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Abstract: This paper describes the use of a harmonic
sensor to estimate load composition from aggregate cur-
rent waveforms. This sensor computes spectral envelopes
that are short-term estimates of the fundamental and
harmonic components of observed currents. With some
limitations, this spectral information enables the accu-
rate estimation of the number and type of physical com-
ponents connected to sections of the electric power grid.
This knowledge could allow a more precise control of
steady-state and dynamic system behavior under all op-
erating conditions. Preliminary experiments with a spec-
tral envelope preprocessor have been conducted, and re-
sults from a hardware prototype are presented.

I. Background

The spectral envelope preprocessor introduced in [1]
and [2] computes short-term estimates of the fundamen-
tal and higher harmonic components of measured cur-
rents. In [1] and [3], load turn-on transients or “events”
in spectral envelope estimates were used to develop a
transient event detector for a nonintrusive load monitor
(NILM). The NILM determines the operating schedule
of the major electrical loads in a building from measure-
ments made solely at the utility service entry. With the
incorporation of the transient event detector, the applica-
bility of the NILM is expanded to commercial and indus-
trial environments where significant efforts, e.g., power
factor correction and load balancing, are made to homog-
enize the steady-state behavior of different loads. The
transient event detection algorithm permits the NILM
to recognize individual loads by examining transients in
measured spectral envelopes computed from the aggre-
gated current waveforms available at the service entry.

The transient event detection algorithm is able to dis-
tinguish different electrical loads because the transient
behavior of a typical load is strongly influenced by the
physical task it performs. The turn-on transients associ-
ated with a fluorescent lamp and an induction motor, for
example, are distinct because the physical tasks of ignit-
ing an illuminating arc and accelerating a rotor are fun-
damentally different. Distinctive transient profiles tend

to persist even in loads which employ active waveshap-
ing or power factor correction. The algorithm operates
well even when many transients overlap to a significant
degree.

At some high rate of event generation, the overlap of
transients generally becomes so severe that the transient
event detector is unable to distinguish individual load
turn-on events. The peak tractable rate of event gen-
eration determines the extent to which the NILM with
transient event detector can be “nonintrusive.” A resi-
dence or moderate size commercial or industrial facility
could generally be nonintrusively monitored with data
from just the utility service entry. A very large facility or
a substantial portion of the utility distribution network,
on the other hand, probably could not be nonintrusively
monitored to reveal detailed information about individ-
ual loads. These large sites typically have too many loads
and too many events for the event detection algorithm
to operate reliably. Smaller sections of these large target
sites would have to be selected for successful nonintrusive
transient monitoring with the event detector.

It may still be possible, however, to nonintrusively
glean useful information about load composition at these
larger sites. Several authors have observed interesting,
potentially informative variations in power and harmonic
content at different points in the utility distribution sys-
tem (see [4], for example). This paper describes a tech-
nique for determining an estimate of load composition
from measured, steady-state magnitudes of spectral en-
velopes.

The next two sections of this paper describe the the-
oretical foundation, implementation, and experimental
results for a spectral envelope estimator. The follow-
ing section describes an algorithm for estimating the sig-
nificant load components from steady-state spectral en-
velopes. The technique is illustrated with results from a
prototype, real-time event detector.

II. Spectral Envelope Estimation

The development of the spectral envelope estimator is
stimulated by the generalized averaging techniques pre-
sented in [9] and by the short time Fourier transform



and Fourier series methods presented, for example, in
[10] and [11] for speech processing and power systems
simulation, respectively. With minor restrictions which
cause no limitations in a practical power systems set-
ting, a waveform x(τ) given as a function of τ may be
described with arbitrary accuracy at time τ ∈ (t− T, t]
by a Fourier series with time-varying, complex spectral
coefficients ak(t) and bk(t):

x(t− T + s) =
∑
k

ak(t) cos(k
2π

T
(t− T + s))

+
∑
k

bk(t) sin(k
2π

T
(t− T + s)) (1)

The variable k ranges over the set of non-negative inte-
gers; T is a real period of time, and s ∈ (0, T ].

