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Abstract—Mission requirements and electrification trends are
pushing new platforms toward more complex electric power dis-
tribution networks, often featuring integrated electric and hybrid
propulsion architectures. As a result, shipboard electric plant
modeling has never been more important. Behavioral modeling
offers a fast approach to achieve concept-level microgrid simula-
tion, which may be used for design, diagnostic, and sustainment
tasks. Transient and steady-state data captured at the component
level allow entire microgrids to be modeled at a fraction of the
computing cost of traditional numerical techniques. The software
suite presented here offers a scalable platform, intuitive graphical
user interface, and efficient solving algorithm to rapidly produce
large quantities of statistically accurate results. The simulator’s
utility is demonstrated across a ship’s life cycle through examples
supporting set-based design, developing synthetic training data
for machine learning-based diagnostic models, and providing
sustainment support to platforms facing obsolescence.

Index Terms—Behavior modeling, electric propulsion, nonin-
trusive load monitoring, machine learning, diagnostics

I. TRENDS AND CHALLENGES IN SHIPBOARD
ELECTRIFICATION

Ship electrification dates back nearly 150 years, when in
1880 the S.S. Columbia set sail with an electric microgrid
to provide passengers and crew with light. Thirty-three years
later the U.S.S. Jupiter became the first U.S. naval ship to
make use of turbo-electric propulsion. While gas turbines and
direct-drive diesel engines became popular in the majority of
subsequent propulsion systems, the capacity and complexity
of shipboard microgrids has steadily increased in recent years.
Technological improvements and flexible plant configurations
offered by integrated propulsion systems (IPS) can decrease
light loading operations, reducing diesel engine maintenance
and increasing fuel economy. Defensive systems and radar
platforms demand increasing amounts of power, fueling a
demand for higher voltages and more generation capacity.
General trends in component electrification and control drive
a broader trend of higher electric consumption onboard.

The effects of these trends ripple across all aspects of
the naval system life cycle. In the design stage, engineers
face an ever-growing complexity of their design space. This
enables greater platform optimization, but simultaneously
plagues them with an increase in computation demands for
the necessary modeling efforts. Design techniques such as

set-based design offer methods to mitigate emergent design
failures that lead to significant late-stage rework [1]. In prac-
tice, designers carry all feasible combinations of the design
space through increasing levels of analysis fidelity. Successful
implementation of this technique prevents premature removal
of possibly optimal design choices, but requires significant
early-stage work to evaluate each combination until feasibility
constraints narrow the design space. As designers advance
through progressive stages of evaluation, the computational
demand for analysis increases, inhibiting the ability for de-
signers to scale their process to numerous combinations.

Increased design complexity exacerbates the challenges of
maintaining operational readiness. Government assets with
funding and personnel constraints already struggle to remain
operationally available. As unmanned ships begin to see
widespread naval and industry use, they will demand even
more accurate diagnostic systems. Utility monitoring, and in
particular nonintrusive load monitoring, offers the ability to
detect anomalies and ongoing faults by observing patterns
in aggregate power streams [2]. Data-driven techniques also
show promise for diagnostics at the component and subsystem
level [3]. However, both depend on the availability of quality,
actionable data for training or tuning a diagnostic system. The
acquisition of this data is traditionally very costly, requiring
numerical methods to solve the underlying circuit models,
physical data collection, or a land-based physical system
model [3], [4].

Lastly, ship maintenance is a significant component of a
ship’s life cycle cost. As ships adopt electronic equipment
susceptible to a quickly innovating industry, the challenges
faced by engineering leadership and sustainment personnel
compound as the likelihood of component obsolescence grows.
The U.S. Coast Guard’s In-Service Vessel Sustainment pro-
gram is an example of this significant effort [5]. It is focused
on life-extension and sustainment for the medium endurance
cutter and icebreaking fleet, with a 2025 budget of $148 mil-
lion – nearly 10% of the total budget allocated towards vessel
procurement, construction, and maintenance [6]. Projects with-
out high-cost digital models can face difficulty in replacing
obsolete components while mitigating the risk of unforeseen
integration issues.

