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Multistream Power Monitoring for Energy Systems
Aaron W. Langham, Thomas C. Krause, Daisy H. Green, Steven B. Leeb

Abstract—Power monitoring provides services such as billing,
power system diagnostics, condition-based maintenance, and
continuous commissioning. Many monitoring applications assume
that grid voltage conditions are “stiff” while analysis focuses on
load variations. Future power networks will more prominently
include microgrids and distributed energy resources. Although
power monitoring will be more important to these systems, it
will also be made more difficult by lower generation inertia,
higher source impedance, and increased exposure to generation
control methods. This work provides a re-examination of a high
bandwidth power monitor’s preprocessing front-end for systems
without a stiff voltage waveform. Preprocessing techniques are
presented for adapting to nonstationary voltage amplitudes and
frequencies. Simultaneous use of these techniques creates a
“multistream” strategy to power monitoring, in which several
data streams are produced and the most appropriate stream(s)
for a given monitoring task can be selected.

Index Terms—Power monitoring, low-inertia power systems,
microgrids, data preprocessing

I. INTRODUCTION

Microgrids, distributed energy resources (DERs), and con-
ventional bulk power systems benefit from power monitor-
ing [1], [2]. Monitoring enables usage tracking, billing, and
condition-based maintenance [3], [4]. Machine learning and
automated systems can supplement or replace human operators
in performing these tasks [5]. Both machine learning systems
and human operators perform best with properly presented
data. Nonstationary data distributions drastically complicate
both training and inference for a machine learning system.
Preprocessing techniques can mitigate or exacerbate this is-
sue. Preprocessing includes a multitude of data manipulation
techniques including filtering, basis transformation, and resam-
pling [6]. In the context of ac electrical energy systems and
microgrids in particular, currents and voltages are typically
sampled at the kilohertz level. However, this data is highly
redundant, as most electrical signals of interest effectively
“modulate” a 60 Hz carrier wave and its harmonics [7].
Preprocessing is important for power monitoring because it
can exploit these physics-based properties to compress the data
to a lower dimension without losing meaningful information.

In electrical systems, the distribution of power data may
vary due to changing grid conditions. Source-driven variations
include generation voltage waveform deviations, both in am-
plitude and frequency. Load-driven variations include dynamic
power consumption and harmonic content. For a given moni-
toring problem, only one of these variations may actually be of
interest. Nonintrusive load monitoring serves as an illustrative
example. A nonintrusive load monitor (NILM) disaggregates
a system’s power consumption profile into individual load
activity. A wealth of techniques have been developed for load
identification in residential settings [8]. NILM techniques have
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Fig. 1: Visualization of source-driven variations in voltage
amplitude that lower cluster separability.

also been developed for load forecasting [9] and load schedul-
ing [10]. In industrial settings, NILMs have been shown to
be useful for performing fault detection and diagnostics on
loads [11]. These applications are primarily concerned with
load-driven variations, yet are confounded by source-driven
variations. To illustrate, Fig. 1 shows an example visualization
of source-driven variations in voltage amplitude. This data
was generated to match the distributions of four shipboard
electrical loads presented in [12], modeled to be linear. Each
black dot represents an “ON” electrical event, plotted as the
steady-state difference in real and reactive power. The shaded
polygons show the convex hulls of the event distributions after
applying a ±10% deviation in the system voltage amplitude.
With this added ambiguity, the individual clusters of loads
overlap and become more difficult to separate. This presents
a problem for identification and diagnostic techniques that
rely on separating data for different loads. For example, for
diagnostics it is important to be able to distinguish source-
driven changes in load power from changes due to degradation
or other dynamic conditions, such as changes in system
operating pressures or temperatures.

This work addresses source-driven variations due to de-
viations in the frequency and amplitude of system voltage
waveforms. The contributions of this paper are as follows:

1) Techniques for adapting conventional spectral envelope
preprocessing to grids with nonstationary frequencies
and voltage amplitudes.

2) Mathematical characterizations of these techniques’ util-
ity across different types of electrical loads.
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3) An evaluation of these techniques on data collected on
a shipboard microgrid.

Section II gives a review of power computation techniques
and spectral envelope processing. Section III discusses design
choices in adapting spectral envelope processing to nonsta-
tionary grid frequencies. Section IV develops preprocessing
techniques that correct for voltage amplitude variations, which
can be combined into a preprocessing system outputting
multiple data streams. Section V gives an examination of these
techniques’ suitability for different loads. Finally, Section VI
presents data from a marine microgrid to demonstrate the
efficacy of these techniques.