The coefficients ak(t) may be found from the formula
[9], [12]:

ak(t) =
2

T

∫ T

0
x(t− T + s) cos(k

2π

T
(t− T + s))ds (2)

Similarly, the coefficients bk(t) are computed by the for-
mula:

bk(t) =
2

T

∫ T

0
x(t− T + s) sin(k

2π

T
(t− T + s))ds (3)

In practice, Eqns. 2 and 3 can be used to compute the
evolution in time of the spectral coefficients ak(t) and
bk(t) as an interval of interest of width T slides over the
waveform x. The coefficients ak(t) and bk(t) as functions
of time will be referred to as the spectral envelopes of x
for the harmonic k.

Estimates of the spectral envelopes of current wave-
forms observed at the utility service entry of a building
have proven remarkably useful for transient event de-
tection in the NILM, for at least two reasons. First,
even for waveforms x with substantial high frequency
content, the frequency content of the spectral envelopes
can be made relatively band-limited. As will be seen,
this tends to ease the sample rate requirements on any
single channel of the transient event detector. Second, in
steady-state operation especially, estimates of the spec-
tral envelopes serve as direct indicators of real and reac-
tive power, as well as potentially undesirable harmonic
content. Demonstrations of these claims follow.

For convenience, let

xc(t) =
2

T
x(t) cos(k

2π

T
t)

and

xs(t) =
2

T
x(t) sin(k

2π

T
t).

represent sinusoids modulated by the function x. Equa-
tions 2 and 3 are equivalent to convolving in time the

integrands xc(t) and xs(t), respectively, with a rectangu-
lar pulse p(t) with unit height extending from time 0 to
time T , and may be written as

ak(t) = xc(t)⊗ p(t) (4)

and
bk(t) = xs(t)⊗ p(t) (5)

where the symbol ⊗ represents the convolution operator.
In the frequency domain, the continuous time Fourier
transform of the spectral envelope ak(t) is

Ak(f) =

∫ ∞

−∞
ak(t)e

−j2πftdt.

From Eq. 4, the magnitude of Ak(f) is equivalent to the
product of the magnitudes of the functions Xc(f), the
Fourier transform of xc(t), and P (f), the Fourier trans-
form of the pulse p(t). Similarly from Eq. 5, the mag-
nitude of Bk(f), the continuous time Fourier transform
of bk(t), is the product of the magnitudes of Xs(f), the
transform of xs(t), and P (f).

The effect of computing the spectral coefficients as an
integral or average over the interval T is to attenuate the
high frequency content of the spectral envelopes. Equiv-
alently, the high frequency content of the spectral en-
velopes is attenuated by the (roughly) low-pass charac-
ter of P (f). The localization or high frequency attenu-
ation in the frequency content of the spectral envelopes
increases as the interval T increases in extent.
Each spectral coefficient indicates as a function of time

the relative contribution of a sinusoid in the summations
of Eq. 1. By varying the interval T it is possible to
restrict to an essentially arbitrary degree the frequency
content of the spectral envelopes, regardless of the har-
monic k under consideration. A decomposition of even a
relatively broad-band waveform x into spectral envelopes
permits a trade-off, therefore, between sample rate per
data channel and the number of data channels employed.

A second advantage of examining a waveform x in
terms of spectral envelopes is the potential correspon-
dence of the coefficients to familiar physical quantities
in steady state. The term “steady state” is here taken
to refer to a waveform or section of a waveform that is
periodic. The interval T is presumed to be a positive
integer multiple of the fundamental period of this wave-
form. Consider, for example, the situation in which the
waveform x corresponds to an observed current waveform
on a single phase of a utility system with a sinusoidal
voltage waveform. For purposes of illustration, consider
the voltage to be a cosine with angular frequency 2π/T .
Intuitively, Eqns. 2 and 3 compute the spectral coeffi-
cients by demodulating the periodic waveform x with an
appropriate, harmonic sinusoid and low-pass filtering to
preserve only the resulting lowest frequency components.
For a periodic current waveform x with period T , the



Figure 1: Spectral Envelope Estimator

spectral coefficient a1(t) corresponds to a quantity that
is proportional to the conventional definition of real or
“time average” power [13]. Similarly, the coefficient b1(t)
is proportional to reactive power. Higher order spectral
coefficients correspond to in-phase and quadrature har-
monic component content as in a conventional Fourier
series decomposition of a periodic waveform.

