled (in this work at 8 kHz). A spectral envelope
preprocessor is run using the digitized current and voltage
waveforms [11], producing a stream of aggregate real power,
reactive power, and higher harmonic current consumption
sampled at the utility frequency (60 Hz). A turn-on transient
of both real and reactive fundamental power of an electro-
mechanical load is shown in Fig. 1. A continuously running
event detector identifies transient events, from which features
such as inrush and steady-state power are extracted [6].
Using these features, the NILM classifies events to individual
loads and identifies faulty behavior. Abrupt faults such as
an open-circuited heating element are immediately obvious
in the power stream [12]. Gradual variations in load power
consumption over time can be tracked to identify “soft faults”
that may eventually cause complete load failure. Finally, from
the sequence of load events, the NILM can diagnose timing
faults and errant duty cycles [13].

However, a pervasive challenge in the NILM-based FDD is
that many critical diagnostic measurements cannot be derived
from the power stream. These include, but are not limited
to, vibration, acoustic, and temperature data. Augmentation
of nonintrusive power monitoring with sensor data such as

Fig. 2. CPP pump steady-state vibration signature in (a) time and (b) fre-
quency domains.

light level and acoustics has been proposed and evaluated
for load identification and energy estimation, which are
common NILM applications [14], [15]. Fusion schemes of
features such as submetered (rather than aggregate) current,
acoustic, and vibration data have been demonstrated for diag-
nosing faults in induction motors [16], [17]. Sensor fusion
theory encompasses several techniques to handle multiple
sources of imperfect data. Some examples include Kalman
filtering, Dempster–Schafer theory, and convolutional neural
networks [18], [19]. However, in the interest of simplicity,
this work uses heuristic-based techniques such as spectrum
analysis. The fault and condition change detection discussed
in this work could be extended to incorporate these techniques
if desired.

As a case study to illustrate how sensor fusion can reveal
electromechanical operation, consider the load in Fig. 1. This
load is a controllable pitch propeller (CPP) pump in the
engine room of a U.S. Coast Guard Cutter (USCGC), which
provides hydraulic pressure for changing the pitch of the ship’s
propeller. Aggregate power data show recognizable turn-on
transients, which the NILM can use to track load operational
status. Fig. 2 shows vibration data in both the time and fre-
quency domains captured during steady-state load operation.
At rated load, an induction machine drives the hydraulic gear
pump at 1725 rpm. The shaft rotation creates peaks in the
vibration frequency-domain plot at multiples of a little less
than 30 Hz. Pump gear teeth meshing likely produces the
large peaks located slightly below 300 and 600 Hz, multiples
of the shaft frequency [20], [21]. These indicators are entirely
absent in the power stream and provide insight on the physical
load behavior. Fig. 3 shows acoustic data from this load
while the propeller’s pitch was modified, as indicated by the
envelope of the signal. Steady-state signatures and spontaneous
changes in operation are difficult to diagnose in aggregate
power data, since the source of the behavior is inherently
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Fig. 3. CPP pump acoustic signature during changing propeller pitch.

Fig. 4. Block diagram of the wireless sensor platform of [23].

uncertain. These sensor data sources are thus complementary,
and all the three show a different and interesting side of the
machine’s operation.

To measure these quantities and supplement the NILM’s
power measurements, the sensor platform described in [22]
and [23] serves as an easily installable distal sensor node.
A block diagram of this device is shown in Fig. 4. The
sensor platform acquires signals from up to four channels
and supports sampling rates up to 128 kHz with 16- or 24-bit
resolution. Each acquisition channel can measure arbitrary
+/−5-V signals or signals from integrated electronics piezo-
electric (IEPE) sensors. The IEPE standard provides high
noise immunity and power and signal delivery on the same
two wires. Since the IEPE interface is limited to ac sig-
nal transmission, the companion hardware proposed in [23]
extends IEPE to include dc and slowly varying quantities.
The IEPE channels on the sensor platform can interface with
any resistive or voltage-based sensor such as thermistors,
strain gauges, and pressure sensors, as well as traditional
IEPE devices such as microphones and accelerometers. The
diverse set of compatible sensing elements provides a unique
opportunity for diagnostics that complement electrical data
observed by the NILM. Vibration analysis is particularly
useful for electromechanical load diagnostics, as changes in
mechanical health are often reflected in the vibration signature
of the machine [22], [24].

The challenge that remains is that unless sensors are inter-
linked, tandem electromechanical diagnostic information is
limited to being offline and post hoc. Without synchronized
and colocated data, there will be an inevitable delay between
physically measurable indications of a fault and the actionable

Fig. 5. Wi-Fi-enabled NILM alongside the wireless sensor platform.