II. POWER COMPUTATION METHODS

Many power computation techniques exist to extract useful
signals and figures of merit for ac electrical energy systems
[13]. An elementary measure of power is instantaneous power
transfer, which is simply the product of voltage and current.
A rolling average of instantaneous power yields average real
(or active) power, useful for billing purposes and estimating
long-term physical work done by a system. The product of
the root-mean-square (rms) values of voltage and current
yields apparent power, which is useful for sizing generation
and transmission components. A lag or lead in the current
waveform with respect to the voltage waveform produces a
displacement factor, representing energy storage in the system.
Currents at frequencies other than the utility frequency pro-
duce a distortion factor, indicating harmonic content. Although
some fields use the term reactive power to refer to both [14],
this work reserves the term for periodic energy storage at the
fundamental frequency due to a displacement factor. Phasor
quantities for real power (P ), reactive power (Q), and apparent
power (S) simplify analysis for sinusoidal ac grids. Classical
power system analysis tracks these quantities in steady-state
grid operation.

Modern power monitoring techniques for ac grids extend
these notions to dynamic grid behavior, such as changes in
plant or load profile and random disturbances [15]. These
dynamics often occur over a few utility line cycles. As a
result, they are effectively invisible to steady-state analysis.
Power spectral envelopes capture fine-grained temporal be-
havior and enhance the resolution of electrical features from
current measurements [7], [16]. When appropriately scaled,
the fundamental quadrature and in-phase spectral envelopes
approximate real and reactive power in steady state. Higher-
order harmonic spectral envelopes preserve information about
current waveform distortions. For a system with a sinusoidal
voltage waveform, average power flows only at the funda-
mental frequency. However, scaling harmonic current spectral
envelopes by a voltage scale factor produces values with
units of power, dimensionally compatible with the more phys-
ically related fundamental quadrature and in-phase spectral
envelopes. For both the fundamental and higher-harmonic
cases, the choice of voltage scale factor is a design choice
that can target different monitoring goals.

Consider one window of time corresponding to a line cycle
of an ac system’s voltage waveform, starting at the positive

zero crossing. Sampling the current waveform over this time
yields sequence i[n] with number of sampling points N . The
following equations produce spectral envelopes Pk, Qk, at
harmonic order k:

Pk = −Vs

N
imag{I(kf0)}, (1)

Qk =
Vs

N
real{I(kf0)}. (2)

Here, f0 corresponds to the grid frequency and I(kf0) cor-
responds to the discrete-time Fourier transform (DTFT) of
i[n], sampled at kf0. The voltage scale factor Vs transforms
units of current into units of power. For k = 1 and Vs

equal to the system voltage amplitude (denoted Vpk), P1

and Q1 approximate the traditional phasor values of real and
reactive power in steady state. This system is phase-aware and
requires sensing both the voltage and current. A system that
only measures current is limited to computing apparent power
spectral envelopes Sk:

Sk =
Vs

N
|I(kf0)| =

√
P 2
k +Q2

k. (3)

This type of computation is phase-unaware. Variables Vpk and
f0 are nearly constant on systems with stiff voltage waveforms.
However, these quantities deviate from their nominal values
on all practical grids, especially microgrids. These deviations
may be constant or time-varying in nature. Although Vpk and
f0 may contain deviations faster than the grid frequency, this
work only considers the case in which Vpk and f0 are locally
constant for the duration of one line cycle.

This work presents five power spectral envelope processing
techniques that adapt to non-ideal voltage waveforms. The first
technique adapts to variations in system frequency (f0). The
other four techniques compensate for variations in voltage
amplitude (Vpk). Each technique is useful for a different
purpose, including enhancing the success of machine learn-
ing recognition and condition-based maintenance. In many
systems, abundant computation power allows a designer to
“mix and match” these techniques and produce multiple
data streams, referred to here as a “multistream” approach.
The most useful streams for a given monitoring task can
be retrieved in later analysis. The frequency adaptation and
amplitude adaptation techniques are independent. Thus, both
frequency and amplitude adaptation can be achieved by using
the technique in Section III in conjunction with one of the
techniques in Section IV.