Behavioral techniques in power system modeling offer a



Fig. 1: The start screen of SPARCS. The user builds and simulates their ship model through an intuitive eight step process in
a graphical environment.

possible solution to the challenges above by providing a fast
method for simulating complex electric networks. Behavioral
simulation avoids the use of complex mathematical models
for a load, trading some degree of simulation fidelity for a
reasonable, computationally fast approximation of load and
power system behavior using waveform-level models of a
load. Instead of solving circuit models from first principles,
behavioral techniques use stateless operation models to re-
duce computational demands. We present SPARCS (Shipboard
Parallelized Analytics with Rapid Configuration Simulator),
a new open-source simulation package leveraging behavioral
techniques and a graphical interface (shown in Figure 1) for
solving the power tracking problem for shipboard microgrids.

II. SPARCS

Traditional modeling efforts for ship electric plants are
performed at various levels of fidelity. In concept design, a
bookkeeping exercise is performed to understand power gener-
ation requirements across a concept of operations (CONOPS).
This exercise is then expanded to solving the load flow prob-
lem with simplified one-line diagrams of the power network.
Operational areas of concern are identified for higher-fidelity
modeling, at which point a numerical circuit solver simulates
transient behavior.

Solving the load flow problem can quickly become a tedious
and time-consuming task, hobbling the search through a pro-
posed or existing design space when considering new designs
or new methods of operation for existing systems. Load flow
statistics provide insight for design- and performance-related
metrics. Although these are valuable at all stages of design,
load flow is typically performed with methods that do not

Fig. 2: SPARCS’s approach to modeling a shipboard power
network.

scale well with increasing ship complexity or a large variety
of designs. SPARCS offers an integrated approach to the
power system simulation problem, allowing the user to define
component operation across a range of CONOPs and quickly
solve a given electrical network.

In contrast to conventional simulation approaches, SPARCS
does not seek to replicate the true dynamics of a system
under a timeline of external conditions and controls. It instead
emulates power system behavior that may probabilistically
occur. This is advantageous as it inherently captures the range
of expected operating conditions, and extreme events that



Fig. 3: The state machine available to a sample load in
SPARCS. It is defined to allow unrestricted operation between
Offline, Half Power, and Full Power, but entering a Mainte-
nance Cycle must begin from the Offline state.

Fig. 4: Transient templates offered by the Load Wizard.
(top) linear ramp; (middle) inrush; (bottom) constant power
acceleration.

could occur. Instead of iterating through permutations of initial
conditions and external factors to extract extreme events, each
component can be defined with a probabilistic range of it
exhibiting such a behavior.

A typical use case of SPARCS will involve running de-
terministic simulations in which the behavior of components
is sampled from their prescribed probability distribution. As
SPARCS solves the network through time, it builds a nominal
solution that could feasibly occur. By executing many of these
deterministic simulations, a Monte Carlo analysis could be
performed.

Fig. 5: The high-level solving algorithm of SPARCS.

Fig. 6: One-line diagram of the sample ship’s electric plant.

A. Operational Modeling Framework

The highest level of abstraction for a ship’s CONOP comes
from the mission and environmental conditions it will operate
in, as illustrated in Figure 2. For example, a ship may be
tasked with traveling to a designated location at a specified
speed (the mission), while facing head winds and mild seas



CONOP Base Load (kW) Expected Variable Expected Total µCONOP No. of Online Loads
Load (kW) Load (kW) T (minutes) D (%)

Underway Efficient 300 910 1210 240 0.46 25
General Quarters 600 1125 1725 180 0.56 25
Loiter 200 367 567 360 0.20 24
RMD 300 693 993 60 0.36 25
In Port on Ship Power 60 95 155 720 0.05 15

TABLE I: Load characteristics for different mission profiles

CONOP λOnline (minutes) λOffline (minutes)

Underway Efficient 70 163
General Quarters 94 63
Loiter 24 213
In Port on Ship Power 92 825
RMD 26 39

TABLE II: Sample Poisson distribution parameters for a single
load with nominal power 100 kW and power factor 0.98.