While not necessarily essential, the ability to associate
spectral envelopes with physical quantities is comfort-
ing when employing spectral envelopes as “fingerprints”
for identifying loads. Variations in real and reactive
power and harmonic content tend to be closely linked
to the physical task or energy conversion process being
performed by a load. Load classes that perform physi-
cally different tasks are therefore distinguishable based
on their transient behavior [1]. Since the spectral en-
velopes are closely linked to telltale physical quantities,
they serve as reliable metrics for identifying loads. Even
when rates of event generation are so high that the tran-
sient event detection algorithm can not identify individ-
ual loads, it may still be possible to use steady-state or
near steady-state spectral envelope characteristics to de-
termine aspects of load composition.

III. Envelope Preprocessor

This section reviews the design of a hardware imple-
mentation of a spectral envelope preprocessor for use in
the transient event detector. The preprocessor computes
an estimate that approximates the spectral envelope in-
tegrals of Eqns. 2 and 3. Figure 1 illustrates the com-
putation implemented in a single channel of the spectral
envelope preprocessor. An observed current waveform

i(t), equivalent to the waveform x in the previous sec-
tion, is mixed with a continuous time “staircase” or ba-
sis sinusoid. This basis sinusoid is constructed from dis-
crete time samples, vb[n], of a desired, highly oversam-
pled waveform. Analytically, these samples are reconsti-
tuted into a continuous time waveform by a zero order
hold (ZOH). This process is line-locked by a phase-locked
loop to the voltage waveform observed at the utility ser-
vice entry, so that the reconstituted, basis sinusoid will
exhibit a precise, desired phase with respect to the line
voltage. The product of the current and basis sinusoid
corresponds to a function such as xc(t) or xs(t) for a par-
ticular harmonic k, as described in the previous section.
A multiplying digital-to-analog converter (MDAC) pro-
vides the ZOH and multiplication operations shown in
Fig. 1. The product of a current and basis sinusoid is
low-pass filtered (LPF) to yield an estimate of a partic-
ular spectral envelope for the current. A total of sixteen
channels are available in the prototype for computing
spectral envelopes.

In the prototype, a second order Butterworth filter
with a breakpoint at 20 Hz is used on each channel
to provide an estimate of the average or low-frequency
component of each MDAC output. This low-pass fil-
ter, convenient from an implementation standpoint, is
obviously not functionally identical to the windowed
mean employed in Eqns. 2 and 3 to compute the spec-
tral envelopes. For this reason, and because the basis
waveforms are reconstructed with a (generally negligi-
ble) quantization error, the outputs of the prototype are
estimates of the spectral envelopes. By varying the filter
breakpoint, it is again possible to trade localization in
time versus localization in frequency, as was possible in
the previous section by varying the interval T . The slow
roll-off of the output filters and slight offsets present in
the prototype preprocessor will be seen to add small, high
frequency ripple components to the spectral envelopes in
the examples.

Five examples of the envelope estimator in operation
will be considered here. In each case, the spectral en-
velopes will be observed to exhibit patterns created by
the unique electrical, thermal, and mechanical processes
that occur in each class of loads. Figure 2, for example,
shows the measured current waveform and four associ-
ated spectral envelopes estimated by the preprocessor
during the turn-on transient of a bank of instant start flu-
orescent lamps. All five waveforms were captured with
a digital storage oscilloscope. The top trace in Fig. 2
shows the current into the lamps during the transient
and in steady state. The remaining four traces, labeled
a1, b1, a3, and b3, correspond to the envelope estimates
of real power, reactive power, in-phase third harmonic
content, and quadrature third harmonic content, respec-
tively. In the transient event detector described in [3],
the characteristic patterns in the spectral envelopes dur-



ing the turn-on transient would be used to recognize the
turn-on event of the instant start lamps. Where rates
of event generation are very high, the transient event
detector will be unable to recognize the event; in the fol-
lowing sections of this paper, we will consider the use
of the steady-state spectral envelope values to assist in
determining load composition.