III. FREQUENCY ADAPTATION

Power spectral envelope computation requires an estimate
of the system frequency to properly sample the DTFT. This
frequency estimate f̂0 is typically either obtained in real time
with sensors or approximated as the nominal value (e.g., 60
Hz in the US). Differences between the estimated and actual
system frequency introduce artifacts in the computed power
spectral envelopes. The magnitude of the frequency estimation
error dictates the size and severity of these artifacts. Depending
on the system requirements, these artifacts may warrant extra
sensing to obtain a better frequency estimation. This section
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Fig. 2: Oscillatory artifacts in phase-unaware spectral en-
velopes as a result of incorrect system frequency estimation.

characterizes the size and character of the artifacts introduced
by deviations in grid frequency for both phase-unaware and
phase-aware spectral envelope computation.

A. Phase-Unaware

A phase-unaware monitoring scheme only measures cur-
rents. This facilitates a minimal sensor profile and lowers
hardware requirements. A phase-unaware system computes
apparent power spectral envelopes (Sk) from the DTFT of
i[n] as shown in Eq. (3). Although this method loses phase
information such as power factor, it preserves magnitude
estimates of fundamental and harmonic currents. If the actual
and estimated grid frequencies do not match, the output Sk

stream contains an oscillatory artifact. Fig. 2 shows this artifact
for a simulated 1000 VA load on a nominally 60 Hz system,
as the system frequency steps from 59 Hz to 61 Hz.

The frequency of this artifact is approximately equal to
twice the difference in expected and actual system frequencies.
To explain this analytically, first assume that a continuous-time
integral producing the function S(t) approximates the output
stream of (3) for k = 1:

S(t) =
Vs

T̂0

∣∣∣∣∣
∫ t+T̂0

t

i(τ)e−j2πf̂0τdτ

∣∣∣∣∣ , (4)

where T̂0 = 1/f̂0 and f̂0 is the estimated system frequency,
i(τ) is characterized as Ipk cos(2πf0τ), and f0 is the actual
system frequency. The actual current waveform may have a
different phase; this analysis takes it as a cosine wave without
loss of generality. This results in the following integral:

S(t) =
VsIpk

T̂0

∣∣∣∣∣
∫ t+T̂0

t

cos(2πf0τ)e
−j2πf̂0τdτ

∣∣∣∣∣ . (5)

Transforming the cosine term into a sum of conjugate expo-
nentials and performing the integration yields the following:

S(t) =
VsIpk

4πT̂0

∣∣∣∣∣∣
[
ej2π(f0−f̂0)τ

f0 − f̂0
− e−j2π(f0+f̂0)τ

f0 + f̂0

]t+T̂0

t

∣∣∣∣∣∣ . (6)

Carrying out this integral and using the binomial approxima-
tion when computing the magnitude results in an expression
for S(t) in the following form:

S(t) ≈ S0

(
1 +

f̂2
0 − f2

0

2(f̂2
0 + f2

0 )
cos(4π(f̂0 − f0)t+ ϕ)

)
, (7)

where S0 is the correct apparent power value and ϕ is a phase
term unimportant to this analysis. From this expression, it
is clear that the measured apparent power spectral envelopes
oscillate around S0 at a frequency equal to twice the difference
between the estimated and actual system frequencies. In addi-
tion, the amplitude of the artifact as a fraction of S0 is given
by (f̂2

0 − f2
0 )/(2(f̂

2
0 + f2

0 )). For systems with constraints on
expense and computation, a phase-unaware spectral envelope
processing system may be entirely sufficient or may introduce
prohibitively large artifacts. A designer can use this analysis
to determine whether a phase-unaware system is appropriate
for a given monitoring application.

B. Phase-Aware
A phase-aware monitoring scheme requires both voltage

and current sensors. This scheme computes real (Pk) and
reactive (Qk) power spectral envelopes using Eqs. (1) and
(2). Just as in the phase-unaware case, this scheme requires
an estimate of the grid frequency, and errors in this estimate
introduce artifacts in the output Pk and Qk streams. To
illustrate these artifacts, Fig. 3 shows the results of a series
of step changes in system frequency from 59 Hz to 61 Hz
for a simulated 1000 W resistive load on a nominally 60
Hz system. Although not sinusoidal, these artifacts introduce
uncertainty into measurements of real and reactive power. This
uncertainty complicates further efforts at load identification
and diagnostics.