Generation Generator Capacity (kW)

Design Set # Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

Set 1 600 2000 2000 0 0
Set 2 800 2000 2000 0 0
Set 3 600 600 1500 1500 0
Set 4 600 600 1500 2000 0
Set 5 600 600 600 800 800
Set 6 600 600 600 800 1500
Set 7 600 600 600 800 2000
Set 8 600 600 800 800 800
Set 9 600 600 800 800 1500

Set 10 600 600 800 800 2000

TABLE III: Generation sets defined for the sample design case.
Each design set has up to five generators comprised of 600
kW, 800 kW, 1500 kW, and 2000 kW generators.

(the local environment).
A ship’s components can be grouped into systems [7], [8].

For example, a commercial cargo vessel may have systems
including “Propulsion,” “Navigation,” and “Cargo Handling.”
These systems are defined such that their member components
behave in a similar manner for any given mission. For instance,
the “Cargo Handling” system may have three operational sta-
tuses: “Offloading,” “Onloading,” and “Standby.” By grouping
components in such a manner, missions can describe the
status of each system, rather than the status of each individual
component. As the complexity of the microgrid increases, this
allows for a decoupling between the definition of ship-level
behavior (missions), system-level behavior (system statuses),
and load-level behavior.

Finally, the operating state of each component is deter-
mined by the status of the system(s) it belongs to (e.g.,
“Offloading” status of the “Cargo Handling” system) and the
ship’s environment. A series of IF, THEN statements define
a component’s behavior by establishing its state based on the
environment and its system’s statuses. For example: IF the
“Cargo Handling” system is “Offloading,” THEN the gantry
crane’s hydraulic pump is cycling with a 50% duty cycle.

OTHERWISE the pump is offline. The environment variables
are primarily intended to capture the influence of the external
conditions on the ship. For instance, a variable such as the sea
state significant wave height may drive variations in the duty
cycle for a bilge pump. These parameters can also be used
to capture operational nuances, such as the order of cycling
generators.

B. Component States and Data Management

Loads and generators may have many steady-state operating
conditions. These can be modeled as a finite state machine
(FSM), shown in Figure 3. These steady states are separated
by state transitions or “transients,” represented by the arrows in
Figure 3. Each steady state and transient is defined by a set of
real and reactive power traces for each relevant phase (e.g., A,
B, C) and harmonic (e.g., 1st, 3rd, 5th, 7th). These traces may
be defined by data captured from detailed modeling efforts
(e.g., a numerical model of a pump’s inrush current), from
data acquisition systems onboard existing ships, or through
SPARCS’s “Load Wizard” feature. The Load Wizard charac-
terizes transients as parameterizations of transient templates,
as shown in Figure 4.

SPARCS assumes that every load power trace is independent
of the operation of other equipment on the power system.
While the user may choose to upload traces for different states
which represent the power stream under specific operational
cases, the power traces are not modified in the simulation
stage. This independence across components allows the simu-
lation to be solved in parallel across multiple CPU cores. On
modern computing hardware, this results in a drastic speedup
compared to a non-parallel, serialized approach.

C. Solving Techniques

SPARCS uses three primary techniques to solve the power
system simulation problem: Radial Propagation, Power Shar-
ing, and Ring Bus algorithms. These methods are applied
sequentially for each time step as shown in Figure 5. The
order of this process ensures that as much of the network is
solved as possible before using more time-intensive solving
algorithms.