TABLE I

COMPARISON OF THIS WORK’S CONTRIBUTION AND
PREVIOUS NILM IMPLEMENTATIONS

information for a watchstander to fix the fault. However,
an intranet of sensors for FDD provides the ability to fuse
sensor data and perform predictive, online analysis. Using
a dashboard for human–computer interaction [9], the NILM
makes this information actionable to watchstanders who can
actually fix the fault as it happens. The novelty of this
work is the demonstration of an enhanced NILM that can
host a physically securable FDD intranet using wired or
wireless channels for collating data from remote sensor nodes.
Fig. 5 shows the upgraded NILM implementation capable of
creating a Wi-Fi intranet and functioning as the server for
the sensing network. Table I outlines a comparison of this
new NILM implementation with previous implementations.
Where necessary and desired, sensor nodes such as the one
shown in Fig. 5 (right) are located remote from the NILM
but in Wi-Fi communication range. Fig. 6 shows a block
diagram of the system. Our experiments with this system
use a commercial, off-the-shelf Wi-Fi router in the NILM
to cover the key areas of a monitored space. Two 5-dBi
Wi-Fi antennas mounted to the case provide spatial diversity to
combat multipath fading from environments adverse to Wi-Fi
transmission [25]. Broadcast power is limited so that usable
signal strength is empirically verified to extend no farther than
the desired internal secure areas on the ship. Although ships
are used as a case study in this work, the proposed sensor
network can be deployed to any number of systems. The key
limitations are that a NILM is installed, a set of interesting
loads and corresponding sensor types are identified, and a
common channel for communication (e.g., Ethernet or Wi-Fi)
is available.

III. PHYSICALLY SECURED NETWORK

The NILM can use either wired or wireless channels
for creating a secured sensor network. However, wireless
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Fig. 6. Block diagram of the NILM and wireless sensor platform operation.

configurations allow for minimally invasive and easily
changeable sensing solutions. Although many other wireless
technologies exist, including Bluetooth and Zigbee, this work
uses Wi-Fi as a link medium that is securable through encryp-
tion and can be implemented inexpensively with commer-
cial, off-the-shelf hardware. To evaluate wireless transmission,
point-to-point radio communication can be modeled with the
Friis transmission model [26]. The received power can thus
be calculated if the transmitting and receiving antenna gains,
path distance, transmission frequency, and transmission power
are known. However, this model does not include multipath
effects, in which reflections cause a transmission to arrive
along many paths with varying delays. These effects may
be random and time-varying and are prevalent in industrial
environments [27]. Therefore, in addition to being limited
by distance and broadcast strength, wireless communication
is often assumed to be ill-suited in industrial and shipboard
environments [27], [28], [29], [30]. Rather than create intricate
transmission models, we evaluated the performance of Wi-Fi
in shipboard environments empirically. Our experiments show
that Wi-Fi is a viable communication channel for shipboard
FDD with multiple sensors.

A. Wi-Fi Evaluation

Wi-Fi was evaluated as a candidate channel for the
FDD intranet aboard three USCGCs of various sizes and
construction types. Connectivity was tested using the new
wireless-enabled NILM (referred to as the “test NILM”) and
remote sensor platform of Section II. In each connectivity test,
the test NILM was placed near the utility panels to emulate a
real installation. The test NILM created a Wi-Fi access point
(AP), and the sensor platform connected to this AP as a client.
Thus, the location of the AP was fixed during the test, such
that the AP was located next to the utility panel. Evaluating
the connection strength between the test NILM and the sensor
platform as it was moved about a lattice of test points produced
a “heatmap” of Wi-Fi connectivity for each environment.

The test NILM was used to run the following four tests
for wireless connectivity: 1) maintain a Wi-Fi connection

Fig. 7. Connectivity test results for USCGC MARLIN. The test NILM is
shown with a purple rectangle, and the gray shapes show large shipboard
equipment such as the MPDEs.

Fig. 8. Connectivity test results for USCGC THUNDER BAY.

Fig. 9. Connectivity test results in the upper engine room for USCGC
SPENCER.

throughout testing without dropping packets, evaluated using
the ping utility; 2) access the sensing device’s memory and
list all the files in storage; 3) direct the sensing device to
capture a sample measurement of data; and 4) successfully
download the sample measurement from the sensing device
to the test NILM. Test points are labeled as “good” if they
passed all the four tests. Test points that passed one to three
of these tests are labeled as “unreliable.” Test points that could
not support a Wi-Fi connection are labeled “bad.”