To derive the size of these artifacts as a function of
frequency estimation error, consider the spectral envelope
computation window shown in Fig. 4. This plot shows current
waveforms for four loads with different lag angles denoted
by θ. The following integral for fundamental complex power
(S̄1 = P1 + jQ1) provides an approximation of phase-aware
spectral envelopes for this window:

S̄1 =
Vs

jT̂0

∫ T̂0

0

i(t)ej2πf̂0tdt. (8)

Substituting Ipk sin(2πf0t− θ) as i(t) yields:

S̄1 =
VsIpk

jT̂0

∫ T̂0

0

sin(2πf0t− θ)ej2πf̂0tdt (9)

Performing this integral results in the following expression for
P1 and Q1:

P1 =
VsIpkf̂0

2

π(f2
0 − f̂2

0 )
sin

(
π
f0

f̂0

)
cos

(
π
f0

f̂0
− θ

)
, (10)
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Fig. 3: Constant artifacts in phase-aware spectral envelopes as
a result of inaccurate system frequency estimation.
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Fig. 4: Example spectral envelope computation window when
the expected system frequency differs from the actual system
frequency, for multiple load power factors. The black line at
time 1.0 represents the actual period of the current waveform,
which in this figure is shorter than the expected period.

Q1 = − VsIpkf0f̂0

π(f2
0 − f̂2

0 )
sin

(
π
f0

f̂0

)
sin

(
π
f0

f̂0
− θ

)
. (11)

By altering the values of P1 and Q1, these artifacts distort
the power factor of the system load. The sensitivity of the
output P1 and Q1 with respect to the frequency estimation
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Fig. 5: Plots of P1 and Q1 versus f0 for f̂0 = 60 Hz and θ = 0,
as given in Eqs. (10) and (11). For this load and system, the
Q1 curve is steeper and more sensitive to deviations in f0.
The black dots show the operating points shown in Fig. 3.

error depends on the load displacement angle θ. For a resistive
load (i.e. θ = 0), Q1 is more sensitive to errors in frequency
estimation than P1, which can be seen in Fig. 3. This is due
to the expressions for P1 and Q1 having different sensitivities
to changes in f0, as shown in Fig. 5. If the grid frequency is
known to exist in a given range, a preprocessing mechanism
could mitigate these deviations by using Eqs. (10) and (11) to
find the maximum amount of deviation for both P1 and Q1

for the system, and disregarding electrical transients below this
value.

In some systems, the artifacts introduced in the previous sec-
tions may be entirely tolerable. Otherwise, the power compu-
tation system must estimate the instantaneous grid frequency
to properly sample the DTFT. Intuitively, if the grid transmits
power on a given frequency that shifts in time, the power
computation system should adapt as well. Fig. 6 shows the
phase-aware monitoring scenario of Fig. 3, except with a real-
time frequency estimate available to the power computation
scheme. Although the system frequency steps from 59 Hz to
61 Hz, the outputs are resilient to artifacts (except at the points
at which the frequency steps).

IV. AMPLITUDE ADAPTATION

A great volume of research on nonintrusive load monitoring
neglects the effect of voltage amplitude variability [17]. For
high-inertia, low-impedance power systems such as a bulk
power system, the assumption that the voltage amplitude
is “stiff” is often accurate enough to be useful. However,
microgrids have lower inertia than bulk power systems, since
smaller machines or power electronics-controlled resources
usually provide their generation. Accordingly, the voltage
amplitude is less tightly controlled in microgrids than in
bulk power systems. Microgrids also typically have a higher
equivalent source impedance than the bulk power system since
there are fewer generation sources. As loads draw current,
the supply voltage drops across the source impedance before
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Fig. 6: Resulting real and reactive power from an adaptive
power computation scheme while the system frequency steps
from 59 Hz to 61 Hz.

appearing across the load. Source-driven variations in voltage
amplitude often result in a corresponding variation in current
consumption. The choice of the Vs scale factor in Eqs. (1), (2),
and (3) determines how “sensitive” the power computation’s
output is to these changes. This section explores three different
choices for the scale factor Vs: the nominal value, the mea-
sured value, and a scaled value that nulls amplitude deviations.
In addition, this section presents a technique for loads with
constant power components. This section characterizes these
four techniques mathematically. Section V provides further
insight on the utility of these techniques for different loads.
These techniques come secondary to those of Section III
and require an estimate of the system frequency, either from
sensing or a stiff approximation. All four (or some subset) of
these techniques can be computed, producing multiple output
data streams.

A. The Nominal Spectral Envelope

The simplest choice of Vs is simply the nominal voltage
amplitude, e.g. 120V

√
2 ≈ 170 V on US residential grids.