The Radial Propagation algorithm applies conservation of
power across every node in the system where every input and
output power value is known except for one. This is performed
for as many nodes as possible until there are no more nodes
with only one unknown input or output power value. If
multiple generators are online in the network, the Power



Fig. 7: Sample results during the General Quarters mission. The phase A real power trace is shown at the port transformer
(red), port 440 Volt switchboard (blue), and the generation probe points (green).

Sharing algorithm distributes power proportionally between
each of the generators based on their maximum continuous
rating (MCR). Finally, if a ring exists in the network, the Ring
Bus algorithm solves a linear system to emulate the remaining
power system.

Losses across components (cables, transformers, and con-
verters) in the Radial Propagation algorithm are modeled for
each harmonic and phase according to the following equation:

Sϕ,out = Sϕ,in +

(
Sϕ,in

Vref

)2

Zcomp. (1)

Here, Sϕ is the complex power spectral envelope on phase
ϕ, Vref is the root-mean-square reference voltage of the
component, and Zcomp. is the equivalent impedance of the
component. Although the voltage is assumed to be stiff across
the power system, this provides an estimate of distribution
losses provided they are small.

III. VESSEL DESIGN

Behavioral modeling offers a method to emulate power
system behavior in a quick and scalable manner. Solutions
to late-stage design considerations can become available at
the same time as a concept-level electric power load analysis
(EPLA), reducing the likelihood of encountering unforeseen
emergent design failures. From the behavioral emulation, key
design parameters can be obtained, such as:

• Generator light loading
• Fuel consumption
• Component runtime and maintenance schedules
• Damage case redundancy
• Component size, weight, power, and cost (SWaP-C)

• Harmonic distortion
• Thermal signatures
• Electromagnetic interference (EMI)
SPARCS is especially useful for estimating these design

parameters because of its ability to consider not only average
loading events, but the volatility of the loading. In early design
stages, loads are traditionally associated with a constant load
factor for each CONOP, but variability is often not considered.
This is analogous to designing a ship for the motions induced
by a significant wave height of a storm, but not considering
the low-probability, extreme amplitudes that may occur. The
capability of SPARCS to use randomized behavior allows it
to produce sample instances of time-series data, which can
capture these extreme events.

A. Design Demonstration

To demonstrate its usefulness in assessing load volatility,
a sample concept design is presented and the time spent
light-loaded is estimated. Loading mechanically injected diesel
engines below their nominal ratings can lead to incomplete
combustion cycles, increasing maintenance frequency, dimin-
ishing fuel economy, and potentially causing engine failure
[9]. While light loading plays a major role in ship availability
throughout its life, it is often neglected until the later stages
of design, if it is considered at all.

Figure 6 shows the radial network of an example concept
ship. This network contains two 440 V buses, each with a
120 V distribution sub-panel. The parameters describing each
load’s duty cycle and period were randomly sampled from a
CONOP-specific distribution, representing the case where data
from a similar existing class of ship is known. Alternatively,



Generation % of Time Light-Loaded below 25% (SPARCS Results ∥ Avg. Loading)

Design Set # Underway Efficient General Quarters Loiter RMD In Port on Ship Power

Set 1 0.00 0 0.02 0 0.50 1 0.69 1 0.71 1
Set 2 0.00 0 0.03 0 0.52 1 0.69 1 0.78 1
Set 3 0.00 0 0.00 0 0.51 1 0.62 1 0.58 1
Set 4 0.00 0 0.02 0 0.50 1 0.62 1 0.75 1
Set 5 0.00 0 0.00 0 0.41 0 0.62 1 0.32 0
Set 6 0.00 0 0.00 0 0.44 1 0.62 1 0.55 1
Set 7 0.00 0 0.02 0 0.50 1 0.62 1 0.71 1
Set 8 0.00 0 0.00 0 0.41 0 0.62 1 0.38 0
Set 9 0.00 0 0.00 0 0.41 0 0.62 1 0.61 1

Set 10 0.00 0 0.03 0 0.41 0 0.62 1 0.78 1

Generation % of Time Light-Loaded below 40% (SPARCS Results ∥ Avg. Loading)