Figure 3 shows the current and four spectral envelopes
on one phase during the turn-on transient of a three
phase induction motor. While the rotor is accelerating
to steady-state speed, the motor draws a relatively large
current, as shown in the top trace of Fig. 3. Around 0.3
seconds into the transient, the rotor has reached its nom-
inal velocity and the input current tapers to its steady-
state level. The trace labeled a1 in Fig. 3 again corre-
sponds to the slow envelope of real power. The trace
labeled b1 corresponds to the slow envelope of “reactive
power.” As might be expected, the induction motor does
not exhibit unity power factor, and the magnitude of the
b1 trace in steady state is substantial relative to the mag-
nitude of the a1 trace. Also, as would be expected for
a balanced three phase load, the induction motor draws
no third harmonic components.

Figure 4 shows the turn-on transient for the current
and spectral envelopes of a bank of rapid start fluorescent
lamps.

Figure 5 shows the current and envelopes during the
turn-on transient of a personal computer (PC). The
switching power supply inside the computer initially
draws a few large pulses of current as the internal bus
capacitor charges from the line through a full bridge rec-
tifier. When the capacitor has built up a substantial
stored charge, the current waveform becomes “spikey” as
charging begins to occur only near the peaks in the mag-
nitude of the line voltage waveform. Approximately 0.18
seconds into the transient, the computer monitor turns
on, increasing the total steady-state current drawn by
the computer and monitor. The fourth trace, labeled a3,
is computed by mixing the current with a sinusoid with
the same phase but three times the frequency of the line
voltage. This spectral envelope indicates in-phase third
harmonic content. As might be intuitively expected from
examining the “spikey” line current waveform, the com-
puter draws a substantial third harmonic current.

Finally, Fig. 6 shows the current and four spectral en-
velopes measured during the turn-on transient of a bank
of incandescent lamps.

It is our goal to use known spectral envelopes of typi-
cal loads to estimate load composition from the measured
spectral envelope of an aggregate load. We assume, for
the purposes of this paper, that our knowledge is lim-
ited to steady-state spectral envelope measurements of
dominant load types and steady-state or quasi-steady-
state measurements of the aggregate load. There is ad-
ditional, potentially useful information for load disaggre-

Table 1: Individual Load Characteristics

Instant 0.25 HP Rapid PC Incandescent
Starts Motor Starts

β1 β2 β3 β4 β5
a1 0.351 0.054 0.307 0.106 0.429
b1 0.003 0.088 -0.044 -0.006 -0.002
a3 -0.066 -0.000 -0.005 0.092 -0.006
b3 0.063 -0.004 -0.010 -0.013 0.004

gation, and modified monitoring techniques that will aid
in our pursuit of more detailed load composition esti-
mates and models. We discuss these in Section V. In
this paper we focus on the mathematical decomposition
aspects of our approach.

IV. Identifying Load Components

In this section we present a method for identifying the
amount of certain classes of loads in an aggregate load.
This is achieved by representing the load components and
measured aggregate loads in a linear vector space whose
dimensions correspond to the amplitudes of the spectral
envelopes. In this space we can employ linear techniques
to decompose the total observed load into some of the
important load components. We emphasize the theoreti-
cal and practical limitations of this approach and present
results demonstrating its potential.

The basis approach

We represent each load’s steady-state operating char-
acteristic as a vector of spectral envelope values. The
loads in our study and their characteristics are listed in
Table 1. For instance, the vector describing the incan-
descent lights is given in the last column,

β5 = [0.429 − 0.002 − 0.006 0.004] .T (6)

In steady state, the incandescent lamp is essentially a
resistor, and draws only real power. This is indicated in
the basis vector β5 by the negligible reactive and third
harmonic components.