This work refers to this choice as producing a nominal spectral
envelope. Many shipboard NILM deployments use this scheme
[18] and forego the expense associated with voltage amplitude
estimation. However, this method produces spectral envelope
values that do not precisely match the physical quantities of
real and reactive power consumption when the voltage ampli-
tude differs from its nominal value. Fig. 7 shows deviations
introduced into the output real power stream as the voltage
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Fig. 7: Artifacts introduced in simulated non-adaptive power
computation from step changes in the voltage amplitude.

amplitude (denoted A) is stepped on a nominally 120 V (rms)
system with a resistive 1000 W load. As expected of a linear
load, the power consumption changes as the square of the
system voltage. However, the changes in the spectral envelope
stream do not completely match the expected changes in
physical real power consumption (i.e., A2/(2R)).

To examine this discrepancy, consider a phasor model of
the power system. An impedance in the phasor domain with
Z̄ = |Z |̸ θZ characterizes the system load. The phasor
V̄ = A/

√
2̸ 0 represents the system voltage, where A is

the system’s actual, possibly deviating, voltage amplitude. The
phasor domain current is therefore:

Ī =
V̄

Z̄
=

A

|Z|
√
2
̸ −θZ . (12)

Nominal spectral envelope computation for the fundamental
frequency approximates the following:

S̄1 =
VN√
2
Ī∗ = A

VN

2|Z|
̸ θZ , (13)

where VN is the system’s nominal voltage amplitude. Real and
reactive power spectral envelopes are:

P1 = real{S̄1} = A
VN

2|Z| cos θZ , (14)

Q1 = imag{S̄1} = A
VN

2|Z| sin θZ . (15)

This stands in contrast to the actual physical real (P ) and
reactive (Q) power drawn by the load, which are proportional
to A2 rather than A. Therefore, for a linear system, the P1

and Q1 of this technique differ from the physical values of P
and Q by a factor of VN/A (that is, P1 = PVN/A).
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B. The Sensed Spectral Envelope

To produce spectral envelope values P1 and Q1 that are
consistent with physical real and reactive power consump-
tion, this next approach measures the voltage amplitude for
each spectral envelope computation using voltage sensors,
producing a sensed spectral envelope. Representing the voltage
amplitude again as A, this technique sets the scale factor Vs

to be A for each spectral envelope computation. Using the
same phasor analysis and linear system as in Section IV-A,
the value of S̄1 will approximate the following:

S̄1 =
A√
2
Ī∗ =

A2

2|Z|
̸ θZ . (16)

Dividing this into real and reactive power:

P1 = real{S̄1} = A2 cos θZ
2|Z| , (17)

Q1 = imag{S̄1} = A2 sin θZ
2|Z| . (18)

Spectral envelopes that match physical quantities are useful
for certain applications, such as power metering for billing.
However, consider a power monitoring system designed to per-
form load identification and diagnostics. Whenever the system
voltage amplitude increases, either suddenly or over time, the
power consumed by a linear load increases quadratically. This
is apparent in the equations for the P1 and Q1 of this technique
– the spectral envelope values are quadratically sensitive to
A. This is potentially disastrous for load identification and
diagnostics, as a power monitor will perceive this load as
a higher-power load, despite its identity and condition be-
ing unchanged. This frustrates a NILM’s load identification
capability, since faults are sometimes found by examining
subtle changes in steady-state or transient power consumption
in spectral envelopes.

C. The Compressed Spectral Envelope

The third scaling technique aims to undo or compress the
effect of system voltage amplitude variations, creating a com-
pressed spectral envelope. To do so, it estimates the aggregate
load impedance Z̄ over one line cycle using measured voltage
amplitude A and phasor current Ī:

Z̄ =
V̄

Ī
=

A

Ī
√
2
. (19)

Using Z̄, this technique estimates the complex power that
would be consumed by this load at the nominal voltage
amplitude VN :

S̄1 =
V 2
N

2Z̄∗ =

(
V 2
N

A

)
Ī∗√
2
=

V 2
N

2|Z|
̸ θZ . (20)

Matching this equation to Eqs. (13) and (16) and their re-
spective values of Vs shows that this is equivalent to using
Vs = V 2

N/A. This produces the following P1 and Q1:

P1 = real{S̄1} =
V 2
N

2|Z| cos θZ , (21)

Q1 = imag{S̄1} =
V 2
N

2|Z| sin θZ . (22)

These values of P1 and Q1 are no longer functions of
A, “compressing” the effect of voltage amplitude variations.
Importantly, this technique is not ideal for energy scorekeeping
or estimation, since the spectral envelope values it produces
are no longer designed to match physical power consumption.
However, for load identification and diagnostics, this technique
provides a set of load fingerprints that are independent of
exogenous voltage amplitude deviations.