Design Set # Underway Efficient General Quarters Loiter RMD In Port on Ship Power

Set 1 0.23 0 0.61 1 0.74 1 0.88 1 1.00 1
Set 2 0.31 0 0.71 1 0.77 1 0.88 1 1.00 1
Set 3 0.27 0 0.36 0 0.75 1 0.68 1 1.00 1
Set 4 0.23 0 0.67 1 0.74 1 0.68 1 1.00 1
Set 5 0.23 0 0.09 0 0.67 1 0.68 1 0.91 1
Set 6 0.12 0 0.32 0 0.69 1 0.68 1 1.00 1
Set 7 0.23 0 0.61 1 0.74 1 0.68 1 1.00 1
Set 8 0.15 0 0.14 0 0.67 1 0.68 1 0.95 1
Set 9 0.12 0 0.41 0 0.67 1 0.68 1 1.00 1

Set 10 0.23 0 0.71 1 0.67 1 0.68 1 1.00 1

TABLE IV: Percentage of operational time spent with a generator loaded below 25% and 40% of its nominal rating. For each
CONOP, the percentage of time light-loaded calculated with SPARCS through a probabilistic simulation is on the left, and
with average loading is on the right.

operator experience and intuition could be used to estimate
these distribution parameters, or the duty cycle and period on
a per-load basis.

The distribution panels and 440 V buses hold 25 variable
loads and a constant base load for each CONOP, described
by Table I. The magnitude of the variable load’s nominal
rating is sampled from an exponential distribution with a
mean of 75 kW, with the power factor randomly sampled
from a uniform distribution between 0.80 and 1.00. During
simulation, the online and offline cycle times of each load are
sampled randomly from two Poisson distributions described
by λOnline and λOffline. Poisson distributions are common
representations of independent stochastic cycle times. They are
characterized by λ, the expected value of the inter-arrival time
of the process.

λOnline = Ti,CONOP Di,CONOP (2)
λOffline = Ti,CONOP (1−Di,CONOP ) (3)

It is further assumed that the duty cycle (D) and period (T )
for all of the variable loads on the ship can be described by a
Gaussian distribution where the standard deviation (σCONOP )
is equal to one third of the mean (µCONOP ) with 99.7%
accuracy, given no value can be below 0. From these two
distributions, Di,CONOP and Ti,CONOP can be randomly
sampled for each load i. Equations 2 and 3 can then be used
to determine λOnline and λOffline for each load. The result
is 25 loads which follow a behavior similar to the sample load
in Table II.

From the known distributions of online and offline cycle
times for each load, SPARCS generated a time-domain solu-
tion to the network. Cycle periods for each load were sampled
from the user-defined distributions for each component. In this
case, 1 week’s worth of data sampled at 10 Hz was generated
for each of the five missions (5 weeks total), requiring a total
of 19.86 minutes of processing time on a 13th Gen Intel i7-
13700 2.10 GHz processor. This CPU has 16 cores, each with
a maximum clock frequency of 4.50-5.10 GHz. A sample of
the solution power trace from the general quarters operation
is shown in Figure 7.

Note that there is only one generator block in the SPARCS
one-line diagram. This permits the user to quickly find the total
power provided by any configuration of online generators. If
the generators onboard a ship are already known, this makes it-
eration through different online combinations straightforward.
Alternatively, in a set-based design environment, there may be
many generation sets under consideration. In this sample case,
10 combinations of generators are considered. Each generation
set has the capacity to sustain the worst-case loading scenario
with one generator in repair, and is comprised of a combination
of 600 kW, 800 kW, 1500 kW, and 2000 kW diesel generators.
These are summarized in Table III.