Given an aggregate load measurement we attempt to
determine how much of each load type is present in the
aggregate. To aid in this we define the “basis matrix”

B = [β1 β2 β3 β4 β5 ]

=

⎡
⎢⎢⎢⎣

0.351 0.054 0.307 0.106 0.429
0.003 0.088 -0.044 -0.006 -0.002
-0.066 -0.000 -0.005 0.092 -0.006
0.063 -0.004 -0.010 -0.013 0.004

⎤
⎥⎥⎥⎦(7)



The amount of each load component is determined from
the solution of

Bx = βobs (8)

where x is the amount of each load type in the observed
aggregate vector of spectral envelope amplitudes, βobs.
The solution of this linear algebra problem depends on
the properties of the basis matrix B and the observed
vector βobs.

Assuming the basis matrix B ∈ Rmxn is constructed
to have full rank, Equation (7) is

� overconstrained if m > n and typically will not have
a solution;

� underconstrained if m < n and typically will have
an infinite number of solutions related through the
nullspace of B;

� invertible and exhibits a unique solution if m = n.

(Other possibilities exist if matrix B is not full rank, but
are not pursued here.)

From a mathematical viewpoint one might expect that
the square matrix is ideal. This is not the case. We nei-
ther expect to be able to account for every possible load,
nor expect that all loads will have independently distin-
guishable basis vectors. A full-rank, square matrix B
leaves no room for error or uncertainty. The overcon-
strained case is better. The measurement, βobs will not
typically be represented exactly by the basis vectors; a
least-squares estimate will give a best fit. The error ac-
counts for unknown loads. This case occurs when the
number of nontrivial spectral components is greater that
the number of significant load types.

In practice, we encounter the underconstrained case.
There are a large number of interesting loads which are
not uniquely identifiable from their basis vectors. In our
study, we made measurements of first and third harmon-
ics on five different types of loads. The basis matrix B
is a four-by-five matrix.

We might force the problem to be overconstrained if we
know that certain loads are not present or are negligible.
In general, one cannot expect that forcing the undercon-
strained problem to be overconstrained will give accurate
results in the variables of interest because the load basis
vectors are not orthogonal. Loads that have significant
presence but are not accounted for in the basis will not
appear in the error, but will be reflected in the estimate
of other load components. For example, suppose we are
only interested in the portion of the load corresponding
to instant start lamps. We might simply pose the prob-
lem as

β1x = βobs, (9)

where x here represents the scalar number of instant start
lamps. Now suppose the load actually consists of only

rapid start lamps, βobs = β3. A least squares analysis
does not yield x = 0, indicating no instant start lamps;
rather, it will falsely indicate a large portion of instant
start lamps. This is a direct result of not having orthog-
onal load basis vectors.

This observation leads to an approach by which one
can identify the components of certain loads which are
distinguished by a having a significant component in a
direction orthogonal to the other loads.

The orthogonal component approach

Even in the underconstrained case, a load could be dis-
tinguished if it has a component that is orthogonal to the
space spanned by the remaining load basis vectors (ex-
cluding the load of interest). While it is unlikely that this
will occur exactly in a numerical sense due to uncertain-
ties, from a practical perspective this could occur and is
not accidental. Loads have different physical character-
istics because of real, physical differences in how energy
is processed.

Note that the loads described by vectors β2, β3, and
β5 in Table 1 are practically limited to real and reactive
components in steady state. Any third harmonic content
in the aggregate steady-state measurement must arise
from a load other than these three.