D. The Affine Spectral Envelope

The previous techniques assume a linear view of a grid’s
load. This assumption may fail for loads designed to draw an
amount of power that is independent of the voltage amplitude,
such as power electronics. In practice, they typically also
draw real and reactive power proportional to the square of the
voltage. This work models the power consumption of these
loads as an affine function of A2:

P = αP + βPA
2, (23)

Q = αQ + βQA
2. (24)

In this model, αP and αQ represent the constant power
consumption. Variables βP and βQ represent the power con-
sumption component that behaves as a “linear load.” For
convenience in later analysis, let γP and γQ be defined as
the ratio of constant power consumption to linear power
consumption at the nominal voltage amplitude, for both real
and reactive power:

γP =
αP

βPV 2
N

, γQ =
αQ

βQV 2
N

. (25)

For loads with an entirely constant real power consumption
(i.e. βP = 0), γP = ∞. Linear loads, for which αP =
αQ = 0, correspond to γP = γQ = 0. The final preprocessing
approach, referred to as an affine spectral envelope, removes
a known constant power offset for a given “affine” load,
computes the compressed spectral envelopes of Section IV-C,
and then adds the constant power offset. In this way, only the
“linear” component of the load is rescaled. Let Pc and Qc

represent the compressed spectral envelopes computed over a
given line cycle. The equations for the affine spectral envelope
are:

P1 = Pc + αP

(
1− V 2

N

A2

)
. (26)

Q1 = Qc + αQ

(
1− V 2

N

A2

)
. (27)

As with the compressed spectral envelope, these values of P1

and Q1 are (by design) no longer accurate estimates of real
and reactive power. Instead, they model the load’s expected
real and reactive power signature at nominal voltage amplitude
conditions. In a sense, this technique is a generalization of
compressed spectral envelopes, allowing for non-zero values
of αP and αQ.
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Fig. 8: Sensitivity curves for the first three power computation techniques given in Section IV. (a) Nominal spectral envelopes.
(b) Sensed spectral envelopes. (c) Compressed spectral envelopes.

Preprocessor Technique
Load type Nominal Sensed Compressed Affine

Constant current 0 1 1 –
Constant power 1 0 2 0

Linear 1 2 0 0
Affine |γ−1|

|γ+1|
2

|γ+1|
2|γ|
|γ+1| 0

TABLE I: Sensitivity for each voltage amplitude scaling
technique across constant current, constant power, linear, and
affine loads.

V. SENSITIVITY ANALYSIS

These techniques’ sensitivities to actual voltage amplitude
A reveal which are most useful for a given monitoring
application. The following sensitivity analysis considers real
power spectral envelopes without loss of generality. However,
the analysis also applies for reactive and apparent spectral
envelopes. For real power spectral envelope P1, let PN de-
note its value at a nominal voltage amplitude. The percent
difference of P1 from PN is (P1 − PN )/PN . Similarly, for
measured voltage amplitude A and nominal voltage amplitude
VN , the percent difference is (A − VN )/VN . The derivative
of the percent difference in P1 with respect to the percent
difference in A yields the sensitivity, as follows:

∂(P1 − PN )/PN

∂(A− VN )/VN
=

VN

PN

∂P1

∂A
. (28)

Finally, taking the absolute value and evaluating at A = VN

yields:

Sensitivity = VN

∣∣∣∣ 1

PN

∂P1

∂A

∣∣∣∣
A=VN

. (29)

Linear loads obey Ohm’s law and are characterized by an
impedance |Z |̸ θZ . For these loads, PN = V 2

N cos θZ/(2|Z|).
Making this substitution and evaluating at A = VN yields the
following expression for sensitivity:

Sensitivity =
2|Z|
VN

∣∣∣∣ 1

cos θZ

∂P1

∂A

∣∣∣∣
A=VN

. (30)

Substituting for P1 for each technique yields the sensitivity
of each technique for linear loads. Table I shows the results

of similar analysis for constant current amplitude, constant
power, linear, and affine loads. Quadratic sensitivity, e.g. for
linear loads using the sensed spectral envelope, corresponds to
a sensitivity value of 2. The sensitivity of nominal, sensed, and
compressed spectral envelopes for affine loads is a function of
γP . For constant current loads, there are no well-defined values
of α and β, so affine spectral envelopes cannot be applied.