With the simulation complete, a percentage of time that the
ship’s generation is light-loaded can be calculated for each
CONOP and generator set. Two light loading thresholds are
defined at 40% (light load) and 25% (extreme light load) [10].
The results are presented in Table IV. In the general quar-
ters and RMD (restricted maneuvering doctrine) CONOPs,



Fig. 8: One-line diagram in SPARCS for the 87-ft Marine Protector class patrol boat model.

all generators are placed online. When the ship is in port
under its own power it is permitted to run on one generator,
but otherwise there must be at least two generators online.
With these constraints, the generation online is determined
as the smallest capacity possible while still being capable of
maintaining sufficient capacity for peak loading events in that
CONOP.

Table IV compares the SPARCS-based estimate of light
loading to an estimate made using average component loading
(the load factor). The load factor-based assessment results in a
binary YES (1) or NO (0). It is evident that the simulation pro-
duces a spectrum of results, and captures cases of light loading
not identified by the load factor-based method. This provides
the designer with more insight into the challenges faced by
each generation set. However, it is important to recognize that
the data output is only as good as the data input. In other

words, the simulation is sensitive to the distribution parameters
estimated by the designer. A false sense of accuracy can be
implied by higher fidelity results.

IV. DATA-DRIVEN DIAGNOSTICS

Whether it is an analog pressure gauge on a steam turbine
inlet or an aggregate current sensor on an electrical distribution
panel, data availability increases an operator’s awareness of
their system. The primary challenge becomes making sense
of otherwise meaningless data.

There are two general methods for approaching this task.
First, physics-based approaches attempt to make interpretable
connections between the data and the physical system being
sensed [11], [12]. For instance, vibration on an induction motor
should be expected to peak in magnitude around an integer
multiple of the mechanical shaft speed. If this peak occurs
closer to the electrical frequency (i.e., motor slip is small) then



Fig. 9: System hierarchy defined in SPARCS for the 87-ft patrol boat model.

it may indicate that the motor is abnormally light-loaded [13].
Secondly, machine learning (ML) holds significant promise
for identifying trends in data which are a result of specific
operating modes and failures. These models have the potential
to draw connections between data patterns to classify faults [4]
and predict timeline to failures [3].

Neither approach is perfect on its own. A challenge both
approaches face is the the inability to draw contextual aware-
ness of the equipment that is online and operating at any given
time. Understanding what should be happening at a given
moment makes anomaly detection easier, and can help match
the correct physical model to the system.

Section III established that the cumulative loading of a
ship under different mission profiles can be characterized as
a stochastic process. By understanding and replicating each
of these stochastic events, system-level synthetic data can be
generated to help train ML models which can classify the ships
current operational status. A demonstration of simulating a
ship’s operating mode using SPARCS is presented here for an
87-ft USCG Marine Protector class patrol boat.

A. U.S. Coast Guard Cutter Sturgeon

The U.S. Coast Guard’s Protector-Class cutter is 87 feet in
length, has a crew of 10 to 12, and primarily conducts near
coast law enforcement missions such as fisheries protection,
search and rescue, and counter drug enforcement. The relative
size of this ship limits its range, so missions are typically
limited to 1 or 2 days before refueling and reprovisioning
is necessary. The ship was modeled with a radial power
distribution system and 78 defined loads. USCGC Sturgeon, a
Marine Protector Class cutter stationed in Boston, MA, served
as the reference for developing the simulation model. NILMs
were installed on this ship’s port and starboard electrical

panels, as shown in Figure 10. Equipment behavior cycles
representative of USCGC Sturgeon were generated from pre-
viously collected NILM data, referenced from ship engineering
logs, and otherwise estimated from similar ships and mariner
intuition. The SPARCS one-line diagram and system hierarchy
are presented in Figures 8 and 9.

SPARCS’s ability to replicate real-ship distributions at the
system-level is tested by building a behavior profile for each
of the components on the ship. Each load was prescribed
a behavior profile for 17 different missions observed on
the USCGC Sturgeon during a 26-day sample period over
the summer and winter months. These missions constituted
variations of “in port” and “underway,” which are presented in
Figure 11. The figure displays the July collection period, with
the port and starboard power traces for phase A plotted above
a mission timeline. These power traces were recorded from
the NILM systems installed on the Sturgeon’s main starboard
and port electrical panels, shown in Figure 8 as Section 1 and
Section 2, respectively.