Figs. 7–10 show the heatmaps generated from the wireless
tests conducted in the three shipboard environments. The
“good” tests are represented by blue dots, the “unreliable”
tests are represented by yellow triangles, and the “bad” tests
are represented by orange slashed circles. Solid lines represent
airtight and watertight bulkheads that span the entire width
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Fig. 10. Connectivity test results in the lower engine room for USCGC
SPENCER.

of the ship. Dashed lines denote bulkheads that are neither
airtight nor watertight. Finally, the purple rectangle represents
the location of the test NILM. Gray shapes indicate other sig-
nificant equipment and obstructions such as main propulsion
diesel engines (MPDEs), electrical generation equipment, and
holding tanks.

The first of the three shipboard environments tested was
USCGC MARLIN, a 87-ft coastal patrol boat. Fig. 7 shows
the testing results on three levels of the ship. The wireless
range was sufficient to link almost all the test points on the
second level with the test NILM located on the first level.
The second environment was USCGC THUNDER BAY, a
140-ft icebreaking tug. As shown in Fig. 8, there was a
strong wireless connection throughout the entire engine room.
In addition, the wireless connection was able to reach through
the forward transverse bulkhead into the auxiliary machinery
room. The final environment was USCGC SPENCER, a 270-ft
medium endurance cutter. Figs. 9 and 10 show the testing
results for the upper and lower engine rooms, respectively.
Both the spaces supported a Wi-Fi connection between the test
NILM and the sensor platform. Each shipboard environment
showed that Wi-Fi proved to be stable and reliable for the
majority of the regions containing electromechanical loads of
interest.

B. Data Transmission and Synthesis
Once a communication channel is acquired via Wi-Fi, either

the NILM or the sensor platform initiates data transmission,
depending on the use case. Choice of network protocol is
an important design consideration, with the two prominent
choices being the transmission control protocol (TCP) and
user datagram protocol (UDP). For certain IoT and cyber-
physical applications, UDP is attractive, since it prioritizes
speed and simplicity in packet transmission, at the expense
of reliability [3]. However, TCP is more suitable for the
FDD intranet, since it guarantees reliability. The additional
power and computation overhead of establishing a connection
and verifying data integrity is more than outweighed by the
assurance that data are received in order. This is especially
significant for automatic FDD, because a corrupted data trans-
mission may cause a critical sensor measurement to be missed
entirely. Using separate TCP ports and sockets for each remote
sensor node, conflicts in sending and processing data can be
avoided.

Fig. 11. Power and vibration data streams, captured synchronously with
multiple sensors.

Data are processed with Joule [31], which models the data
pipelines as a series of “modules” with streams of informa-
tion passing between them, allowing for efficient, real-time
measurement and signal processing. Joule modules are used
to continuously run an event detector, feature extractor, and
classifier on the power stream to identify load transient events.
Once a load event is found, a separate Joule module establishes
a TCP/IP socket with the wireless sensor platform of interest.
The sensor takes a measurement for a user-configured duration
and then sends the data back through the socket. Since
timestamps from the remote sensor nodes are not guaranteed
to be available or reliable, the NILM infers them to avoid
clock drift and time misalignment. This is done via linear
interpolation when data of a known duration are retrieved.
Once data are received and timestamped, they are inserted
into a time-series database [5] for further analysis.

A case study is shown here for a reciprocating air condition-
ing (A/C) compressor. The NILM is configured to direct the
sensor platform to capture 2 min of vibration data whenever
the NILM detects a transient event in the power stream. Fig. 11
shows the resulting synchronized and colocated data from
both power and vibration sensors, plotted with the Lumen
data visualization app on the NILM [32]. Real and reactive
fundamental power are plotted on the left axis for all the three
phases. Vibration is plotted on the right axis in red; due to the
decimation performed by the data visualizer [5], the solid red
line shows the average value (zero) and the lighter red region
shows the envelope of the accelerometer measurements. With
access to both these data streams, the NILM can perform
online analysis and provide actionable information for load
diagnostics in real-time.

C. Security
Strong, unbroken encryption is the keystone of modern

network security. As such, the FDD network provides both
encryption and authentication of network members using
Wi-Fi Protected Access II (WPA2). However, the FDD net-
work provides two additional security layers. First, the network
is intentionally isolated from the public Internet, in contrast
to the IoT strategy. This “air-gapped” scheme denies many
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attack vectors into the system by simply making it inaccessible
to public channels. However, this shifts some of the security
burden onto the process of moving data to and from the
network. Care must be taken that any interactions with external
computers, such as Internet connection and removable media,
are trusted.