Notably, six combinations result in an output P1 that is
insensitive to A, as shown in bold in Table I. To illuminate
this, Fig. 8 shows simulated sweeps of voltage amplitude and
the corresponding preprocessor output, for each combination
of load type and technique. Affine loads and affine spec-
tral envelopes are not shown, since affine loads’ sensitivity
depends on γP and affine spectral envelopes are not well-
defined for constant current loads. In Fig. 8a, the output P1 is
insensitive to amplitude deviations for constant current loads,
and approximately linearly sensitive to amplitude deviations
for linear and constant power loads. Fig. 8b shows a similar
insensitivity for constant power loads, but an especially high
(approximately quadratic) sensitivity for linear loads. Finally,
Fig. 8c shows that the final technique is insensitive for linear
loads, but approximately quadratically sensitive for constant
power loads. In a sense, the technique of Section IV-A
provides a trade-off, where linear and constant power loads
will always be sensitive to deviations in voltage amplitude,
but never quadratically. A designer can choose one of these
spectral envelope processors based on the load composition or
compute all four in real time and select the most useful one
in later analysis.

VI. DEMONSTRATION

This section presents actual field data from a shipboard
microgrid to illustrate the utility of the presented amplitude
scaling techniques. The proposed processing addresses char-
acteristics of nearly all microgrids. For example, microgrids
typically switch between “grid-connected” and “islanded” op-
erating modes [19]. The character and statistical distribution
of the voltage supply waveform will likely change discretely
when the operating mode is changed. This phenomenon is
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Fig. 9: Measured system frequency on USCGC Sturgeon
over a one-day period for both islanded and grid-connected
configurations. One frequency sample is shown every five
minutes.
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Fig. 10: Measured system voltage amplitude on USCGC
Sturgeon over a one-day period for both islanded and grid-
connected configurations. One voltage sample is shown every
five minutes.

exhibited in shipboard electrical systems as they switch gen-
eration sources when getting underway or coming in port [20].
In addition, microgrids often contain lower-inertia generation
sources that make voltage waveform regulation difficult. Ship
power systems are inherently low-inertia when underway, as
they typically rely on a select set of small generators in their
plant lineup [21], [22]. On shipboard grids, the system voltage
waveform’s character varies constantly due to changing load,
generator paralleling, and switching operating modes. For
instance, load dynamics cause large changes in voltage am-
plitude and frequency as generators and their controls cannot

instantly respond to changes in demand. Finally, droop control
allows multiple generators to share the ship’s electrical load,
but by design the system frequency drops as the load increases
[23].

Fig. 9 shows a comparison of grid frequency quality
across microgrid operation modes for US Coast Guard Cutter
(USCGC) Sturgeon, an 87 ft. (27 m.) patrol boat. This plot
shows frequency data for 24-hour periods of both islanded
(underway) and grid-connected (in port) operation. The dashed
black line indicates the nominal 60 Hz value. The frequency
is clearly better regulated in grid-connected mode than in
islanded mode. This ship uses two three-phase ac generators,
which provide much less inertia than the terrestrial grid.
Fig. 10 shows an analogous comparison of voltage amplitudes
across modes. Again, the islanded and grid-connected values
differ significantly. In islanded mode the plant creates a
nominally 450 V grid (measured line-to-line, rms). When on
shore power (i.e., grid-connected) the terrestrial bulk power
system supplies the ship with 480 V (line-to-line, rms). The
average voltage amplitude differs between the two modes
by approximately 42 V, which is more than 6% of the
nominal 636 V value. The adaptation techniques of Section III
and Section IV are demonstrated in this section in order to
compensate for these inconsistent voltage waveforms.

A. Separability Analysis

This section examines electrical events identified on
USCGC Sturgeon across a 15-day period, in which the ship
operated in both underway and in-port modes. Fig. 11 shows
steady-state changes in real and reactive power of each elec-
trical event using the first three techniques of Section IV.
The three plots all show the same physical events, but us-
ing different preprocessing. These events correspond to five
distinct shipboard loads with unique real and reactive power
consumption profiles. Thus, all three preprocessing methods
are able to distinguish these events into distinct clusters.
However, the distance between clusters differs in each plot,
suggesting that classification difficulty varies across all three
techniques. This distance between clusters, referred to as sep-
arability, is important to the ability of data-driven techniques
to support load identification and diagnostics. Since load
electrical behavior can drift over time, clusters of loads may
become close enough to be indistinguishable [12]. As shown in
Section I, voltage amplitude variations cause electrical events
to occupy an enlarged feature space region. The silhouette
score is a figure of merit for cluster separability [24]. The
following equation computes the silhouette score s across D
data points:

s =
1

D

D∑
i=1

bi − ai
max(ai, bi)