For example, we can now estimate the portion of the
load that comes from instant start lamps. The four-
by-four matrix of the load vectors excluding the instant
starts and neglecting third harmonics where appropriate
is

BR = [β2 β3 β4 β5]

=

⎡
⎢⎢⎢⎣

0.054 0.307 0.106 0.429
0.088 -0.044 -0.006 -0.002
0.000 0.000 0.092 0.000
0.000 0.000 -0.013 0.000

⎤
⎥⎥⎥⎦ (10)

and has rank = 3. The nullspace of BT
R is one dimen-

sional. It is the orthogonal complement of the space
spanned by the columns of BR and in this case can be
represented by the vector

βn = [0.000 0.000 − 0.013 − 0.092]T (11)

The instant start lamp has a component in the direction
of this nullspace vector. With proper scaling, the compo-
nent of the aggregate load corresponding to the instant
start lamps can be found by projecting the observed vec-
tor onto the nullspace. The component of the observed
vector in the nullspace is proportional to the quantity of
instant start lamps in the aggregate load.

The proper scaling is found by projecting β1 onto βn.
The vector pn defined by

pn = βn/(β
T
n β1) (12)



Table 2: Aggregate Load Characteristics

A B

a1 0.8690 1.1108
b1 0.0614 0.0539
a3 0.0021 -0.0056
b3 0.0498 0.0536

Table 3: Instant Start Lamp Component

Estimate Error

Load A 0.938 6.2%
Load B 0.990 1.0%

can be used directly with the aggregate load measure-
ment to determine the number of instant start lamps,

lamps = pTnβobs (13)

This is demonstrated by the examples presented next.

Examples

We examine two aggregate loads:

A. This load consists of one set of instant start lamps,
a PC, a 0.25 HP three-phase motor, and a set of
incandescent lights (four 100W bulbs).

B. This load is identical to Load A with an additional
200W incandescent bulb.

The measured amplitudes of the steady-state spectral en-
velopes of these aggregate loads are presented in Table 2.
The estimate of the number of instant start lamps com-
puted with Equation 13, and the error in the estimate,
are listed in Table 3.

The measurements were made in the presence of noise
and uncertainties. This is evident since the sum of the
individual basis vectors comprising the aggregate load
differ from the measured aggregate. The errors of 6.2%
and 1% are encouraging. With more accurate sensors we
expect that these errors will be reduced.

V. Conclusions

The Nonintrusive Load Monitor accurately identifies
loads through transients in observed spectral envelopes.
At some point we expect that individual load transients
will occur too frequently and at levels too small to be
distinguished from noise in the system. At this point,
we wish to determine if the quasi-steady-state spectral

envelopes can be used to provide an estimate of load
composition. This initial study indicates that the contri-
bution of certain load types having a physical operating
characteristic that uniquely distinguishes them from the
other loads present can be disaggregated from an ob-
served measurement. In our example the instant start
lamps fit this description. We proposed a method for
obtaining this estimate. We emphasize that the key step
is to identify the portion of a vector of interest that is
orthogonal to all other load basis vectors.

We may also, for example, use the following additional
information to gain a better estimate of load composi-
tion. Knowledge of the types of loads that are expected
to be dominant and those that will not be present will
reduce the number of load basis vectors that need be con-
sidered. Also, since load behavior is governed by phys-
ical properties we expect that measurements of higher
harmonics will yield more information. It is likely that
some power electronic loads, for example, will be distin-
guishable in the higher harmonics. We could also use the
constraint that loads appear in positive amounts.

Finally, temporal changes could be used to estimate
load composition. By monitoring incremental changes,
we could estimate changes in the aggregate. In the pre-
vious example, the difference between Loads A and B was
the presence of an additional 200 W incandescent bulb.
The difference between the measured characteristics is

βdiff = [0.242 − 0.008 − 0.010 0.004]T (14)

which corresponds to a real power load. By examining
Table 1 we can see from the difference that an incandes-
cent load was added to the aggregate. Knowing that the
basis vector β5 comes from four 100 W bulbs, we may
further estimate an increase of 200 W. We emphasize
that this information cannot be deduced directly from
the absolute measurement but is concluded from an in-
cremental measurement.

The approach to determining particular load compo-
nents by first identifying the distinguishing characteris-
tic of these loads is theoretically sound and will accu-
rately capture certain loads. The overall usefulness of
this method will depend upon the number of loads that
can be distinguished. We could, for example, try to cap-
ture a subset of all loads, such as the component of the
total load consisting of all power electronic devices.
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