Second, many environments relevant to FDD, such as ships,
naturally attenuate wireless signal power at their boundaries.
Carefully adjusting broadcast power of the NILM’s AP to what
is only necessary limits the network signals’ ability to reach
the outside world. As an example, consider the shipboard envi-
ronments presented previously. The wireless signals broadcast
from the two devices’ radios permeate the bulkheads and hull
of the ship only minimally, since the ship’s steel hull acts as
a Faraday cage that blocks the electromagnetic fields. For a
ship on open water, it would be difficult for an adversary to
be in reception range without detection, without immensely
powerful radio equipment. Finally, it is worth emphasizing
again that these two additional layers do not take the place
of up-to-date encryption and authentication practices, as a
sufficiently determined and powerful adversary may find a way
to communicate with the network.

D. Sensor Placement

When deploying a nonintrusive sensor network, there exists
a trade-off between maintaining a low sensor count and
obtaining actionable diagnostic information. The appropriate
number of sensors is ultimately subject to the interests of the
system operator. As a general guideline, however, loads that
are known to contain behavior invisible in the power stream
should be identified. Remote nodes with the appropriate sensor
can then be installed and connected to the NILM. If the rest of
the electromechanical behavior of interest can be identified by
the NILM, this provides a reasonable balance of low sensor
count and access to diagnostic information.

IV. SENSOR DEMONSTRATION

This section provides four case study scenarios in which
fused nonintrusive sensor data streams are used in tandem to
shed further light on load operation and diagnostics than power
data alone provide. Centralized sensor fusion is achieved by
first collating data on the NILM from multiple sensors (in these
examples, power and vibration), and then generating diagnos-
tic indicators from the sensor data streams. Scenarios A and
B (in Sections IV-A and IV-B) show a condition change
apparent in the electrical power stream, and thus can be
detected with a NILM implementation without remote sensors,
although imperfectly. Condition changes in large machinery
often do not create usable indicators in electrical power data
[22], [33]. In addition, these indicators may be very small
in remote sensor data such as vibration. Signal processing
techniques that exploit the physical structure of the mechanical
process can recover these small signals [34]. As confirma-
tion, scenarios C and D (in Sections IV-C and IV-D) show
examples of these condition changes that are invisible to a
NILM implementation without remote sensing, and the use of
vibration analysis, including cyclostationary signal processing,

Fig. 12. FDD strategies described in Sections IV-A and IV-B.

to detect them. Each of these four scenarios corresponds to
a separate FDD network strategy for collating the sensor
data and generating diagnostic indicators. These FDD network
strategies and their parameters are coordinated by the NILM in
software as Joule modules, as described in Section III-B. All
the experimental data were taken from equipment on USCGCs
MARLIN, THUNDER BAY, and SPENCER, or equipment
similar to that found on these ships. Vibration data were
captured using Wilcoxon’s model 728T single-axis 500-mV/g
accelerometer [35].

The four FDD strategies are essentially: 1) continuously
requesting remote sensor data for a load when the NILM
detects that the load is running; 2) requesting only a small
amount of remote sensor data for a load when the NILM
detects that it turned on; 3) periodically requesting remote
sensor data at a user-defined interval; and 4) continuously
sending remote sensor data to the NILM whenever the remote
sensor detects load operation. The first two strategies are
useful for loads monitored by the NILM that turn on and
off frequently. The third strategy is useful for loads that are
almost always energized, since turn-on and -off events are not
frequent enough to trigger sufficient data collection. The fourth
strategy is useful for loads that are either not monitored by the
NILM or have turn-on transients that are difficult or impossible
to identify in the power stream.

A. Bilge and Fire Pump
The most straightforward FDD network strategy involves

using the NILM to track the operational state of a load outfitted
with a remote sensor, as illustrated in Fig. 12 (right). When
the load is operating, the NILM continuously requests and
downloads data from the remote sensor. The bilge and fire
pump on USCGC MARLIN serves as an example of a fault
for which this strategy is suitable. This centrifugal pump is
designed to expel water from the bilge of the ship and supply
water to the on-board firefighting system. The pump is driven
by a three-phase induction motor that is rated to operate
at 57.4 rps. In the stable and normal region of operation,
the slope of the induction motor steady-state torque–speed
curve is negative. The torque developed by the motor and
consequently the power consumed increase when the rotor
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Fig. 13. Estimated power and shaft angular velocity for different operating
pressures of the MARLIN bilge and fire pump.

speed decreases. Power can therefore provide an indicator of
shaft speed. Measurement of the shaft speed is also possible
from vibration measurements [36]. Under normal operation,
the pump maintains a discharge pressure of approximately
110 psi. Changes in operating pressure maintained by the
pump could be indicative of a variety of faults such as a
blockage in the system or pump impeller wear. Both power and
vibration measurements reflect changes in operating pressure
of this load, as illustrated by the experiments presented in this
section. In these experiments, the flow was adjusted with a
controllable valve to simulate an increased demand of system.
As the valve was adjusted, the outlet pressure of the pump
varied from 110 to 30 psi. Power consumption and vibration
were recorded using the installed NILM and an accelerometer
connected to the wireless sensor platform, respectively. The
accelerometer was affixed to the pump housing in a perpen-
dicular orientation to the drive shaft.