All 26 days of the collection period were simulated in a total
of 19.9 minutes at a sample rate of 1/10Hz. An advantage
of SPARCS is that all data generated by the program is
automatically labeled with a timeline of the operating state
of each component and the ship’s mission, making machine
learning tasks much more streamlined.

Two high-level classifications are presented in Table V:
summer vs. winter operation, and in-port vs. underway. From
the table, it is clear that both capture similar mean loading over
the mission durations. This can be visually confirmed in Figure
11, and with higher fidelity in Figures 12 and 13. The SPARCS
traces are not intended to precisely match their corresponding
NILM traces, as SPARCS generates a probabilistic time series
sampled from the cycling behavior of each load.



Fig. 10: The two NILMs installed on the USCGC Sturgeon.

NILM (W) SPARCS (W) % Difference

Total 10,074 10,094 0.64%

Underway 10,674 10,777 0.96%
In Port 10,025 10,042 0.18%

Winter 10,506 10,439 0.64%
Summer 9,737 9,840 1.05%

TABLE V: USCGC Sturgeon vs. SPARCS average combined
loading on phase A of the port and starboard panels during
the 26-day sample period. Accuracy in emulating summer vs.
winter operations and in port vs. underway are presented.

There are notably periods, such as around July 7 18:00
and July 13 00:00, where there is behavior captured in the
NILM data that is not represented in the SPARCS data. This
is largely due to the fidelity of operational logs that were
available during the SPARCS setup. These periods could have
experienced equipment malfunctions, maintenance, or other
mission-specific actions not modeled in SPARCS. However,
despite these anomalies, the system-level aggregate trends
were accurately captured by SPARCS.

Additional discrepancies between the NILM data and
SPARCS results are likely due to the aggregation of loads
in the SPARCS model. By aggregating, a small collection of
loads can be prescribed the same behavior to reduce solving
and set up time. For loads which have a constant behavior
the loss in accuracy is minimal. However, for loads which
cycle frequently and independently of others within the group,
this leads to the representation of the group as a single,
large load. Aggregation can also be useful or unavoidable
when the amount of known information about a subsection
of the network is small. While building the 87-ft Patrol Boat
SPARCS model, some panels (e.g., the 24V DC Electronics
panel) were aggregated due to a lack of information on their
load-specific behavior.

V. VESSEL LIFE CYCLE SUSTAINMENT

The rapid trends which bring about improvements to elec-
trical components and enable electrified ships also complicate

their ship’s life cycle sustainment. This life can span decades,
with 10-year design cycles and 40-year service durations
common. In this time component obsolescence is likely. The
original manufacturers may no longer be in business, or the
base technology may have advanced so much that supporting
the specific product may not make sense as a manufacturer.

The ability to quickly assess the implications of replacing a
component is demonstrated with a simple case using the same
Marine Protector class USCG patrol boat model developed
in Section IV. This case considers the scenario where the
ship’s galley refrigerator is considered for replacement by
a newer model, which features higher efficiency and lower
overall power draw. Both the original and replacement fridges
are single phase and connected line-to-line on the delta B/C
phases of the existing network. This causes an imbalance in
the loading of the three phases, which may be problematic.

The original version draws 425 W of real power and 245
VAR of reactive power per phase across phases B/C. A
replacement is considered that draws 25% of the original load.
All other interface properties and cycling behaviors are held
constant.