, (31)

where ai is the average Euclidean distance between point i and
the other data points in the same cluster, and bi is the average
distance between point i and each point in the next-closest
cluster. This score is bounded by [−1, 1], with a higher score
representing a highly separable set of clusters. The silhouette
scores for Fig. 11a, Fig. 11b, and Fig. 11c are 0.60, 0.66, and
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Fig. 11: Electrical events on USCGC Sturgeon across a 15-day period, plotted in the steady-state real and reactive power
feature space, using the techniques of Sections IV-A to IV-C. (a) Sensed spectral envelopes. (b) Nominal spectral envelopes.
(c) Compressed spectral envelopes.
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Fig. 12: Q1 during the startup transient of the waste vacuum pump on USCGC Sturgeon. Transients are shown for both
grid-connected and islanded modes of the ship’s microgrid. (a) Sensed spectral envelopes. (b) Compressed spectral envelopes.

0.69, respectively. These scores show that compressed spectral
envelopes provide greater feature space separability for this
system.

The orange cluster in Fig. 11 corresponds to a waste
vacuum pump on USCGC Sturgeon. This pump serves as
an example of a load that benefits from using compressed
spectral envelopes. In Fig. 11a, this cluster appears to consist
of two distinct regions. However in Fig. 11c, preprocessing
compresses the two regions into one. The vertical separation
into two clusters with sensed spectral envelopes is due to the
difference in the ship’s voltage amplitude between in-port and
underway operation. Specifically, the bottom cluster (at Qss

around 2 kVar) corresponds to the 450 V generator system
used while underway, and the top cluster corresponds to the

480 V power source supplied by the terrestrial grid while
in port. This pump uses a 3-phase grid-connected induction
motor, which has an associated inrush in its startup power
transient that serves as a telltale of its operation. Fig. 12 shows
the Q1 stream (computed with sensed and compressed spectral
envelopes) for several startup transients of this load. Transients
from grid-connected operation are in blue and transients in
islanded operation are in orange. In Fig. 12a, the peak and
steady-state values of Q1 are lower in islanded mode than
in grid-connected mode, since the islanded voltage amplitude
is less than the grid-connected voltage amplitude. However,
in Fig. 12b, the two modes have almost identical startup
transients due to compressive preprocessing. This example
shows the benefit of compressive preprocessing for enabling
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Fig. 13: Scatter plot of P and Q of the vacuum pump on
USCGC Sturgeon for varying voltage amplitudes. The dashed
lines show linear regressions of both P and Q versus the
square of the voltage amplitude.
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Fig. 14: Vacuum pump electrical events plotted in the steady-
state real and reactive power feature space using affine spectral
envelopes. Convex hulls are plotted for the corresponding
events using this and the other three amplitude compensation
techniques.

easier identification of this load from an aggregate power
steam.

B. Affine Compensation

Computing affine spectral envelopes for a load using
Eqs. (26) and (27) requires an estimate for αP and αQ. If
these are not known a priori, a model built from empirical
voltage and power observations from the load can produce
them. To illustrate this, Fig. 13 shows a scatter plot of real and

reactive power data (computed with sensed spectral envelopes)
versus supply voltage amplitude for the vacuum pump on
USCGC Sturgeon. As an induction motor, this load’s power
consumption contains a constant component. The dashed lines
show the results of a linear regression of these P and Q data
points as a function of the square of the voltage amplitude
(i.e., A2). These regression lines produce estimates of αP and
αQ as 3.32 kW and -3.07 kVar, respectively.

Finally, Fig. 14 shows the cluster of vacuum pump electrical
events using affine spectral envelopes and the values of α
estimated with the linear regression. The red polygon shows
the convex hull of this cluster of data. The blue, orange,
and green polygons show the corresponding convex hulls
to the clusters formed by the other three amplitude scaling
techniques. The affine spectral envelope cluster encompasses
a much smaller area than the other techniques. Using physical
knowledge of the character of a load can therefore produce
highly compressed clusters of load data for future pattern
recognition and load diagnostics. Similar analysis can be
developed for loads with other nonlinear profiles.

VII. CONCLUSION

Modern computing power has made spectral envelope pro-
cessing and storage fast and cheap. A high-bandwidth power
monitor can run a number of preprocessors in real time, each
targeted to a different monitoring goal. This “multistream” ap-
proach can simplify the task of making power data actionable.
Although the case study presented in this work is limited to
voltage amplitude and frequency deviations, this work can be
extended to many other exogenous variations, such as change
in load demand.
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