Fig. 13 shows a plot of both the steady-state power
consumption as measured by the NILM and shaft angu-
lar velocity [calculated from the discrete Fourier transform
(DFT) of vibration data] across decreasing operating pressures.
The steady-state power increases as the pressure changes
from 110 to 75 psi, and then begins to slightly decrease as
the pressure changes from 75 to 30 psi. The angular velocity
of the bilge and fire pump’s motor shaft decreases as the oper-
ating pressure changes from 110 to 75 psi, and then slightly
increases as the pressure changes from 75 to 30 psi. This
type of behavior is typical of normal operation of a backward
centrifugal pump [37]. Both the curves have an inflection point
at an operating pressure of 75 psi. This inflection identifies the
point of operation where the pump is imparting the greatest
work on the fluid, in terms of flow rate and pressure. Using
these relationship curves, a change in operating pressure of
the pump could be identified by either power or vibration
data. Since this load turns on infrequently and is critical to
shipboard operation, the proposed FDD network strategy pro-
duces two correlated indicators of faulty pump operation. In a
practical NILM application, gradual changes in steady-state
power may be difficult to resolve. Thus, tracking the operating
pressure from the power consumption alone may be prone to
errors. In addition to confirming changes in operating pressure
detected in the power stream, vibration data can identify
operating pressure changes that were missed in the power
stream. By fusing these two sensors, the NILM has access to

Fig. 14. A/C compressor and unloader arrangement onboard SPENCER.
(a) A/C compressor. (b) Piston and unloader arrangement.

a more complete diagnostic picture than power and vibration
provide individually.

B. Air Conditioning Plant
Unlike the previous example, some loads require a minimal

amount of remote sensor data to be collected for disaggre-
gation and fault detection. For this FDD network strategy,
the NILM requests a small window of data from the remote
sensor whenever it detects a transient event of interest related
to that load, as illustrated in Fig. 12 (left). To demonstrate this,
consider the A/C plant on USCGC SPENCER, which consists
of two refrigeration skids. Each skid contains two indepen-
dent refrigeration loops with semihermetic compressors; one
compressor is shown in Fig. 14(a). The system is charged
with R-134a refrigerant and cools a closed-loop chilled water
system that circulates throughout the vessel. Each compressor
has three piston pairs. A conceptual diagram of the pistons is
shown in Fig. 14(b). Solenoid-activated unloaders, referred to
as UL1 and UL2, are installed on two of the piston pairs and
allow for capacity control. The unloaders activate piston pairs
based on cooling demand for efficient system operation [38].
The center piston pair does not have an unloader and is
always activated. Activated pistons pull refrigerant through
the suction ports and discharge compressed refrigerant to the
high-pressure side of the system. In the following discussion,
loaded operation refers to six activated pistons, partially loaded
refers to four activated pistons, and unloaded refers to two
activated pistons.

Fig. 15 presents a power stream of an A/C skid onboard
SPENCER. The power stream depicts the turn-on event of a
single compressor and subsequent loading events of the com-
pressor. Upon startup, the compressor operates in an unloaded
condition with only the center piston pair (2 and 5) activated.
With an increase in loading, the real power consumption
increases while reactive power remains nearly constant. As a
result, loading the compressor increases the load’s power
factor. For instance, the step increase at approximately 2.5 min
in Fig. 15 is a shift from unloaded to partially loaded operation,
with the center and lower piston pairs (1, 2, 4, and 5) activated.
The final step in real power is a shift from partially loaded to
fully loaded operation, with all the piston pairs (1–6) activated.
Table II presents the observed power factor in each loading
state.

The A/C compressors are driven by grid-connected induc-
tion motors. The induction motor has four poles and a rated
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Fig. 15. SPENCER A/C compressor power stream.

Fig. 16. SPENCER A/C compressor accelerometer time-domain plots of varying loading states. Impulsive events due to activated pistons are labeled.
(a) Unloaded operation. (b) Partially loaded operation. (c) Loaded operation.

torque of 163 N·m while operating at 29.2 rps [39]. Fig. 16
shows the time-domain vibration measurements for each load-
ing condition. Impulsive events due to activated pistons are
evident in each case. Low-frequency content in the vibration
signature is associated with mechanical events that occur
throughout shaft rotation, such as crank and piston movement.
Higher frequency content is likely a result of suction and
discharge valve action, turbulent fluid flow, and excitation of
natural structural frequencies of the compressor [40]. Vibration
data were gathered using an accelerometer mounted to the dis-
charge side of the compressor. At this location, measurements
of 40 s in duration were taken at various loading conditions
from eight compressors of the same model. In total, there were
32 loaded, 19 partially loaded, and 20 unloaded measurements.
Based on the expected operating speed of 29.2 rps, the DFT
is examined between 28.5 and 30 Hz. The location of the
maximum value of the magnitude of the DFT in this range
is an estimate of the shaft rotational frequency. The mean
and standard deviation of the peak location for each loading
condition are shown in Table II. This demonstrates that the
compressor shaft rotational frequency is inversely related to
loading.