To evaluate this impact on generator-level phase balance,
the operations observed in Section IV-A are again considered.
Operations where the ship’s service generators are in use
are simulated for a 1-week period at a 1 Hz sample rate,
requiring a total simulation time of 54.96 minutes for 56
days of data. The distribution of time spent unbalanced above
certain thresholds was then calculated, where phase imbalance
is defined by the following equation:

Imbalance =
Sϕ,max − Sϕ,min

SA+SB+SC

3

, (4)

where Sϕ is the apparent power on phase ϕ.

Original Replacement

Mooring/Anchoring (Winter) 0% 0%
Mooring/Anchoring (Summer) 65% 69%
RMD (Winter) 0% 0%
RMD (Summer) 86% 94%
Underway Efficient (Winter) 0% 0%
Underway Efficient (Summer) 85% 92%
UW Eff. ≥ 3nm Offshore (Winter) 0% 0%
UW Eff. ≥ 3nm Offshore (Summer) 47% 53%

TABLE VI: Time spent with greater than 25% load imbalance
compared between the original and replacement galley fridge.

The results of the imbalance assessment are presented in
Table VI. The results for the original component align well
with empirical data from the USCGC Sturgeon. While the
replacement load is more efficient and decreases the overall
loading on the electric plant, it increases the proportion of
unbalanced time significantly. This is especially true during
the summer months and when generator jacket water heaters
are not used as much. These two heaters are also single phase
loads, and are connected across phases C/A, and A/B. During
the missions where they are not in use at the same time as the
galley fridge, generator imbalance is presumably higher.



Fig. 11: Sample phase A real power data collected on the NILMs installed on the USCGC Sturgeon, compared to SPARCS-
generated data for the same period in July. Known periods of underway (blue) vs. in port (red) time are plotted below the
power traces.

Fig. 12: Sample phase A real power data collected on
the NILMs installed on the USCGC Sturgeon, compared to
SPARCS-generated data for the same period in July. Known
periods where the cutter is underway (blue) and in port
(red) are plotted below the power traces. The most prominent
cycling loading on both panels are main diesel engine jacket
water heaters, online when the engines are not in use.

To mitigate this issue, the sustainment engineer might locate
other single-phase loads on the ship which are connected
across phases C/A or A/B. On the Marine Protector class,
these are primarily navigation and lighting loads which are
consistently on. By connecting these loads across phases B/C

Fig. 13: Sample phase A real power data collected on
the NILMs installed on the USCGC Sturgeon, compared to
SPARCS-generated data for the same period in July. Known
periods where the cutter is underway (blue) and in port (red)
are plotted below the power traces.

instead, the phase loading can be rebalanced.
This analysis could also be performed with average loading

metrics for each of the operations. However, this method
would result in a binary “yes” or “no,” and may miss cases
of concern. This is the same problem that was identified in
Section III, in which light loading identification was missed
for many cases where a significant proportion of the operation



was light-loaded.

VI. FUTURE OPPORTUNITIES

SPARCS is presented as the foundation of a software
environment which can serve ship designers, owners, and
operators across a variety of tasks. Its current state serves as a
method for extracting data streams from a simulated network
at desired probe points, which can be post-processed by the
user to extract variables of interest. Many improvements to the
software environment can come in the form of post-processors.
Automated methods for estimating operating metrics can be
implemented, enabling a rapid and seamless process of esti-
mation entirely within SPARCS.

Beyond post-processing, SPARCS presents the foundation
for fault analysis within the network. As the network’s
impedance characteristics are contained within the simulation,
the ability to model ground faults could be implemented.
This would be helpful at all stages of the ship’s life cycle:
from ensuring the proper rating of breakers during design, to
locating faults during operation.

With a representation of the ship’s impedance network al-
ready developed by the user, electric network stability analysis
can also be explored by future work. The ability to iterate
quickly across the ship’s CONOP would allow SPARCS to
serve as a fast method for assessing network stability in the
early stages of design.

Finally, common mode currents are of a large concern for
electrified ships, and especially those with large inverter-driven
motors. The behavioral techniques implemented in this paper
can be explored for their potential application in the common
mode problem too.
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