If both the compressors on a skid are running, they will
likely appear indistinguishable in the power stream. Thus,
for healthy machines the NILM is unable to identify which

TABLE II

A/C POWER FACTOR AND SHAFT FREQUENCY FOR LOADING CONDITIONS

compressor is responsible for a turn-on or loading transient.
With access to the FDD network and one remote sensor,
however, the NILM can track the loading condition of both
the compressors. Upon observing a compressor loading event,
the NILM requests a small sample of vibration data from the
remote sensor deployed to one of the compressors (referred
to as the “monitored compressor”). From this measurement,
the NILM estimates the shaft rotational frequency and, from
that, the loading condition of the monitored compressor. If this
compressor’s loading condition has not changed from what
the NILM last observed, the NILM infers that the loading
event occurred in the other compressor and updates that
compressor’s tracked state accordingly. Otherwise, the NILM
updates the tracked state of the monitored compressor.

C. Crankcase Blower
In the third FDD network strategy, the NILM periodi-

cally requests data from the remote sensor at user-configured
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Fig. 17. FDD strategies described in Sections IV-C and IV-D.

TABLE III

CENTRIFUGAL FAN POWER AND VIBRATION COMPARISON

intervals, as illustrated in Fig. 17 (left). This strategy is moti-
vated by imbalance condition faults, which are often invisible
in the power stream but are apparent in vibration signatures.
A controlled imbalance experiment using a centrifugal fan
demonstrates this claim. Tests involved four conditions: a
normal (balanced) condition and three imbalance conditions.
The imbalance conditions were introduced with weights placed
between blades of the fan’s squirrel cage wheel. Ten power and
vibration measurements of 30 s each were captured at each
operating condition. The fan was operated at 19.2 rps for all
the experiments. For each test, the average apparent power
was computed over the 30-s measurement. Table III shows
the average and standard deviation of these values for each
condition. The magnitude of the DFT at the shaft rotational
frequency is also shown, relative to the normal condition.
The standard deviations of this frequency component were
negligible. These results show that the operating condition did
not change the apparent power. However, the magnitude of
the DFT component at the shaft frequency and the operating
condition are directly correlated. These results align with the
findings presented in [41] and demonstrate a fault condition
that is readily apparent in vibration measurements, but nearly
impossible to diagnose in power measurements.

Similar findings were made onboard USCGC THUNDER
BAY with its MPDE crankcase blowers. These centrifugal
fans draw air from the engine’s crankcase to prevent the
buildup of combustible gases. The #1 MPDE’s blower is
shown in Fig. 18. Each blower is driven by an induction
motor operating at 57.5 rps and acts to maintain a vacuum in
the crankcase. The blowers are fitted with filters to remove
atomized oil from the air drawn from the crankcase. The
mounting arrangement creates an overhang condition, similar

Fig. 18. THUNDER BAY MPDE crankcase blower.

Fig. 19. Cantilever mounting arrangements. (a) Crankcase blower mounting.
(b) Centrifugal fan mounting.

to a cantilever beam, for the induction motor and squirrel
cage wheel. With this configuration, minor manufacturing
defects, deterioration, or debris buildup on the fan blades can
result in imbalance and excessive amounts of vibration. The
blower’s mounting arrangement is illustrated in Fig. 19(a).
The mounting arrangement of the centrifugal fan used during
the controlled imbalance experiment is shown in Fig. 19(b).
Both create an overhang condition.

The accelerometer measurements were first analyzed in
the time domain and are shown in Fig. 20. It is apparent
that there are significant differences in operation between
the two blowers. The vibration signal envelope of the #1
blower is relatively uniform; the signal has an rms value of
0.596 V. The #2 blower displays a low-frequency oscillation at
approximately 1.4 Hz and has an rms value of 0.278 V. Despite
appearing drastically different, drawing firm conclusions from
the time-domain observations alone is difficult. Variations in
mounting, misalignment, bearing faults, and increased loose-
ness of linkages can excite natural frequencies of a machine,
affecting its vibration signal envelope [42]. Analysis of the
vibration signals in the frequency domain provides more
useful insight. The magnitudes of the first six orders in the
frequency domain for both the blowers are shown in Fig. 21.
The frequency content of the #1 blower is dominated by the
first order. As shown during the controlled centrifugal fan
experiment, this can indicate an imbalance condition in which
an eccentric mass is oscillated once per shaft rotation [42].
The #1 blower is likely imbalanced due to an uneven buildup
of soot and coagulated oil within the blower’s rotating filter.

The steady-state apparent powers of the #1 and #2 blowers
were approximately 646 and 786 VA, respectively. Without
historical data, it is difficult to attribute the discrepancy in
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Fig. 20. Crankcase blower time-domain comparison. (a) #1 Crankcase
blower. (b) #2 Crankcase blower.

Fig. 21. Crankcase blower frequency-domain comparison. (a) #1 Crankcase
blower. (b) #2 Crankcase blower.

apparent power to a specific fault. Changes in power can
be attributed to complex factors particular to the system,
such as restrictions and leaks [37]. However, large first-order
frequency content in vibration is a well-established indicator of
imbalance [41], as corroborated by the controlled experiment.
In practice, this type of load operates continuously, so turn-on
and turn-off events will be sparse. With the proposed FDD
network strategy, the NILM continually performs spectrum
analysis on the periodically acquired vibration signals to
generate diagnostics of imbalance conditions.

D. Sewage Vacuum Pumps

The final FDD network strategy presented addresses the case
in which a load of interest does not draw power from a panel
monitored by the NILM. For this strategy, the remote sensing
device sends measurements to the NILM whenever it detects
a signal exceeding a user-configured level, as illustrated in
Fig. 17 (right). A pair of positive displacement vacuum pumps
onboard USCGC THUNDER BAY provide a case study. These
pumps maintain vacuum in the sewage collection tank and do
not draw power from the panel monitored by the NILM on the
ship. The vacuum sewage pumps operate in a lead-lag fashion,
in which the primary pump turns on when vacuum in the
collection tank drops below 12 inHg and the secondary pump
turns on when vacuum drops below 10 inHg [43]. Once the
collection tank vacuum reaches 18 inHg, both the pumps turn
off and swap designations as primary and secondary pump,

Fig. 22. Vacuum pump time-domain comparison (prerepair). (a) #1 Vacuum
pump. (b) #2 Vacuum pump.

i.e., the primary pump becomes the secondary. These pumps
are mounted on top of a small water tank that provides pump
cooling and a fluid medium for the pumps to build vacuum
via the Venturi effect.

The wireless sensor platform captured vibration data from
both the vacuum pumps using an accelerometer attached to
each pump’s motor housing. Fig. 22 shows the resulting time-
domain measurements. The #2 pump exhibits a significantly
higher rms value of vibration (1.013 V) than the #1 pump
(0.306 V). Common fault diagnostic wisdom states that an
increase in a machine’s vibration level indicates deteriorated
operation or a fault. Indeed, faults involving imbalances,
mounting, or bearings can increase the vibration levels [42].
Without baseline measurements, one may be inclined to
assume that the #2 pump is operating improperly since its
vibration level is clearly larger than the #1 pump, which
is supposed to be identical. The following demonstration of
sophisticated signal processing techniques yields a surprising
result: the #2 pump is healthy and #1 pump is the faulty one.
By exploiting the cyclostationary nature of rotating machinery,
these techniques offer this conclusion even without historical
knowledge of the pump operating conditions.

Vibration measurements from rotating machinery are
often modeled as realizations of cyclostationary random
processes [34], [44], [45]. Cyclostationary random processes
are characterized by periodic mean and autocorrelation func-
tions [45]. Periodic vibrations of rotating machinery are due
to shaft rotation, piston reciprocation, and other mechanical
actions. In many systems, these periodic actions are asso-
ciated with vibration content that is hard to model analyt-
ically such as friction, turbulent flow, and other physical
factors. Vibrations from these phenomena are more broad-
band in frequency and are often modeled as random, with
periodic actions modulating the random content. Cyclosta-
tionary signal processing tools provide important insights,
for example, estimates of the spectral correlation function,
or if normalized, the spectral coherence function. These esti-
mates can quantify the frequency of the periodic actions and
the nature of the modulation. The mean envelope spectrum
(MES) is calculated from the spectral coherence function.
Lines in the spectral coherence map at a specific cyclic
frequency correspond to relative peaks in the MES and indicate
cyclostationarity [22], [33].

Authorized licensed use limited to: MIT. Downloaded on August 09,2024 at 17:40:40 UTC from IEEE Xplore.  Restrictions apply. 



LANGHAM et al.: SECURABLE NETWORKS FOR NONINTRUSIVE SENSOR FUSION 3500513

Fig. 23. Vacuum pump MES comparison. (a) Vacuum pump MES (prerepair).
(b) Vacuum pump MES (postrepair).

Detailed mathematical discussions and intuitive examples
of cyclostationary analysis are presented in [22] and [33].
Only the necessary definitions for the vacuum pump analysis
are presented in this section. The spectral coherence function
γ α

x ( f ) is defined as

γ α
x ( f ) = Ŝα

x ( f )√
Ŝ0

x

(
f − α

2

)
Ŝ0

x

(
f + α

2

) (1)

where Ŝα
x ( f ) is the spectral correlation function for a signal

x , f is the carrier or center frequency, and α is the cyclic
frequency. For α = 0, the spectral correlation function is equal
to the traditional power spectral density (PSD). Equation (1)
shows that the spectral coherence is the spectral correlation
function normalized by a function of values from the PSD.
The MES S< f >

x (α) over some range of carrier frequencies F
is defined as

S< f >
x (α) = 1

|F |
∫

F
|γ α

x ( f )|d f (2)

where F is chosen by the analyst and the upper bound of
F is limited to one half of the sampling frequency (Nyquist
frequency) [45]. Equation (2) defines the relationship between
the spectral coherence and the MES.

In the case of the sewage pump, shaft rotation is the
main periodic action that modulates broadband content. The
vacuum pump motors are rated to operate at 57.5 rps. Thus,
relative peaks in the MES at cyclic frequencies around 57.5 Hz
and its integer multiples are expected. Fig. 23(a) depicts the
MES of both the vacuum pumps as initially encountered on
THUNDER BAY. The MES of the #1 pump has peaks at many
cyclic frequencies unrelated to a reasonable shaft rotational
frequency. The MES of the #2 pump has expected peaks
at multiples of 58.25 Hz. Typically, MES values at cyclic

Fig. 24. Deteriorated vacuum relief valve.

Fig. 25. Vacuum pump time-domain comparison (postrepair). (a) #1 Vacuum
pump. (b) #2 Vacuum pump.

frequencies that correspond to machine physics dominate
the MES. When comparable in size to peaks without direct
physical explanation, there is little modulation of broadband
content and the system is likely not operating as intended.
In addition, for systems with negligible broadband frequency
content, the normalization in (1) with small values of the
PSD could give rise to artificially large values of the spectral
coherence function. Abnormal operation of the #1 pump is
further confirmed by investigation of the area around 59 rps
circled in Fig. 23(a). The MES peak of the #1 pump is at
a noticeably higher cyclic frequency of 59.93 Hz. The shaft
rotational frequency is very close to synchronous speed. This
indicates the motor operates at very low slip and corresponds
to a small load torque.

The differences in the MES prompted further examination of
the system. Upon inspection, the #1 pump was not maintaining
its water prime from the seal tank. Loss of prime causes
the pump housing to become air-bound and deteriorates the
pump’s ability to build vacuum. The source of the fault was
finally identified as the deteriorated sealing surfaces of the
vacuum relief valve. Fig. 24 shows the deteriorated valve and
its sealing surfaces.

Fig. 23(b) shows the MES profile from measurements taken
after cleaning the sealing surfaces and reinstalling the valve.
After repair, the MES of the two pumps is nearly identical and
the additional MES peaks have vanished. The vibration of the
#1 pump, as shown in Fig. 25, increased to an rms value of
0.571 V. Though the #1 pump’s vibration level increased, it is
still notably less than the #2 pump’s rms value of 1.105 V. This
may be the result of the differences in cumulative run time,
mounting condition, or impeller health, but further inspection
is required to confirm these suspicions.
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This fault demonstrates that degraded operation can present
counterintuitive time-domain vibration signatures. Without the
aid of power stream data, cyclostationary vibration analysis
successfully diagnosed the faulty relief valve. To integrate this
diagnosis into the FDD network, the wireless sensor platform
should alert the NILM when there is sufficient vibration
to be of interest. Since MES calculation is computationally
expensive, the sensor platform sends data either continuously
or periodically to the NILM, which uses its higher computing
power to perform MES analysis for fault detection.

V. CONCLUSION

Conventional nonintrusive power monitoring allows for
energy management and fault diagnostics with a low sensor
count. This work demonstrates that these abilities can be aug-
mented with minimally invasive sensors to integrate auxiliary
measurements. In facilitating online analysis, a local intranet
of distributed sensors offers many of the benefits of the IoT
model while avoiding the inherent security issues of using a
public channel. Wireless networks provide advantages such
as ease of setup and scalability. Wi-Fi testing and equipment
diagnostics aboard ships show that this is a practical and
flexible sensing solution for industrial sites. Four FDD network
strategies for data acquisition are proposed, along with relevant
case studies in condition monitoring.
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